Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products
Corresponding Author: Fang Song
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 66
Abstract
Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO2 reduction reaction (CO2RR), whereas the behavior is by far superficially understood. Here, we report that CO2 accessibility results in a universal self-adaptive structural reconstruction from Cu2O to Cu@CuxO composites, ending with feeding gas-dependent microstructures and catalytic performances. The CO2-rich atmosphere favors reconstruction for CO2RR, whereas the CO2-deficient one prefers that for hydrogen evolution reaction. With the assistance of spectroscopic analysis and theoretical calculations, we uncover a CO2-induced passivation behavior by identifying a reduction-resistant but catalytic active Cu(I)-rich amorphous layer stabilized by *CO intermediates. Additionally, we find extra CO production is indispensable for the robust production of C2H4. An inverse correlation between durability and FECO/FEC2H4 is disclosed, suggesting that the self-stabilization process involving the absorption of *CO intermediates on Cu(I) sites is essential for durable electrolysis. Guided by this insight, we design hollow Cu2O nanospheres for durable and selective CO2RR electrolysis in producing C2H4. Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.
Highlights:
1 We revealed a universal self-adaptive structural reconstruction from Cu2O to Cu@CuxO composites, ending with feeding gas-dependent microstructures and catalytic performances.
2 We uncovered a CO2-induced passivation behavior by identifying a reduction-resistant but catalytic active Cu(I)-rich amorphous layer.
3 We designed and fabricated hollow Cu2O nanospheres, demonstrating durable electrolysis at a partial current density of −200 mA cm−2 in producing C2H4 with an FE of up to 61% at −0.6 VRHE.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo et al., Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017). https://doi.org/10.1038/nmat4778
- P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). https://doi.org/10.1126/science.aav3506
- D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- Y. Wang, J. Liu, G. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 33, 2005798 (2021). https://doi.org/10.1002/adma.202005798
- W. Ma, X. He, W. Wang, S. Xie, Q. Zhang et al., Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021). https://doi.org/10.1039/d1cs00535a
- G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith et al., Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10, 4854–4862 (2020). https://doi.org/10.1021/acscatal.0c00297
- Z.-Z. Niu, F.-Y. Gao, X.-L. Zhang, P.-P. Yang, R. Liu et al., Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021). https://doi.org/10.1021/jacs.1c01190
- S. Kong, X. Lv, X. Wang, Z. Liu, Z. Li et al., Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 6, 6–15 (2022). https://doi.org/10.1038/s41929-022-00887-z
- Y. Xue, P. Wang, M. He, T. Zhang, C. Yang et al., Rare earth nanomaterials in electrochemical reduction of carbon dioxide. Coord. Chem. Rev. 516, 215983 (2024). https://doi.org/10.1016/j.ccr.2024.215983
- D.-H. Nam, P. De Luna, A. Rosas-Hernández, A. Thevenon, F. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
- C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978
- K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
- K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
- S.Y. Lee, S.Y. Chae, H. Jung, C.W. Lee, N. Le Tri et al., Controlling the C2+ product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst. J. Mater. Chem. A 8, 6210–6218 (2020). https://doi.org/10.1039/C9TA13173F
- G. Liu, M. Lee, S. Kwon, G. Zeng, J. Eichhorn et al., CO2 reduction on pure Cu produces only H2 after subsurface O is depleted: theory and experiment. Proc. Natl. Acad. Sci. U.S.A. 118, e2012649118 (2021). https://doi.org/10.1073/pnas.2012649118
- F. Dattila, R. Garcı́a-Muelas, N. López, Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction. ACS Energy Lett. 5, 3176–3184 (2020). https://doi.org/10.1021/acsenergylett.0c01777
- C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
- Y. Lum, J.W. Ager, Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019). https://doi.org/10.1038/s41929-018-0201-7
- D. Zhong, Z.-J. Zhao, Q. Zhao, D. Cheng, B. Liu et al., Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60, 4879–4885 (2021). https://doi.org/10.1002/anie.202015159
- H. Li, T. Liu, P. Wei, L. Lin, D. Gao et al., High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. Int. Ed. 60, 14329–14333 (2021). https://doi.org/10.1002/anie.202102657
- R.M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020). https://doi.org/10.1038/s41560-020-0594-9
- T.-C. Chou, C.-C. Chang, H.-L. Yu, W.-Y. Yu, C.-L. Dong et al., Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142, 2857–2867 (2020). https://doi.org/10.1021/jacs.9b11126
- P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
- X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, 25th anniversary : galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013). https://doi.org/10.1002/adma.201302820
- P. Wang, S. Meng, B. Zhang, M. He, P. Li et al., Sub-1 nm Cu2O nanosheets for the electrochemical CO2 reduction and valence state-activity relationship. J. Am. Chem. Soc. 145, 26133–26143 (2023). https://doi.org/10.1021/jacs.3c08312
- H. Zhang, Y. Wang, Q. Lei, Y. Wang, C. Tang et al., Optimizing Cu+-Cu0 synergy by operando tracking of Cu2O nanocatalysts during the electrochemical CO2 reduction reaction. Nano Energy 118, 108920 (2023). https://doi.org/10.1016/j.nanoen.2023.108920
- X. Tan, K. Sun, Z. Zhuang, B. Hu, Y. Zhang et al., Stabilizing copper by a reconstruction-resistant atomic Cu-O-Si interface for electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 8656–8664 (2023). https://doi.org/10.1021/jacs.3c01638
- Y. Cao, S. Chen, S. Bo, W. Fan, J. Li et al., Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 62, e202303048 (2023). https://doi.org/10.1002/anie.202303048
- L. Xu, X. Ma, L. Wu, X. Tan, X. Song et al., In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 61, e202210375 (2022). https://doi.org/10.1002/anie.202210375
- B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang et al., Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols. ACS Appl. Mater. Interfaces 13, 39165–39177 (2021). https://doi.org/10.1021/acsami.1c03850
- Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
- B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng et al., The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microps. Angew. Chem. Int. Ed. 61, e202114080 (2022). https://doi.org/10.1002/anie.202114080
- L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7, 1284–1291 (2022). https://doi.org/10.1021/acsenergylett.2c00035
- Y. Lin, T. Wang, L. Zhang, G. Zhang, L. Li et al., Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat. Commun. 14, 3575 (2023). https://doi.org/10.1038/s41467-023-39351-2
- P.-P. Yang, M.-R. Gao, Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 52, 4343–4380 (2023). https://doi.org/10.1039/d2cs00849a
- Y. Wang, Z. Wang, C.-T. Dinh, J. Li, A. Ozden et al., Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019). https://doi.org/10.1038/s41929-019-0397-1
- W.T. Osowiecki, J.J. Nussbaum, G.A. Kamat, G. Katsoukis, M. Ledendecker et al., Factors and dynamics of Cu nanocrystal reconstruction under CO2 reduction. ACS Appl. Energy Mater. 2, 7744–7749 (2019). https://doi.org/10.1021/acsaem.9b01714
- Q. Ren, N. Zhang, Z. Dong, L. Zhang, X. Chen et al., Structural evolution of Cu2O nanocube electrocatalysts for the CO2 reduction reaction. Nano Energy 106, 108080 (2023). https://doi.org/10.1016/j.nanoen.2022.108080
- Z.-Z. Niu, L.-P. Chi, Z.-Z. Wu, P.-P. Yang, M.-H. Fan et al., CO2-assisted formation of grain boundaries for efficient CO-CO coupling on a derived Cu catalyst. Natl. Sci. Open 2, 20220044 (2023). https://doi.org/10.1360/nso/20220044
- P. Grosse, A. Yoon, C. Rettenmaier, A. Herzog, S.W. Chee et al., Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021). https://doi.org/10.1038/s41467-021-26743-5
- Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
- X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo et al., Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021). https://doi.org/10.1038/s41467-021-20961-7
- J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G.L. De Gregorio et al., Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018). https://doi.org/10.1038/s41467-018-05544-3
- W. Liu, P. Zhai, A. Li, B. Wei, K. Si et al., Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022). https://doi.org/10.1038/s41467-022-29428-9
- L. Laffont, M.Y. Wu, F. Chevallier, P. Poizot, M. Morcrette et al., High resolution EELS of Cu–V oxides: application to batteries materials. Micron 37, 459–464 (2006). https://doi.org/10.1016/j.micron.2005.11.007
- V.J. Keast, A.J. Scott, R. Brydson, D.B. Williams, J. Bruley, Electron energy-loss near-edge structure–a tool for the investigation of electronic structure on the nanometre scale. J. Microsc. 203, 135–175 (2001). https://doi.org/10.1046/j.1365-2818.2001.00898.x
- W. Li, C. Ni, Electron energy loss spectroscopy (EELS). Encyclopedia of Tribology. Springer US, (2013), pp. 940–945. https://doi.org/10.1007/978-0-387-92897-5_1223
- H. Luo, B. Li, J.-G. Ma, P. Cheng, Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 61, e202116736 (2022). https://doi.org/10.1002/anie.202116736
- Q. Wu, R. Du, P. Wang, G.I.N. Waterhouse, J. Li et al., Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 17, 12884–12894 (2023). https://doi.org/10.1021/acsnano.3c04951
- J. Feng, L. Wu, S. Liu, L. Xu, X. Song et al., Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023). https://doi.org/10.1021/jacs.3c02428
- B. Cao, F.-Z. Li, J. Gu, Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. 12, 9735–9752 (2022). https://doi.org/10.1021/acscatal.2c02579
- D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C.P. Berlinguette, Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010
- M. Irfan Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 152, 468–477 (2016). https://doi.org/10.1016/j.ces.2016.06.035
- J. Bugayong, G.L. Griffin, Electrochemical reduction of CO2 using supported Cu2O nanops. ECS Trans. 58, 81–89 (2013). https://doi.org/10.1149/05802.0081ecst
- I.V. Chernyshova, P. Somasundaran, S. Ponnurangam, On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. U.S.A. 115, E9261–E9270 (2018). https://doi.org/10.1073/pnas.1802256115
- P.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu et al., Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142, 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699
- M. He, C. Li, H. Zhang, X. Chang, J.G. Chen et al., Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11, 3844 (2020). https://doi.org/10.1038/s41467-020-17690-8
- Q. Li, P. Xu, B. Zhang, H. Tsai, S. Zheng et al., Structure-dependent electrocatalytic properties of Cu2O nanocrystals for oxygen reduction reaction. J. Phys. Chem. C 117, 13872–13878 (2013). https://doi.org/10.1021/jp403655y
References
J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo et al., Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017). https://doi.org/10.1038/nmat4778
P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). https://doi.org/10.1126/science.aav3506
D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
Y. Wang, J. Liu, G. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 33, 2005798 (2021). https://doi.org/10.1002/adma.202005798
W. Ma, X. He, W. Wang, S. Xie, Q. Zhang et al., Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021). https://doi.org/10.1039/d1cs00535a
G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith et al., Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10, 4854–4862 (2020). https://doi.org/10.1021/acscatal.0c00297
Z.-Z. Niu, F.-Y. Gao, X.-L. Zhang, P.-P. Yang, R. Liu et al., Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021). https://doi.org/10.1021/jacs.1c01190
S. Kong, X. Lv, X. Wang, Z. Liu, Z. Li et al., Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat. Catal. 6, 6–15 (2022). https://doi.org/10.1038/s41929-022-00887-z
Y. Xue, P. Wang, M. He, T. Zhang, C. Yang et al., Rare earth nanomaterials in electrochemical reduction of carbon dioxide. Coord. Chem. Rev. 516, 215983 (2024). https://doi.org/10.1016/j.ccr.2024.215983
D.-H. Nam, P. De Luna, A. Rosas-Hernández, A. Thevenon, F. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012). https://doi.org/10.1021/ja3010978
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/C2EE21234J
K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
S.Y. Lee, S.Y. Chae, H. Jung, C.W. Lee, N. Le Tri et al., Controlling the C2+ product selectivity of electrochemical CO2 reduction on an electrosprayed Cu catalyst. J. Mater. Chem. A 8, 6210–6218 (2020). https://doi.org/10.1039/C9TA13173F
G. Liu, M. Lee, S. Kwon, G. Zeng, J. Eichhorn et al., CO2 reduction on pure Cu produces only H2 after subsurface O is depleted: theory and experiment. Proc. Natl. Acad. Sci. U.S.A. 118, e2012649118 (2021). https://doi.org/10.1073/pnas.2012649118
F. Dattila, R. Garcı́a-Muelas, N. López, Active and selective ensembles in oxide-derived copper catalysts for CO2 reduction. ACS Energy Lett. 5, 3176–3184 (2020). https://doi.org/10.1021/acsenergylett.0c01777
C.W. Li, J. Ciston, M.W. Kanan, Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014). https://doi.org/10.1038/nature13249
Y. Lum, J.W. Ager, Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019). https://doi.org/10.1038/s41929-018-0201-7
D. Zhong, Z.-J. Zhao, Q. Zhao, D. Cheng, B. Liu et al., Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem. Int. Ed. 60, 4879–4885 (2021). https://doi.org/10.1002/anie.202015159
H. Li, T. Liu, P. Wei, L. Lin, D. Gao et al., High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. Int. Ed. 60, 14329–14333 (2021). https://doi.org/10.1002/anie.202102657
R.M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020). https://doi.org/10.1038/s41560-020-0594-9
T.-C. Chou, C.-C. Chang, H.-L. Yu, W.-Y. Yu, C.-L. Dong et al., Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142, 2857–2867 (2020). https://doi.org/10.1021/jacs.9b11126
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
X. Xia, Y. Wang, A. Ruditskiy, Y. Xia, 25th anniversary : galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013). https://doi.org/10.1002/adma.201302820
P. Wang, S. Meng, B. Zhang, M. He, P. Li et al., Sub-1 nm Cu2O nanosheets for the electrochemical CO2 reduction and valence state-activity relationship. J. Am. Chem. Soc. 145, 26133–26143 (2023). https://doi.org/10.1021/jacs.3c08312
H. Zhang, Y. Wang, Q. Lei, Y. Wang, C. Tang et al., Optimizing Cu+-Cu0 synergy by operando tracking of Cu2O nanocatalysts during the electrochemical CO2 reduction reaction. Nano Energy 118, 108920 (2023). https://doi.org/10.1016/j.nanoen.2023.108920
X. Tan, K. Sun, Z. Zhuang, B. Hu, Y. Zhang et al., Stabilizing copper by a reconstruction-resistant atomic Cu-O-Si interface for electrochemical CO2 reduction. J. Am. Chem. Soc. 145, 8656–8664 (2023). https://doi.org/10.1021/jacs.3c01638
Y. Cao, S. Chen, S. Bo, W. Fan, J. Li et al., Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 62, e202303048 (2023). https://doi.org/10.1002/anie.202303048
L. Xu, X. Ma, L. Wu, X. Tan, X. Song et al., In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products. Angew. Chem. Int. Ed. 61, e202210375 (2022). https://doi.org/10.1002/anie.202210375
B. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang et al., Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols. ACS Appl. Mater. Interfaces 13, 39165–39177 (2021). https://doi.org/10.1021/acsami.1c03850
Z.-Z. Wu, X.-L. Zhang, Z.-Z. Niu, F.-Y. Gao, P.-P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
B. Deng, M. Huang, K. Li, X. Zhao, Q. Geng et al., The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microps. Angew. Chem. Int. Ed. 61, e202114080 (2022). https://doi.org/10.1002/anie.202114080
L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7, 1284–1291 (2022). https://doi.org/10.1021/acsenergylett.2c00035
Y. Lin, T. Wang, L. Zhang, G. Zhang, L. Li et al., Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat. Commun. 14, 3575 (2023). https://doi.org/10.1038/s41467-023-39351-2
P.-P. Yang, M.-R. Gao, Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 52, 4343–4380 (2023). https://doi.org/10.1039/d2cs00849a
Y. Wang, Z. Wang, C.-T. Dinh, J. Li, A. Ozden et al., Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019). https://doi.org/10.1038/s41929-019-0397-1
W.T. Osowiecki, J.J. Nussbaum, G.A. Kamat, G. Katsoukis, M. Ledendecker et al., Factors and dynamics of Cu nanocrystal reconstruction under CO2 reduction. ACS Appl. Energy Mater. 2, 7744–7749 (2019). https://doi.org/10.1021/acsaem.9b01714
Q. Ren, N. Zhang, Z. Dong, L. Zhang, X. Chen et al., Structural evolution of Cu2O nanocube electrocatalysts for the CO2 reduction reaction. Nano Energy 106, 108080 (2023). https://doi.org/10.1016/j.nanoen.2022.108080
Z.-Z. Niu, L.-P. Chi, Z.-Z. Wu, P.-P. Yang, M.-H. Fan et al., CO2-assisted formation of grain boundaries for efficient CO-CO coupling on a derived Cu catalyst. Natl. Sci. Open 2, 20220044 (2023). https://doi.org/10.1360/nso/20220044
P. Grosse, A. Yoon, C. Rettenmaier, A. Herzog, S.W. Chee et al., Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 6736 (2021). https://doi.org/10.1038/s41467-021-26743-5
Y. Yang, S. Louisia, S. Yu, J. Jin, I. Roh et al., operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023). https://doi.org/10.1038/s41586-022-05540-0
X. Wang, K. Klingan, M. Klingenhof, T. Möller, J. Ferreira de Araújo et al., Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021). https://doi.org/10.1038/s41467-021-20961-7
J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G.L. De Gregorio et al., Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018). https://doi.org/10.1038/s41467-018-05544-3
W. Liu, P. Zhai, A. Li, B. Wei, K. Si et al., Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022). https://doi.org/10.1038/s41467-022-29428-9
L. Laffont, M.Y. Wu, F. Chevallier, P. Poizot, M. Morcrette et al., High resolution EELS of Cu–V oxides: application to batteries materials. Micron 37, 459–464 (2006). https://doi.org/10.1016/j.micron.2005.11.007
V.J. Keast, A.J. Scott, R. Brydson, D.B. Williams, J. Bruley, Electron energy-loss near-edge structure–a tool for the investigation of electronic structure on the nanometre scale. J. Microsc. 203, 135–175 (2001). https://doi.org/10.1046/j.1365-2818.2001.00898.x
W. Li, C. Ni, Electron energy loss spectroscopy (EELS). Encyclopedia of Tribology. Springer US, (2013), pp. 940–945. https://doi.org/10.1007/978-0-387-92897-5_1223
H. Luo, B. Li, J.-G. Ma, P. Cheng, Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 61, e202116736 (2022). https://doi.org/10.1002/anie.202116736
Q. Wu, R. Du, P. Wang, G.I.N. Waterhouse, J. Li et al., Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 17, 12884–12894 (2023). https://doi.org/10.1021/acsnano.3c04951
J. Feng, L. Wu, S. Liu, L. Xu, X. Song et al., Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023). https://doi.org/10.1021/jacs.3c02428
B. Cao, F.-Z. Li, J. Gu, Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS Catal. 12, 9735–9752 (2022). https://doi.org/10.1021/acscatal.2c02579
D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C.P. Berlinguette, Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010
M. Irfan Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 152, 468–477 (2016). https://doi.org/10.1016/j.ces.2016.06.035
J. Bugayong, G.L. Griffin, Electrochemical reduction of CO2 using supported Cu2O nanops. ECS Trans. 58, 81–89 (2013). https://doi.org/10.1149/05802.0081ecst
I.V. Chernyshova, P. Somasundaran, S. Ponnurangam, On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. U.S.A. 115, E9261–E9270 (2018). https://doi.org/10.1073/pnas.1802256115
P.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu et al., Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142, 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699
M. He, C. Li, H. Zhang, X. Chang, J.G. Chen et al., Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 11, 3844 (2020). https://doi.org/10.1038/s41467-020-17690-8
Q. Li, P. Xu, B. Zhang, H. Tsai, S. Zheng et al., Structure-dependent electrocatalytic properties of Cu2O nanocrystals for oxygen reduction reaction. J. Phys. Chem. C 117, 13872–13878 (2013). https://doi.org/10.1021/jp403655y