Defect Engineering with Rational Dopants Modulation for High-Temperature Energy Harvesting in Lead-Free Piezoceramics
Corresponding Author: Yudong Hou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 55
Abstract
High temperature piezoelectric energy harvester (HT-PEH) is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors. However, simultaneously excellent performances, including high figure of merit (FOM), insulation resistivity (ρ) and depolarization temperature (Td) are indispensable but hard to achieve in lead-free piezoceramics, especially operating at 250 °C has not been reported before. Herein, well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping. Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization, regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole, comprehensive excellent electrical performances (Td = 340 °C, ρ250 °C > 107 Ω cm and FOM250 °C = 4905 × 10–15 m2 N−1) are realized at the solid solubility limit of manganese ions. The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250 °C with high energy conversion efficiency (η = 11.43%). These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements, paving a new way in developing self-powered wireless sensors working in HT environments.
Highlights:
1 The solution limit of manganese ion in BiFeO3–BaTiO3 (BF–BT) was determined by combining multiple advanced characterization methods.
2 The defect engineering associated with fine doping can realize the co-modulation of polarization configuration, iron oxidation state and domain orientation.
3 The BF–BT–0.2Mn piezoelectric energy harvester shows excellent power generation capacity at 250 °C, which is an important breakthrough for lead-free piezoelectric devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021). https://doi.org/10.1016/j.nanoen.2020.105567
- J.Y. Park, T.A. Duong, S.S. Lee, C.W. Ahn, B.W. Kim et al., Effect of Li2CO3 doping on phase transition and piezoelectric properties of 0.96K0.5Na0.5NbO3–0.04SrTiO3 ceramics. J. Korean Inst. Electr. Electron. Mater. Eng. 36(5), 513–519 (2023). https://doi.org/10.4313/JKEM.2023.36.5.12
- Q. Xu, Z. Wang, J. Zhong, M. Yan, S. Zhao et al., Construction of flexible piezoceramic array with ultrahigh piezoelectricity via a hierarchical design strategy. Adv. Funct. Mater. 33(41), 2304402 (2023). https://doi.org/10.1002/adfm.202304402
- Z. Yu, J. Yang, J. Cao, L. Bian, Z. Li et al., A PMNN-PZT piezoceramic based magneto-mechano-electric coupled energy harvester. Adv. Funct. Mater. 32(25), 2111140 (2022). https://doi.org/10.1002/adfm.202111140
- S. An, X. Gao, M. Zheng, M. Zhang, P. Liu et al., Boosting power output performance of Ba0.85Ca0.15Snx Zr0.1-xTi0.9O3 piezoelectric nanogenerators via internal resistance regulation strategy. Nano Energy 123(123), 109420 (2024). https://doi.org/10.1016/j.nanoen.2024.109420
- X. Yu, S. Jiang, K. Xi, W. Xu, M. Zheng et al., Realizing excellent electromechanical coupling performance in BiScO3-Bi(Zn2/3Nb1/3)O3-PbTiO3 ternary high-temperature perovskite ceramics. J. Eur. Ceram. Soc. 44(8), 5001–5007 (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.02.054
- H.Y. Zhao, Y.D. Hou, X.L. Yu, J. Fu, M.P. Zheng et al., A wide temperature insensitive piezoceramics for high-temperature energy harvesting. J. Am. Ceram. Soc. 102(9), 5316–5327 (2019). https://doi.org/10.1111/jace.16409
- H.Y. Zhao, Y.D. Hou, X.L. Yu, X.D. Liu, M.P. Zheng et al., Building high transduction coefficient BiScO3-PbTiO3 piezoceramic and its power generation characteristics. J. Electroceram. 43(1–4), 123–130 (2019). https://doi.org/10.1007/s10832-019-00180-9
- Y. Dong, Z. Zhou, R. Liang, X. Dong, Excellent piezoelectric constant and thermal stability in BiScO3–PbTiO3 piezoelectric ceramics via domain engineering. J. Materiomics 8(2), 319–326 (2022). https://doi.org/10.1016/j.jmat.2021.09.004
- Y.-C. Tang, Y. Yin, A.-Z. Song, H.-Z. Li, B.-P. Zhang, High-performance BiFeO3-BaTiO3 lead-free piezoceramics insensitive to off-stoichiometry and processing temperature. J. Materiomics 9(2), 353–361 (2023). https://doi.org/10.1016/j.jmat.2022.09.016
- D. Tai, B. Li, H. Xue, T. Zheng, J. Wu, BiFeO3-BaTiO3 ferroelectrics: Decrypting the mechanism of rare earth doping-induced electrical property discrepancy via scaling behavior and multi-level structure. Acta Mater. 262, 119411 (2024). https://doi.org/10.1016/j.actamat.2023.119411
- J. Lin, F. Lv, Z. Hong, B. Liu, Y. Wu et al., Ultrahigh piezoelectric response obtained by artificially generating a large internal bias field in BiFeO3–BaTiO3 lead-free ceramics. Adv. Funct. Mater. 1, 2313879 (2024). https://doi.org/10.1002/adfm.202313879
- Z. Yang, B. Wang, T. Brown, S.J. Milne, A. Feteira et al., Re-entrant relaxor ferroelectric behaviour in Nb-doped BiFeO3–BaTiO3 ceramics. J. Mater. Chem. C 11(6), 2186–2195 (2023). https://doi.org/10.1039/d2tc04702k
- F. Chen, B.Q. Zhao, K. Huang, X.F. Ma, H.Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16(1), 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
- J. Guo, B. Tong, J. Jian, J. Chen, T. Zhou et al., Enhanced transduction coefficient in piezoelectric PZT ceramics by mixing powders calcined at different temperatures. J. Eur. Ceram. Soc. 40(8), 3348–3353 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.064
- F. Luo, Z. Li, J. Chen, Y. Yan, D. Zhang et al., High piezoelectric properties in 0.7BiFeO3–0.3BaTiO3 ceramics with MnO and MnO2 addition. J. Eur. Ceram. Soc. 42(3), 954–964 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.052
- B. Li, C. Li, T. Zheng, J. Wu, Property regulation principle in Mn-doped BF–BT ceramics: competitive control of domain switching by defect dipoles and domain configuration. Adv. Electron. Mater. 8(11), 2200609 (2022). https://doi.org/10.1002/aelm.202200609
- K. Xi, Y. Hou, X. Yu, M. Zheng, M. Zhu, Diffuse multiphase coexistence renders temperature-insensitive lead-free energy-harvesting piezoceramics. J. Mater. Chem. A 11(7), 3556–3564 (2023). https://doi.org/10.1039/d2ta08962a
- X. Yu, Y. Hou, M. Zheng, M. Zhu, Multiscale heterogeneity strategy in piezoceramics for enhanced energy harvesting performances. ACS Appl. Mater. Interfaces 13(15), 17800–17808 (2021). https://doi.org/10.1021/acsami.1c01409
- K. Xi, Y. Hou, M. Zheng, M. Zhu, Elastic polarization configuration coupled with activity rattling space boosts energy harvesting performance of lead-free piezoceramic. Adv. Funct. Mater. 1, 2401487 (2024). https://doi.org/10.1002/adfm.202401487
- Z. Jiang, R. Zhang, F. Li, L. Jin, N. Zhang et al., Electrostriction coefficient of ferroelectric materials from ab initio computation. AIP. Adv. 6(6), 065122 (2016). https://doi.org/10.1063/1.4954886
- L. Jin, J. Pang, Y. Pu, N. Xu, Y. Tian et al., Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics. Ceram. Int. 45(17), 22854–22861 (2019). https://doi.org/10.1016/j.ceramint.2019.07.328
- L. Zhang, R. Jing, Y. Huang, Q. Hu, D.O. Alikin et al., Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. J. Eur. Ceram. Soc. 42(3), 944–953 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.11.037
- L. Yang, C. Chen, X. Jiang, X. Huang, X. Nie et al., Enhanced ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous optimization of Bi compensation and sintering conditions. Ceram. Int. 48(9), 12866–12874 (2022). https://doi.org/10.1016/j.ceramint.2022.01.158
- Z. Li, H.C. Thong, Y.F. Zhang, Z. Xu, Z. Zhou et al., Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Adv. Funct. Mater. 31(1), 2005012 (2020). https://doi.org/10.1002/adfm.202005012
- Y. Sudo, M. Hagiwara, S. Fujihara, Grain size effect on electrical properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 lead-free piezoelectric ceramics. Ceram. Int. 42(7), 8206–8211 (2016). https://doi.org/10.1016/j.ceramint.2016.02.030
- C. Li, T. Zheng, J. Wu, Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution. Acta Mater. 206, 116601 (2021). https://doi.org/10.1016/j.actamat.2020.116601
- D.J. Kim, M.H. Lee, T.K. Song, Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 39(15), 4697–4704 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.013
- H. Luo, S. Tang, H. Liu, Z. Sun, B. Gao et al., Revealing structure behavior behind the piezoelectric performance of prototype lead-free Bi0.5Na0.5TiO3-BaTiO3 under in-situ electric field. J. Materiomics 8(6), 1104–1112 (2022). https://doi.org/10.1016/j.jmat.2022.07.004
- H.-S. Ma, M.-K. Lee, B.-H. Kim, K.-H. Park, J.-J. Park et al., Role of oxygen vacancy defects in piezoelectric thermal stability characteristics of Mn-doped (K, Na, Li)NbO3 piezoceramics. Ceram. Int. 47(19), 27803–27815 (2021). https://doi.org/10.1016/j.ceramint.2021.06.207
- T. Wu, W. Zhang, F. Liu, Z. Dou, S. Han et al., Enhanced piezoelectric properties in BF-BT based lead-free ferroelectric ceramics for high-temperature devices. Ceram. Int. 49(2), 1820–1825 (2023). https://doi.org/10.1016/j.ceramint.2022.09.145
- S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x
- L. Zhang, R. Jing, H. Du, Y. Huang, Q. Hu et al., Ultrahigh electrostrictive effect in lead-free ferroelectric ceramics via texture engineering. ACS Appl. Mater. Interfaces 15(43), 50265–50274 (2023). https://doi.org/10.1021/acsami.3c11432
- F. Zeng, J. Zhang, C. Zhou, L. Jiang, H. Guo et al., Enhanced electric field-induced strain properties in lead-free BF-BT-based piezoceramics by local structure inhomogeneity. ACS Sustain. Chem. Eng. 10(3), 1277–1286 (2022). https://doi.org/10.1021/acssuschemeng.1c07359
- B. Yang, Q. Zhang, H. Huang, H. Pan, W. Zhu et al., Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023). https://doi.org/10.1038/s41560-023-01300-0
- L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15(1), 65–79 (2023). https://doi.org/10.1007/s40820-023-01036-2
- L. Zhao, Y. Hou, C. Wang, M. Zhu, H. Yan, The enhancement of relaxation of 0.5PZN-0.5PZT annealed in different atmospheres. Mater. Res. Bull. 44(8), 1652–1655 (2009). https://doi.org/10.1016/j.materresbull.2009.04.018
- X. Lv, X. Wang, Y. Ma, X.-X. Zhang, J. Wu, Temperature stability of perovskite-structured lead-free piezoceramics: evaluation methods, improvement strategies, and future perspectives. Mater. Sci. Eng. R. Rep. 159, 100793 (2024). https://doi.org/10.1016/j.mser.2024.100793
- D.Y. Hyeon, G.-J. Lee, S.-H. Lee, J.-J. Park, S. Kim et al., High-temperature workable flexible piezoelectric energy harvester comprising thermally stable (K,Na)NbO3-based ceramic and polyimide composites. Compos. Part. B-Eng. 234, 109671 (2022). https://doi.org/10.1016/j.compositesb.2022.109671
- Z. Zhu, L. Luo, F. Wang, P. Du, X. Zhou et al., Improved depolarization temperature via the ordered alignment of defect dipoles in (Na0.5Bi0.5)TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 40(3), 689–698 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.041
- Y. Yang, J. Zhao, Y. Li, H. Zhang, G. Wang et al., Defect engineering in barium titanate ferroelectric ceramic showing simultaneous enhancement of piezoelectric coefficient and mechanical quality factor. J. Eur. Ceram. Soc. 44(2), 891–897 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.09.034
- B. Li, T. Zheng, J. Wu, Structural disorder and oxygen octahedron evolution via defect engineering for properties enhancement in BF–BT ceramics. J. Am. Ceram. Soc. 107, 4789–4800 (2024). https://doi.org/10.1111/jace.19766
- X. Yan, M. Zheng, X. Gao, L. Li, J. Rödel et al., Ultrahigh energy harvesting performance in lead-free piezocomposites with intragranular structure. Acta Mater. 222, 117450 (2022). https://doi.org/10.1016/j.actamat.2021.117450
- W. Xu, Y. Hou, K. Xi, X. Yu, M. Zheng et al., Grain refinement and polarization enhancement synergistically triggered NBT-based piezoceramics enabling sustainable high power generation. J. Alloys Compd. 968, 172253 (2023). https://doi.org/10.1016/j.jallcom.2023.172253
- K. Xi, Y. Hou, X. Yu, M. Zheng, M. Zhu, Optimizing output power density in lead-free energy-harvesting piezoceramics with an entropy-increasing polymorphic phase transition structure. ACS Appl. Mater. Interfaces 15, 51330–52338 (2023). https://doi.org/10.1021/acsami.3c10426
- J. Guo, Y. Hou, K. Xi, X. Yu, M. Zheng et al., High-temperature stable power generation capacity of BF-BT-based piezoceramics with rationally modulated MPB structure. J. Alloys Compd. 990, 174438 (2024). https://doi.org/10.1016/j.jallcom.2024.174438
- X.D. Yan, M.P. Zheng, Y.D. Hou, M.K. Zhu, H. Yan, High energy conversion efficiency in Mn-modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead-free energy harvester. J. Am. Ceram. Soc. 101(6), 2330–2338 (2018). https://doi.org/10.1111/jace.15396
- A.E. Kubba, K. Jiang, Efficiency enhancement of a cantilever-based vibration energy harvester. Sensors (Basel) 14(1), 188–211 (2013). https://doi.org/10.3390/s140100188
- Y.C. Shu, I.C. Lien, Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 16(11), 2429–2438 (2006). https://doi.org/10.1088/0960-1317/16/11/026
References
N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021). https://doi.org/10.1016/j.nanoen.2020.105567
J.Y. Park, T.A. Duong, S.S. Lee, C.W. Ahn, B.W. Kim et al., Effect of Li2CO3 doping on phase transition and piezoelectric properties of 0.96K0.5Na0.5NbO3–0.04SrTiO3 ceramics. J. Korean Inst. Electr. Electron. Mater. Eng. 36(5), 513–519 (2023). https://doi.org/10.4313/JKEM.2023.36.5.12
Q. Xu, Z. Wang, J. Zhong, M. Yan, S. Zhao et al., Construction of flexible piezoceramic array with ultrahigh piezoelectricity via a hierarchical design strategy. Adv. Funct. Mater. 33(41), 2304402 (2023). https://doi.org/10.1002/adfm.202304402
Z. Yu, J. Yang, J. Cao, L. Bian, Z. Li et al., A PMNN-PZT piezoceramic based magneto-mechano-electric coupled energy harvester. Adv. Funct. Mater. 32(25), 2111140 (2022). https://doi.org/10.1002/adfm.202111140
S. An, X. Gao, M. Zheng, M. Zhang, P. Liu et al., Boosting power output performance of Ba0.85Ca0.15Snx Zr0.1-xTi0.9O3 piezoelectric nanogenerators via internal resistance regulation strategy. Nano Energy 123(123), 109420 (2024). https://doi.org/10.1016/j.nanoen.2024.109420
X. Yu, S. Jiang, K. Xi, W. Xu, M. Zheng et al., Realizing excellent electromechanical coupling performance in BiScO3-Bi(Zn2/3Nb1/3)O3-PbTiO3 ternary high-temperature perovskite ceramics. J. Eur. Ceram. Soc. 44(8), 5001–5007 (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.02.054
H.Y. Zhao, Y.D. Hou, X.L. Yu, J. Fu, M.P. Zheng et al., A wide temperature insensitive piezoceramics for high-temperature energy harvesting. J. Am. Ceram. Soc. 102(9), 5316–5327 (2019). https://doi.org/10.1111/jace.16409
H.Y. Zhao, Y.D. Hou, X.L. Yu, X.D. Liu, M.P. Zheng et al., Building high transduction coefficient BiScO3-PbTiO3 piezoceramic and its power generation characteristics. J. Electroceram. 43(1–4), 123–130 (2019). https://doi.org/10.1007/s10832-019-00180-9
Y. Dong, Z. Zhou, R. Liang, X. Dong, Excellent piezoelectric constant and thermal stability in BiScO3–PbTiO3 piezoelectric ceramics via domain engineering. J. Materiomics 8(2), 319–326 (2022). https://doi.org/10.1016/j.jmat.2021.09.004
Y.-C. Tang, Y. Yin, A.-Z. Song, H.-Z. Li, B.-P. Zhang, High-performance BiFeO3-BaTiO3 lead-free piezoceramics insensitive to off-stoichiometry and processing temperature. J. Materiomics 9(2), 353–361 (2023). https://doi.org/10.1016/j.jmat.2022.09.016
D. Tai, B. Li, H. Xue, T. Zheng, J. Wu, BiFeO3-BaTiO3 ferroelectrics: Decrypting the mechanism of rare earth doping-induced electrical property discrepancy via scaling behavior and multi-level structure. Acta Mater. 262, 119411 (2024). https://doi.org/10.1016/j.actamat.2023.119411
J. Lin, F. Lv, Z. Hong, B. Liu, Y. Wu et al., Ultrahigh piezoelectric response obtained by artificially generating a large internal bias field in BiFeO3–BaTiO3 lead-free ceramics. Adv. Funct. Mater. 1, 2313879 (2024). https://doi.org/10.1002/adfm.202313879
Z. Yang, B. Wang, T. Brown, S.J. Milne, A. Feteira et al., Re-entrant relaxor ferroelectric behaviour in Nb-doped BiFeO3–BaTiO3 ceramics. J. Mater. Chem. C 11(6), 2186–2195 (2023). https://doi.org/10.1039/d2tc04702k
F. Chen, B.Q. Zhao, K. Huang, X.F. Ma, H.Y. Li et al., Dual-defect engineering strategy enables high-durability rechargeable magnesium-metal batteries. Nano-Micro Lett. 16(1), 184 (2024). https://doi.org/10.1007/s40820-024-01410-8
J. Guo, B. Tong, J. Jian, J. Chen, T. Zhou et al., Enhanced transduction coefficient in piezoelectric PZT ceramics by mixing powders calcined at different temperatures. J. Eur. Ceram. Soc. 40(8), 3348–3353 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.02.064
F. Luo, Z. Li, J. Chen, Y. Yan, D. Zhang et al., High piezoelectric properties in 0.7BiFeO3–0.3BaTiO3 ceramics with MnO and MnO2 addition. J. Eur. Ceram. Soc. 42(3), 954–964 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.052
B. Li, C. Li, T. Zheng, J. Wu, Property regulation principle in Mn-doped BF–BT ceramics: competitive control of domain switching by defect dipoles and domain configuration. Adv. Electron. Mater. 8(11), 2200609 (2022). https://doi.org/10.1002/aelm.202200609
K. Xi, Y. Hou, X. Yu, M. Zheng, M. Zhu, Diffuse multiphase coexistence renders temperature-insensitive lead-free energy-harvesting piezoceramics. J. Mater. Chem. A 11(7), 3556–3564 (2023). https://doi.org/10.1039/d2ta08962a
X. Yu, Y. Hou, M. Zheng, M. Zhu, Multiscale heterogeneity strategy in piezoceramics for enhanced energy harvesting performances. ACS Appl. Mater. Interfaces 13(15), 17800–17808 (2021). https://doi.org/10.1021/acsami.1c01409
K. Xi, Y. Hou, M. Zheng, M. Zhu, Elastic polarization configuration coupled with activity rattling space boosts energy harvesting performance of lead-free piezoceramic. Adv. Funct. Mater. 1, 2401487 (2024). https://doi.org/10.1002/adfm.202401487
Z. Jiang, R. Zhang, F. Li, L. Jin, N. Zhang et al., Electrostriction coefficient of ferroelectric materials from ab initio computation. AIP. Adv. 6(6), 065122 (2016). https://doi.org/10.1063/1.4954886
L. Jin, J. Pang, Y. Pu, N. Xu, Y. Tian et al., Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics. Ceram. Int. 45(17), 22854–22861 (2019). https://doi.org/10.1016/j.ceramint.2019.07.328
L. Zhang, R. Jing, Y. Huang, Q. Hu, D.O. Alikin et al., Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics. J. Eur. Ceram. Soc. 42(3), 944–953 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.11.037
L. Yang, C. Chen, X. Jiang, X. Huang, X. Nie et al., Enhanced ferroelectric and piezoelectric properties of BiFeO3–BaTiO3 lead-free ceramics by simultaneous optimization of Bi compensation and sintering conditions. Ceram. Int. 48(9), 12866–12874 (2022). https://doi.org/10.1016/j.ceramint.2022.01.158
Z. Li, H.C. Thong, Y.F. Zhang, Z. Xu, Z. Zhou et al., Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Adv. Funct. Mater. 31(1), 2005012 (2020). https://doi.org/10.1002/adfm.202005012
Y. Sudo, M. Hagiwara, S. Fujihara, Grain size effect on electrical properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 lead-free piezoelectric ceramics. Ceram. Int. 42(7), 8206–8211 (2016). https://doi.org/10.1016/j.ceramint.2016.02.030
C. Li, T. Zheng, J. Wu, Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution. Acta Mater. 206, 116601 (2021). https://doi.org/10.1016/j.actamat.2020.116601
D.J. Kim, M.H. Lee, T.K. Song, Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 39(15), 4697–4704 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.013
H. Luo, S. Tang, H. Liu, Z. Sun, B. Gao et al., Revealing structure behavior behind the piezoelectric performance of prototype lead-free Bi0.5Na0.5TiO3-BaTiO3 under in-situ electric field. J. Materiomics 8(6), 1104–1112 (2022). https://doi.org/10.1016/j.jmat.2022.07.004
H.-S. Ma, M.-K. Lee, B.-H. Kim, K.-H. Park, J.-J. Park et al., Role of oxygen vacancy defects in piezoelectric thermal stability characteristics of Mn-doped (K, Na, Li)NbO3 piezoceramics. Ceram. Int. 47(19), 27803–27815 (2021). https://doi.org/10.1016/j.ceramint.2021.06.207
T. Wu, W. Zhang, F. Liu, Z. Dou, S. Han et al., Enhanced piezoelectric properties in BF-BT based lead-free ferroelectric ceramics for high-temperature devices. Ceram. Int. 49(2), 1820–1825 (2023). https://doi.org/10.1016/j.ceramint.2022.09.145
S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x
L. Zhang, R. Jing, H. Du, Y. Huang, Q. Hu et al., Ultrahigh electrostrictive effect in lead-free ferroelectric ceramics via texture engineering. ACS Appl. Mater. Interfaces 15(43), 50265–50274 (2023). https://doi.org/10.1021/acsami.3c11432
F. Zeng, J. Zhang, C. Zhou, L. Jiang, H. Guo et al., Enhanced electric field-induced strain properties in lead-free BF-BT-based piezoceramics by local structure inhomogeneity. ACS Sustain. Chem. Eng. 10(3), 1277–1286 (2022). https://doi.org/10.1021/acssuschemeng.1c07359
B. Yang, Q. Zhang, H. Huang, H. Pan, W. Zhu et al., Engineering relaxors by entropy for high energy storage performance. Nat. Energy 8, 956–964 (2023). https://doi.org/10.1038/s41560-023-01300-0
L. Chen, H. Yu, J. Wu, S. Deng, H. Liu et al., Large energy capacitive high-entropy lead-free ferroelectrics. Nano-Micro Lett. 15(1), 65–79 (2023). https://doi.org/10.1007/s40820-023-01036-2
L. Zhao, Y. Hou, C. Wang, M. Zhu, H. Yan, The enhancement of relaxation of 0.5PZN-0.5PZT annealed in different atmospheres. Mater. Res. Bull. 44(8), 1652–1655 (2009). https://doi.org/10.1016/j.materresbull.2009.04.018
X. Lv, X. Wang, Y. Ma, X.-X. Zhang, J. Wu, Temperature stability of perovskite-structured lead-free piezoceramics: evaluation methods, improvement strategies, and future perspectives. Mater. Sci. Eng. R. Rep. 159, 100793 (2024). https://doi.org/10.1016/j.mser.2024.100793
D.Y. Hyeon, G.-J. Lee, S.-H. Lee, J.-J. Park, S. Kim et al., High-temperature workable flexible piezoelectric energy harvester comprising thermally stable (K,Na)NbO3-based ceramic and polyimide composites. Compos. Part. B-Eng. 234, 109671 (2022). https://doi.org/10.1016/j.compositesb.2022.109671
Z. Zhu, L. Luo, F. Wang, P. Du, X. Zhou et al., Improved depolarization temperature via the ordered alignment of defect dipoles in (Na0.5Bi0.5)TiO3-BaTiO3 ceramics. J. Eur. Ceram. Soc. 40(3), 689–698 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.041
Y. Yang, J. Zhao, Y. Li, H. Zhang, G. Wang et al., Defect engineering in barium titanate ferroelectric ceramic showing simultaneous enhancement of piezoelectric coefficient and mechanical quality factor. J. Eur. Ceram. Soc. 44(2), 891–897 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.09.034
B. Li, T. Zheng, J. Wu, Structural disorder and oxygen octahedron evolution via defect engineering for properties enhancement in BF–BT ceramics. J. Am. Ceram. Soc. 107, 4789–4800 (2024). https://doi.org/10.1111/jace.19766
X. Yan, M. Zheng, X. Gao, L. Li, J. Rödel et al., Ultrahigh energy harvesting performance in lead-free piezocomposites with intragranular structure. Acta Mater. 222, 117450 (2022). https://doi.org/10.1016/j.actamat.2021.117450
W. Xu, Y. Hou, K. Xi, X. Yu, M. Zheng et al., Grain refinement and polarization enhancement synergistically triggered NBT-based piezoceramics enabling sustainable high power generation. J. Alloys Compd. 968, 172253 (2023). https://doi.org/10.1016/j.jallcom.2023.172253
K. Xi, Y. Hou, X. Yu, M. Zheng, M. Zhu, Optimizing output power density in lead-free energy-harvesting piezoceramics with an entropy-increasing polymorphic phase transition structure. ACS Appl. Mater. Interfaces 15, 51330–52338 (2023). https://doi.org/10.1021/acsami.3c10426
J. Guo, Y. Hou, K. Xi, X. Yu, M. Zheng et al., High-temperature stable power generation capacity of BF-BT-based piezoceramics with rationally modulated MPB structure. J. Alloys Compd. 990, 174438 (2024). https://doi.org/10.1016/j.jallcom.2024.174438
X.D. Yan, M.P. Zheng, Y.D. Hou, M.K. Zhu, H. Yan, High energy conversion efficiency in Mn-modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead-free energy harvester. J. Am. Ceram. Soc. 101(6), 2330–2338 (2018). https://doi.org/10.1111/jace.15396
A.E. Kubba, K. Jiang, Efficiency enhancement of a cantilever-based vibration energy harvester. Sensors (Basel) 14(1), 188–211 (2013). https://doi.org/10.3390/s140100188
Y.C. Shu, I.C. Lien, Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 16(11), 2429–2438 (2006). https://doi.org/10.1088/0960-1317/16/11/026