Nanograting-Based Dynamic Structural Colors Using Heterogeneous Materials
Corresponding Author: Lianqing Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 59
Abstract
Dynamic structural colors can change in response to different environmental stimuli. This ability remains effective even when the size of the species responsible for the structural color is reduced to a few micrometers, providing a promising sensing mechanism for solving microenvironmental sensing problems in micro-robotics and microfluidics. However, the lack of dynamic structural colors that can encode rapidly, easily integrate, and accurately reflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensional dynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogel with an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollen state, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structural colors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamic structural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
Highlights:
1 A 2.5-dimensional dynamic structural color based on nanogratings of heterogeneous materials was proposed by interweaving a pH-responsive hydrogel with IP-L photoresist.
2 The nanogrid structures exhibit brilliant tuneable structural color, high sensitivity, and ultrafast recovery speeds in response to pH.
3 The 4D printing-based grayscale design approach was proposed for the patterned encoding and array printing of dynamic structural colors, promoting their application in patterned printing, information encryption, and microfluidic chip sensing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photon. 10, 757 (2018). https://doi.org/10.1364/aop.10.000757
- S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008). https://doi.org/10.1088/0034-4885/71/7/076401
- X. Zhu, J. Engelberg, S. Remennik, B. Zhou, J.N. Pedersen et al., Resonant laser printing of optical metasurfaces. Nano Lett. 22, 2786–2792 (2022). https://doi.org/10.1021/acs.nanolett.1c04874
- X. Zhu, W. Yan, U. Levy, N.A. Mortensen, A. Kristensen, Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017). https://doi.org/10.1126/sciadv.1602487
- H. Liu, H. Wang, H. Wang, J. Deng, Q. Ruan et al., High-order photonic cavity modes enabled 3D structural colors. ACS Nano 16, 8244–8252 (2022). https://doi.org/10.1021/acsnano.2c01999
- H.K. Raut, H. Wang, Q. Ruan, H. Wang, J.G. Fernandez et al., Hierarchical colorful structures by three-dimensional printing of inverse opals. Nano Lett. 21, 8602–8608 (2021). https://doi.org/10.1021/acs.nanolett.1c02483
- Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang et al., Artificial structural colors and applications. The Innovations 2, 100081 (2021). https://doi.org/10.1016/j.xinn.2021.100081
- X.M. Goh, R.J.H. Ng, S. Wang, S.J. Tan, J.K.W. Yang, Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016). https://doi.org/10.1021/acsphotonics.6b00099
- S. Zhang, Y. Wang, H. Wang, L. Zhong, X. Zhu et al., Laser writing of multilayer structural colors for full-color marking on steel. Adv. Photonics Res. 5, 2300157 (2024). https://doi.org/10.1002/adpr.202300157
- J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35, e2300179 (2023). https://doi.org/10.1002/adma.202300179
- Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai et al., Microscopic interference full-color printing using grayscale-patterned fabry–perot resonance cavities. Adv. Opt. Mater. 5, 1700029 (2017). https://doi.org/10.1002/adom.201700029
- J. Zhang, Z. Wang, B. Zhang, J. Qiu, Single-pulse-driven frame printing of chromatic pixels in lithium niobate crystal. Laser Photonics Rev. (2024). https://doi.org/10.1002/lpor.202400054
- Z. Wang, B. Zhang, Z. Wang, J. Zhang, P.G. Kazansky et al., 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv. Mater. 35, e2303256 (2023). https://doi.org/10.1002/adma.202303256
- P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
- R. Feng, H. Wang, Y. Cao, Y. Zhang, R.J.H. Ng et al., A modular design of continuously tunable full color plasmonic pixels with broken rotational symmetry. Adv. Funct. Mater. 32, 2108437 (2022). https://doi.org/10.1002/adfm.202108437
- Y. Fu, C.A. Tippets, E.U. Donev, R. Lopez, Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016). https://doi.org/10.1002/wnan.1396
- L. Shang, W. Zhang, K. Xu, Y. Zhao, Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019). https://doi.org/10.1039/c9mh00101h
- X. Hou, F. Vogelbacher, X. Lai, K. Li, Y. Song et al., Bioinspired multichannel colorful encryption through kirigami activating grating. Sci. Bull. 68, 276–283 (2023). https://doi.org/10.1016/j.scib.2023.01.028
- R. Li, K. Li, X. Deng, C. Jiang, A. Li et al., Dynamic high-capacity structural-color encryption via inkjet printing and image recognition. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404706
- W. Hong, Z. Yuan, X. Chen, Structural color materials for optical anticounterfeiting. Small 16, 1907626 (2020). https://doi.org/10.1002/smll.201907626
- Y. Qi, S. Zhang, A.-H. Lu, Responsive structural colors derived from geometrical deformation of synthetic nanomaterials. Small Struct. 3, 2270034 (2022). https://doi.org/10.1002/sstr.202270034
- J. Wang, Y. Sun, P. Jia, J. Su, X. Zhang et al., Wearable nanocomposite hydrogel temperature sensor based on thermally-switchable and mechanical-deformation-insensitive structural colors. Chem. Eng. J. 476, 146602 (2023). https://doi.org/10.1016/j.cej.2023.146602
- I. De Bellis, D. Martella, C. Parmeggiani, D.S. Wiersma, S. Nocentini, Temperature tunable 4D polymeric photonic crystals. Adv. Funct. Mater. 33, 2213162 (2023). https://doi.org/10.1002/adfm.202213162
- J.A.H.P. Sol, L.G. Smits, A.P.H.J. Schenning, M.G. Debije, Direct ink writing of 4D structural colors. Adv. Funct. Mater. 32, 2201766 (2022). https://doi.org/10.1002/adfm.202201766
- J. Qian, S. Kolagatla, A. Pacalovas, X. Zhang, L. Florea et al., Responsive spiral photonic structures for visible vapor sensing, pattern transformation and encryption. Adv. Funct. Mater. 33, 2211735 (2023). https://doi.org/10.1002/adfm.202211735
- J. Wang, Y. Hu, R. Deng, R. Liang, W. Li et al., Multiresponsive hydrogel photonic crystal microps with inverse-opal structure. Langmuir 29, 8825–8834 (2013). https://doi.org/10.1021/la401540s
- L. Li, Z. Yu, C. Ye, Y. Song, Structural color boosted electrochromic devices: strategies and applications. Adv. Funct. Mater. 34, 2311845 (2024). https://doi.org/10.1002/adfm.202311845
- L. Wang, X. Ding, L. Fan, A.M. Filppula, Q. Li et al., Self-healing dynamic hydrogel microps with structural color for wound management. Nano-Micro Lett. 16, 232 (2024). https://doi.org/10.1007/s40820-024-01422-4
- B. Ko, J. Kim, Y. Yang, T. Badloe, J. Park et al., Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci. 10, e2204469 (2023). https://doi.org/10.1002/advs.202204469
- C. Jung, S.J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abm8598
- Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119, e2204113119 (2022). https://doi.org/10.1073/pnas.2204113119
- T. Badloe, J. Kim, I. Kim, W.-S. Kim, W.S. Kim et al., Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light. Sci. Appl. 11, 118 (2022). https://doi.org/10.1038/s41377-022-00806-8
- C.A. Koepele, M. Guix, C. Bi, G. Adam, D.J. Cappelleri, 3D-printed microrobots with integrated structural color for identification and tracking. Adv. Intell. Syst. 2, 1900147 (2020). https://doi.org/10.1002/aisy.201900147
- Y. Li, M. Hong, Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev. 14, 1900062 (2020). https://doi.org/10.1002/lpor.201900062
- W. Zhang, H. Wang, H. Wang, J. You En Chan, Q. Ruan et al., 2.5D, 3D and 4D printing in nanophotonics—a progress report. Mater. Today Proc. 70, 304–309 (2022). https://doi.org/10.1016/j.matpr.2022.09.242
- Y. Liu, H. Wang, J. Ho, R.C. Ng, R.J.H. Ng et al., Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019). https://doi.org/10.1038/s41467-019-12360-w
- T. Mori, H. Wang, W. Zhang, C.C. Ser, D. Arora et al., Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat. Commun. 14, 5876 (2023). https://doi.org/10.1038/s41467-023-41535-9
- W. Zhang, H. Wang, H. Wang, J.Y.E. Chan, H. Liu et al., Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 12, 112 (2021). https://doi.org/10.1038/s41467-020-20300-2
- M. Del Pozo, C. Delaney, C.W.M. Bastiaansen, D. Diamond, A.P.H.J. Schenning et al., Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist. ACS Nano 14, 9832–9839 (2020). https://doi.org/10.1021/acsnano.0c02481
- B. Liu, B. Dong, C. Xin, C. Chen, L. Zhang et al., 4D direct laser writing of submerged structural colors at the microscale. Small 19, e2204630 (2023). https://doi.org/10.1002/smll.202204630
- K. Liu, H. Ding, Z. Chong, Y. Zeng, Y. Niu et al., Direct laser writing photonic crystal hydrogel sensors for in situ sensing in microfluidic device. Chem. Eng. J. 482, 148679 (2024). https://doi.org/10.1016/j.cej.2024.148679
- J.Y.E. Chan, Q. Ruan, H. Wang, H. Wang, H. Liu et al., Full geometric control of hidden color information in diffraction gratings under angled white light illumination. Nano Lett. 22, 8189–8195 (2022). https://doi.org/10.1021/acs.nanolett.2c02741
- W. Zhang, L. Qiu, K.J. Shea, J. Fan, Y. Liu et al., Quantitative analysis of structure color of photonic crystal sensors based on HSB color space. ACS Appl. Mater. Interfaces 14, 35010–35019 (2022). https://doi.org/10.1021/acsami.2c08431
References
X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photon. 10, 757 (2018). https://doi.org/10.1364/aop.10.000757
S. Kinoshita, S. Yoshioka, J. Miyazaki, Physics of structural colors. Rep. Prog. Phys. 71, 076401 (2008). https://doi.org/10.1088/0034-4885/71/7/076401
X. Zhu, J. Engelberg, S. Remennik, B. Zhou, J.N. Pedersen et al., Resonant laser printing of optical metasurfaces. Nano Lett. 22, 2786–2792 (2022). https://doi.org/10.1021/acs.nanolett.1c04874
X. Zhu, W. Yan, U. Levy, N.A. Mortensen, A. Kristensen, Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 3, e1602487 (2017). https://doi.org/10.1126/sciadv.1602487
H. Liu, H. Wang, H. Wang, J. Deng, Q. Ruan et al., High-order photonic cavity modes enabled 3D structural colors. ACS Nano 16, 8244–8252 (2022). https://doi.org/10.1021/acsnano.2c01999
H.K. Raut, H. Wang, Q. Ruan, H. Wang, J.G. Fernandez et al., Hierarchical colorful structures by three-dimensional printing of inverse opals. Nano Lett. 21, 8602–8608 (2021). https://doi.org/10.1021/acs.nanolett.1c02483
Z. Xuan, J. Li, Q. Liu, F. Yi, S. Wang et al., Artificial structural colors and applications. The Innovations 2, 100081 (2021). https://doi.org/10.1016/j.xinn.2021.100081
X.M. Goh, R.J.H. Ng, S. Wang, S.J. Tan, J.K.W. Yang, Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photonics 3, 1000–1009 (2016). https://doi.org/10.1021/acsphotonics.6b00099
S. Zhang, Y. Wang, H. Wang, L. Zhong, X. Zhu et al., Laser writing of multilayer structural colors for full-color marking on steel. Adv. Photonics Res. 5, 2300157 (2024). https://doi.org/10.1002/adpr.202300157
J. Chen, G. Song, S. Cong, Z. Zhao, Resonant-cavity-enhanced electrochromic materials and devices. Adv. Mater. 35, e2300179 (2023). https://doi.org/10.1002/adma.202300179
Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai et al., Microscopic interference full-color printing using grayscale-patterned fabry–perot resonance cavities. Adv. Opt. Mater. 5, 1700029 (2017). https://doi.org/10.1002/adom.201700029
J. Zhang, Z. Wang, B. Zhang, J. Qiu, Single-pulse-driven frame printing of chromatic pixels in lithium niobate crystal. Laser Photonics Rev. (2024). https://doi.org/10.1002/lpor.202400054
Z. Wang, B. Zhang, Z. Wang, J. Zhang, P.G. Kazansky et al., 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv. Mater. 35, e2303256 (2023). https://doi.org/10.1002/adma.202303256
P. Xue, Y. Chen, Y. Xu, C. Valenzuela, X. Zhang et al., Bioinspired MXene-based soft actuators exhibiting angle-independent structural color. Nano-Micro Lett. 15, 1 (2022). https://doi.org/10.1007/s40820-022-00977-4
R. Feng, H. Wang, Y. Cao, Y. Zhang, R.J.H. Ng et al., A modular design of continuously tunable full color plasmonic pixels with broken rotational symmetry. Adv. Funct. Mater. 32, 2108437 (2022). https://doi.org/10.1002/adfm.202108437
Y. Fu, C.A. Tippets, E.U. Donev, R. Lopez, Structural colors: from natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 758–775 (2016). https://doi.org/10.1002/wnan.1396
L. Shang, W. Zhang, K. Xu, Y. Zhao, Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019). https://doi.org/10.1039/c9mh00101h
X. Hou, F. Vogelbacher, X. Lai, K. Li, Y. Song et al., Bioinspired multichannel colorful encryption through kirigami activating grating. Sci. Bull. 68, 276–283 (2023). https://doi.org/10.1016/j.scib.2023.01.028
R. Li, K. Li, X. Deng, C. Jiang, A. Li et al., Dynamic high-capacity structural-color encryption via inkjet printing and image recognition. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404706
W. Hong, Z. Yuan, X. Chen, Structural color materials for optical anticounterfeiting. Small 16, 1907626 (2020). https://doi.org/10.1002/smll.201907626
Y. Qi, S. Zhang, A.-H. Lu, Responsive structural colors derived from geometrical deformation of synthetic nanomaterials. Small Struct. 3, 2270034 (2022). https://doi.org/10.1002/sstr.202270034
J. Wang, Y. Sun, P. Jia, J. Su, X. Zhang et al., Wearable nanocomposite hydrogel temperature sensor based on thermally-switchable and mechanical-deformation-insensitive structural colors. Chem. Eng. J. 476, 146602 (2023). https://doi.org/10.1016/j.cej.2023.146602
I. De Bellis, D. Martella, C. Parmeggiani, D.S. Wiersma, S. Nocentini, Temperature tunable 4D polymeric photonic crystals. Adv. Funct. Mater. 33, 2213162 (2023). https://doi.org/10.1002/adfm.202213162
J.A.H.P. Sol, L.G. Smits, A.P.H.J. Schenning, M.G. Debije, Direct ink writing of 4D structural colors. Adv. Funct. Mater. 32, 2201766 (2022). https://doi.org/10.1002/adfm.202201766
J. Qian, S. Kolagatla, A. Pacalovas, X. Zhang, L. Florea et al., Responsive spiral photonic structures for visible vapor sensing, pattern transformation and encryption. Adv. Funct. Mater. 33, 2211735 (2023). https://doi.org/10.1002/adfm.202211735
J. Wang, Y. Hu, R. Deng, R. Liang, W. Li et al., Multiresponsive hydrogel photonic crystal microps with inverse-opal structure. Langmuir 29, 8825–8834 (2013). https://doi.org/10.1021/la401540s
L. Li, Z. Yu, C. Ye, Y. Song, Structural color boosted electrochromic devices: strategies and applications. Adv. Funct. Mater. 34, 2311845 (2024). https://doi.org/10.1002/adfm.202311845
L. Wang, X. Ding, L. Fan, A.M. Filppula, Q. Li et al., Self-healing dynamic hydrogel microps with structural color for wound management. Nano-Micro Lett. 16, 232 (2024). https://doi.org/10.1007/s40820-024-01422-4
B. Ko, J. Kim, Y. Yang, T. Badloe, J. Park et al., Humidity-responsive RGB-pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci. 10, e2204469 (2023). https://doi.org/10.1002/advs.202204469
C. Jung, S.J. Kim, J. Jang, J.H. Ko, D. Kim et al., Disordered-nanop-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays. Sci. Adv. (2022). https://doi.org/10.1126/sciadv.abm8598
Z. Zhang, C. Wang, Q. Wang, Y. Zhao, L. Shang, Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc. Natl. Acad. Sci. U.S.A. 119, e2204113119 (2022). https://doi.org/10.1073/pnas.2204113119
T. Badloe, J. Kim, I. Kim, W.-S. Kim, W.S. Kim et al., Liquid crystal-powered Mie resonators for electrically tunable photorealistic color gradients and dark blacks. Light. Sci. Appl. 11, 118 (2022). https://doi.org/10.1038/s41377-022-00806-8
C.A. Koepele, M. Guix, C. Bi, G. Adam, D.J. Cappelleri, 3D-printed microrobots with integrated structural color for identification and tracking. Adv. Intell. Syst. 2, 1900147 (2020). https://doi.org/10.1002/aisy.201900147
Y. Li, M. Hong, Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev. 14, 1900062 (2020). https://doi.org/10.1002/lpor.201900062
W. Zhang, H. Wang, H. Wang, J. You En Chan, Q. Ruan et al., 2.5D, 3D and 4D printing in nanophotonics—a progress report. Mater. Today Proc. 70, 304–309 (2022). https://doi.org/10.1016/j.matpr.2022.09.242
Y. Liu, H. Wang, J. Ho, R.C. Ng, R.J.H. Ng et al., Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019). https://doi.org/10.1038/s41467-019-12360-w
T. Mori, H. Wang, W. Zhang, C.C. Ser, D. Arora et al., Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat. Commun. 14, 5876 (2023). https://doi.org/10.1038/s41467-023-41535-9
W. Zhang, H. Wang, H. Wang, J.Y.E. Chan, H. Liu et al., Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 12, 112 (2021). https://doi.org/10.1038/s41467-020-20300-2
M. Del Pozo, C. Delaney, C.W.M. Bastiaansen, D. Diamond, A.P.H.J. Schenning et al., Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist. ACS Nano 14, 9832–9839 (2020). https://doi.org/10.1021/acsnano.0c02481
B. Liu, B. Dong, C. Xin, C. Chen, L. Zhang et al., 4D direct laser writing of submerged structural colors at the microscale. Small 19, e2204630 (2023). https://doi.org/10.1002/smll.202204630
K. Liu, H. Ding, Z. Chong, Y. Zeng, Y. Niu et al., Direct laser writing photonic crystal hydrogel sensors for in situ sensing in microfluidic device. Chem. Eng. J. 482, 148679 (2024). https://doi.org/10.1016/j.cej.2024.148679
J.Y.E. Chan, Q. Ruan, H. Wang, H. Wang, H. Liu et al., Full geometric control of hidden color information in diffraction gratings under angled white light illumination. Nano Lett. 22, 8189–8195 (2022). https://doi.org/10.1021/acs.nanolett.2c02741
W. Zhang, L. Qiu, K.J. Shea, J. Fan, Y. Liu et al., Quantitative analysis of structure color of photonic crystal sensors based on HSB color space. ACS Appl. Mater. Interfaces 14, 35010–35019 (2022). https://doi.org/10.1021/acsami.2c08431