Tailoring Cathode–Electrolyte Interface for High-Power and Stable Lithium–Sulfur Batteries
Corresponding Author: Peng‑Fei Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 85
Abstract
Global interest in lithium–sulfur batteries as one of the most promising energy storage technologies has been sparked by their low sulfur cathode cost, high gravimetric, volumetric energy densities, abundant resources, and environmental friendliness. However, their practical application is significantly impeded by several serious issues that arise at the cathode–electrolyte interface, such as interface structure degradation including the uneven deposition of Li2S, unstable cathode–electrolyte interphase (CEI) layer and intermediate polysulfide shuttle effect. Thus, an optimized cathode–electrolyte interface along with optimized electrodes is required for overall improvement. Herein, we comprehensively outline the challenges and corresponding strategies, including electrolyte optimization to create a dense CEI layer, regulating the Li2S deposition pattern, and inhibiting the shuttle effect with regard to the solid–liquid–solid pathway, the transformation from solid–liquid–solid to solid–solid pathway, and solid–solid pathway at the cathode–electrolyte interface. In order to spur more perceptive research and hasten the widespread use of lithium–sulfur batteries, viewpoints on designing a stable interface with a deep comprehension are also put forth.
Highlights:
1 This review delves into the mechanism of the state-of-the-art lithium–sulfur batteries from a novel perspective of cathode–electrolyte interface.
2 It provides extensive strategies to construct a stable cathode–electrolyte interphase layer and improve the uneven deposition of Li2S, enhancing the stability of the interface structure.
3 It proposes an in-depth and comprehensive research on how to inhibit the shuttle effect at the cathode–electrolyte interface with regard to distinct reaction pathways.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.J. van Ruijven, E. DeCian, I. SueWing, Amplification of future energy demand growth due to climate change. Nat. Commun. 10, 2762 (2019). https://doi.org/10.1038/s41467-019-10399-3
- W. Gao, Z. Wang, C. Peng, S. Kang, L. Cui, Accelerating the redox kinetics by catalytic activation of “dead sulfur” in lithium–sulfur batteries. J. Mater. Chem. A 9, 13442–13458 (2021). https://doi.org/10.1039/d1ta00772f
- Z. Zhuang, J. Huang, Y. Li, L. Zhou, L. Mai, The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 6, 3570–3589 (2019). https://doi.org/10.1002/celc.201900143
- S.-J. Kim, K. Kim, J. Park, Y.-E. Sung, Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem 11, 2373–2387 (2019). https://doi.org/10.1002/cctc.201900184
- Z. Zhuang, Q. Kang, D. Wang, Y. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 13, 1856–1866 (2020). https://doi.org/10.1007/s12274-020-2827-4
- G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
- D. Wang, N. Liu, F. Chen, Y. Wang, J. Mao, Progress and prospects of energy storage technology research: based on multidimensional comparison. J. Energy Storage 75, 109710 (2024). https://doi.org/10.1016/j.est.2023.109710
- N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
- D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li et al., Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31, e1806620 (2019). https://doi.org/10.1002/adma.201806620
- B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195, 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
- M.V. Reddy, A. Mauger, C.M. Julien, A. Paolella, K. Zaghib, Brief history of early lithium-battery development. Materials 13, 1884 (2020). https://doi.org/10.3390/ma13081884
- L. Trahey, F.R. Brushett, N.P. Balsara, G. Ceder, L. Cheng et al., Energy storage emerging: a perspective from the joint center for energy storage research. Proc. Natl. Acad. Sci. U.S.A. 117, 12550–12557 (2020). https://doi.org/10.1073/pnas.1821672117
- J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
- Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9
- J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng et al., Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021). https://doi.org/10.1016/j.mattod.2020.10.028
- J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
- L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16, 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
- C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 32, 497–516 (2020). https://doi.org/10.1016/j.ensm.2020.07.009
- X. Yu, W. Li, V. Gupta, H. Gao, D. Tran et al., Current challenges in efficient lithium-ion batteries’ recycling: a perspective. Glob. Chall. 6, 2200099 (2022). https://doi.org/10.1002/gch2.202200099
- J. Li, Z. Niu, C. Guo, M. Li, W. Bao, Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. J. Energy Chem. 54, 434–451 (2021). https://doi.org/10.1016/j.jechem.2020.06.009
- W.-M. Zhao, J.-D. Shen, X.-J. Xu, W.-X. He, L. Liu et al., Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Met. 41, 1080–1100 (2022). https://doi.org/10.1007/s12598-021-01865-3
- Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
- C. Yang, Running battery electric vehicles with extended range: coupling cost and energy analysis. Appl. Energy 306, 118116 (2022). https://doi.org/10.1016/j.apenergy.2021.118116
- M.C. Argyrou, P. Christodoulides, S.A. Kalogirou, Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018). https://doi.org/10.1016/j.rser.2018.06.044
- H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021). https://doi.org/10.1002/aenm.202002893
- R. Deng, H. Yu, J. Liu, F. Chu, J. Lei et al., Adsorption-catalytic effects of metallurgical ferrous slag on polysulfides in Li–S batteries. J. Mater. Chem. A 11, 15769–15777 (2023). https://doi.org/10.1039/d3ta02327c
- Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium–sulfur batteries: from academic research to commercial viability. Adv. Mater. 33, 2003666 (2021). https://doi.org/10.1002/adma.202003666
- C. Deng, X. Li, R. Chen, K. Ye, J. Lipton et al., Recent advances in rocking chair batteries and beyond. Energy Storage Mater. 60, 102820 (2023). https://doi.org/10.1016/j.ensm.2023.102820
- F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ. Sci. 14, 2269–2277 (2021). https://doi.org/10.1039/D1EE00317H
- P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua et al., Tailoring the Wadsley-Roth crystallographic shear structures for high-power lithium-ion batteries. Energy Environ. Sci. 17, 6571–6581 (2024). https://doi.org/10.1039/d4ee02293a
- M. Liu, B. Wu, D. Si, H. Dong, K. Chen et al., Electronic states tailoring and pinning effect boost high-power sodium-ion storage of oriented hollow P2-type cathode materials. ACS Appl. Mater. Interfaces 15, 53623–53631 (2023). https://doi.org/10.1021/acsami.3c14951
- M. Liu, Z. Cheng, X. Zhu, H. Dong, T. Yan et al., Biphase-to-monophase structure evolution of Na0.766+xLixNi0.33−xMn0.5Fe0.1Ti0.07O2 toward ultradurable Na-ion batteries. Carbon Energy 6, e565 (2024). https://doi.org/10.1002/cey2.565
- S. Lang, S.-H. Yu, X. Feng, M.R. Krumov, H.D. Abruña, Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13, 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w
- R. Deng, M. Wang, H. Yu, S. Luo, J. Li et al., Recent advances and applications toward emerging lithium–sulfur batteries: working principles and opportunities. Energy Environ. Mater. 5, 777–799 (2022). https://doi.org/10.1002/eem2.12257
- R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12, 2102805 (2022). https://doi.org/10.1002/aenm.202102805
- Q. Shao, S. Zhu, J. Chen, A review on lithium-sulfur batteries: challenge, development, and perspective. Nano Res. 16, 8097–8138 (2023). https://doi.org/10.1007/s12274-022-5227-0
- W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14, 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
- J. Sun, Y. Liu, L. Liu, S. He, Z. Du et al., Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: a comprehensive kinetic map. Nano Lett. 22, 3728–3736 (2022). https://doi.org/10.1021/acs.nanolett.2c00642
- C. Tong, H. Chen, S. Jiang, L. Li, M. Shao et al., Suppress loss of polysulfides in lithium-sulfur battery by regulating the rate-determining step via 1T MoS2-MnO2 covering layer. ACS Appl. Mater. Interfaces 15, 1175–1183 (2023). https://doi.org/10.1021/acsami.2c18594
- M. Zhen, K. Li, M. Liu, Manipulating Li2 S redox kinetics and lithium dendrites by core-shell catalysts under high sulfur loading and lean-electrolyte conditions. Adv. Sci. 10, e2207442 (2023). https://doi.org/10.1002/advs.202207442
- S. Waluś, G. Offer, I. Hunt, Y. Patel, T. Stockley et al., Volumetric expansion of lithium-sulfur cell during operation–fundamental insight into applicable characteristics. Energy Storage Mater. 10, 233–245 (2018). https://doi.org/10.1016/j.ensm.2017.05.017
- R. Chen, Y. Zhou, X. Li, Nanocarbon-enabled mitigation of sulfur expansion in lithium–sulfur batteries. Energy Storage Mater. 68, 103353 (2024). https://doi.org/10.1016/j.ensm.2024.103353
- Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai et al., Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li–S batteries. Adv. Energy Mater. 8, 1802130 (2018). https://doi.org/10.1002/aenm.201802130
- C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: a review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
- M. Chen, M. Shao, J. Jin, L. Cui, H. Tu et al., Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy Storage Mater. 47, 629–648 (2022). https://doi.org/10.1016/j.ensm.2022.02.051
- W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
- L. Qie, C. Zu, A. Manthiram, A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 6, 1502459 (2016). https://doi.org/10.1002/aenm.201502459
- M. Liu, S. Jhulki, Z. Sun, A. Magasinski, C. Hendrix et al., Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li–S batteries. Nano Energy 79, 105428 (2021). https://doi.org/10.1016/j.nanoen.2020.105428
- R. Yan, M. Oschatz, F. Wu, Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon 161, 162–168 (2020). https://doi.org/10.1016/j.carbon.2020.01.046
- F. Wu, H. Lv, S. Chen, S. Lorger, V. Srot et al., Natural vermiculite enables high-performance in lithium–sulfur batteries via electrical double layer effects. Adv. Funct. Mater. 29, 1902820 (2019). https://doi.org/10.1002/adfm.201902820
- Z. Song, W. Jiang, B. Li, Y. Qu, R. Mao et al., Advanced polymers in cathodes and electrolytes for lithium-sulfur batteries: progress and prospects. Small 20, e2308550 (2024). https://doi.org/10.1002/smll.202308550
- W. Liu, Y. Chu, J. Zhou, X. Chen, Y. Wang et al., A honeycomb-structured CoF2-modified separator enabling high-performance lithium−sulfur batteries. Small Sci. 3, 2300006 (2023). https://doi.org/10.1002/smsc.202300006
- X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Separator modification by MoxC/N-doped graphene enabling polysulfide catalytic conversion for high-performance Li–S batteries. Mater. Today Energy 35, 101318 (2023). https://doi.org/10.1016/j.mtener.2023.101318
- M. Liu, S. Jhulki, A. Magasinski, P.-F. Wang, G. Yushin, Porous TiO2–x/C nanofibers with axially aligned tunnel pores as effective sulfur hosts for stabilized lithium–sulfur batteries. ACS Appl. Mater. Interfaces 14, 54725–54735 (2022). https://doi.org/10.1021/acsami.2c16578
- W. Li, B. Yang, R. Pang, M. Zhang, Sandwiched aramid nanofiber/Al2O3-coated polyolefin separators for advanced lithium–sulfur batteries. Compos. Commun. 38, 101489 (2023). https://doi.org/10.1016/j.coco.2022.101489
- Y. Li, T. Gao, D. Ni, Y. Zhou, M. Yousaf et al., Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 34, e2107638 (2022). https://doi.org/10.1002/adma.202107638
- J. Yan, F. Liu, Z. Hu, J. Gao, W. Zhou et al., Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 20, 3798–3807 (2020). https://doi.org/10.1021/acs.nanolett.0c00819
- R. Gao, M. Zhang, Z. Han, X. Xiao, X. Wu et al., Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries. Adv. Mater. 36, e2303610 (2024). https://doi.org/10.1002/adma.202303610
- S. Yuan, Q. Lai, X. Duan, Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: a review. J. Energy Storage 61, 106716 (2023). https://doi.org/10.1016/j.est.2023.106716
- J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
- W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
- S. Li, H. Dai, Y. Li, C. Lai, J. Wang et al., Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Mater. 18, 222–228 (2019). https://doi.org/10.1016/j.ensm.2018.09.012
- E. Coleman, D.G. Li, H.F. Lv, R.Y. Wang, D. Strmcnik et al., Energy and fuels from tailored nanomaterials and electrochemical interfaces. Nat. Mater. 16, 57–69 (2017). https://doi.org/10.1038/nmat4738
- Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou et al., Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021). https://doi.org/10.1016/j.joule.2021.06.009
- L.L. Su, N. Yao, Z. Li, C.X. Bi, Z.X. Chen et al., Improving rate performance of encapsulating lithium-polysulfide electrolytes for practical lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202318785 (2024). https://doi.org/10.1002/anie.202318785
- J. Kim, F. Zhao, L.K.S. Bonagiri, Q. Ai, Y. Zhang, Electrical double layers modulate the growth of solid–electrolyte interphases. Chem. Mater. 36, 9156–9166 (2024). https://doi.org/10.1021/acs.chemmater.4c01745
- Z. Guo, X. Song, X. Wang, C. Wang, X. An et al., Inhibition of polysulfide shuttling in high-polarity electrolytes via liquid/quasi-solid interface in lithium-sulfur batteries. Sci. China Mater. 66, 505–512 (2023). https://doi.org/10.1007/s40843-022-2154-8
- C. Xiao, W. Song, J. Liang, J. Zhang, Z. Huang et al., P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022). https://doi.org/10.1039/D1TA09422J
- R. Liu, J. Duay, S.B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 47, 1384–1404 (2011). https://doi.org/10.1039/C0CC03158E
- H. Su, Z. Xie, J. Feng, Q. Wang, J. Zhou et al., Electrolyte additive strategy enhancing the electrochemical performance of a soft-packed LiCoO2// graphite full cell. Dalton Trans. 51, 8723–8732 (2022). https://doi.org/10.1039/d2dt01088g
- T. Wulandari, D. Fawcett, S.B. Majumder, G.E.J. Poinern, Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023). https://doi.org/10.1002/bte2.20230030
- M. Chen, S. Zhao, S. Jiang, C. Huang, X. Wang et al., Suppressing the polysulfide shuttle effect by heteroatom-doping for high-performance lithium–sulfur batteries. ACS Sustain. Chem. Eng. 6, 7545–7557 (2018). https://doi.org/10.1021/acssuschemeng.8b00273
- J.-H. Tian, T. Jiang, M. Wang, Z. Hu, X. Zhu et al., In situ/operando spectroscopic characterizations guide the compositional and structural design of lithium–sulfur batteries. Small Methods 4, 1900467 (2020). https://doi.org/10.1002/smtd.201900467
- Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li–S batteries. Adv. Sci. 9, 2106004 (2022). https://doi.org/10.1002/advs.202106004
- L. Wang, Y. Lin, S. DeCarlo, Y. Wang, K. Leung et al., Compositions and formation mechanisms of solid–electrolyte interphase on microporous carbon/sulfur cathodes. Chem. Mater. 32, 3765–3775 (2020). https://doi.org/10.1021/acs.chemmater.9b05027
- M. Helen, M. Fichtner, M.A. Reddy, Toward improving the areal energy density of lithium–sulfur batteries with ultramicroporous carbon–sulfur composite electrodes. Energy Technol. 7, 1900183 (2019). https://doi.org/10.1002/ente.201900183
- J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
- Z. Zhang, J. Yang, W. Huang, H. Wang, W. Zhou et al., Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 4, 302–312 (2021). https://doi.org/10.1016/j.matt.2020.10.021
- Y. Liao, H. Zhang, Y. Peng, Y. Hu, J. Liang et al., Electrolyte degradation during aging process of lithium-ion batteries: mechanisms, characterization, and quantitative analysis. Adv. Energy Mater. 14, 2304295 (2024). https://doi.org/10.1002/aenm.202304295
- Sungjemmenla, S.K. Vineeth, C.B. Soni, V. Kumar, Z.W. Seh, Understanding the cathode-electrolyte interphase in lithium-ion batteries. Energy Technol. 10, 2200421 (2022). https://doi.org/10.1002/ente.202200421
- H. Wang, X. Li, F. Li, X. Liu, S. Yang et al., Formation and modification of cathode electrolyte interphase: a mini review. Electrochem. Commun. 122, 106870 (2021). https://doi.org/10.1016/j.elecom.2020.106870
- F. Chu, M. Wang, J. Liu, Z. Guan, H. Yu et al., Low concentration electrolyte enabling cryogenic lithium–sulfur batteries. Adv. Funct. Mater. 32, 2205393 (2022). https://doi.org/10.1002/adfm.202205393
- R. Glaser, F. Wu, E. Register, M. Tolksdorf, B. Johnson et al., Tuning low concentration electrolytes for high rate performance in lithium-sulfur batteries. J. Electrochem. Soc. 167, 100512 (2020). https://doi.org/10.1149/1945-7111/ab7183
- X. Zhang, P. Gao, Z. Wu, M.H. Engelhard, X. Cao et al., Pinned electrode/electrolyte interphase and its formation origin for sulfurized polyacrylonitrile cathode in stable lithium batteries. ACS Appl. Mater. Interfaces 14, 52046–52057 (2022). https://doi.org/10.1021/acsami.2c16890
- T. Yim, M.-S. Park, J.-S. Yu, K.J. Kim, K.Y. Im et al., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013). https://doi.org/10.1016/j.electacta.2013.06.039
- H. Yang, J. Chen, J. Yang, J. Wang, Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 59, 7306–7318 (2020). https://doi.org/10.1002/anie.201913540
- C. Kensy, D. Leistenschneider, S. Wang, H. Tanaka, S. Dörfler et al., The role of carbon electrodes pore size distribution on the formation of the cathode–electrolyte interphase in lithium–sulfur batteries. Batter. Supercaps 4, 612–622 (2021). https://doi.org/10.1002/batt.202000195
- X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen et al., Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium–sulfur batteries. Adv. Energy Mater. 12, 2102774 (2022). https://doi.org/10.1002/aenm.202102774
- J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium-sulfur batteries: a critical review. Adv. Mater. 35, e2211168 (2023). https://doi.org/10.1002/adma.202211168
- W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
- L. Kong, J.-X. Chen, H.-J. Peng, J.-Q. Huang, W. Zhu et al., Current-density dependence of Li2S/Li2S2 growth in lithium–sulfur batteries. Energy Environ. Sci. 12, 2976–2982 (2019). https://doi.org/10.1039/c9ee01257e
- M. Sadd, S. De Angelis, S. Colding-Jørgensen, D. Blanchard, R.E. Johnsen et al., Visualization of dissolution-precipitation processes in lithium–sulfur batteries. Adv. Energy Mater. 12, 2103126 (2022). https://doi.org/10.1002/aenm.202103126
- Z. Guan, X. Chen, F. Chu, R. Deng, S. Wang et al., Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li–S conversion chemistry. Adv. Energy Mater. 13, 2302850 (2023). https://doi.org/10.1002/aenm.202302850
- R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1500408 (2015). https://doi.org/10.1002/aenm.201500408
- S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117
- Y.-W. Song, J.-L. Qin, C.-X. Zhao, M. Zhao, L.-P. Hou et al., The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. J. Energy Chem. 64, 568–573 (2022). https://doi.org/10.1016/j.jechem.2021.05.023
- L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
- W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
- Z. Shi, Y. Ding, Q. Zhang, J. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: from strategic probing to mechanistic understanding. Adv. Energy Mater. 12, 2201056 (2022). https://doi.org/10.1002/aenm.202201056
- B. Yue, L. Wang, N. Zhang, Y. Xie, W. Yu et al., Dual-confinement effect of nanocages@nanotubes suppresses polysulfide shuttle effect for high-performance lithium–sulfur batteries. Small 20, 2308603 (2024). https://doi.org/10.1002/smll.202308603
- S.-Y. Lang, R.-J. Xiao, L. Gu, Y.-G. Guo, R. Wen et al., Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 140, 8147–8155 (2018). https://doi.org/10.1021/jacs.8b02057
- W. Li, K. Chen, Q. Xu, X. Li, Q. Zhang et al., Mo2C/C hierarchical double-shelled hollow spheres as sulfur host for advanced Li-S batteries. Angew. Chem. Int. Ed. 60, 21512–21520 (2021). https://doi.org/10.1002/anie.202108343
- A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922–939 (2012). https://doi.org/10.1002/aenm.201200068
- X. Chen, Z. Miao, X. Zhang, L. Yuan, Y. Huang et al., Optimizing the operation strategy of solid-conversion sulfur cathodes for achieving high total capacity contribution throughout the lifespan. J. Power. Sources 543, 231837 (2022). https://doi.org/10.1016/j.jpowsour.2022.231837
- Z. Wu, S.-M. Bak, Z. Shadike, S. Yu, E. Hu et al., Understanding the roles of the electrode/electrolyte interface for enabling stable Li∥Sulfurized polyacrylonitrile batteries. ACS Appl. Mater. Interfaces 13, 31733–31740 (2021). https://doi.org/10.1021/acsami.1c07903
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- X. Xing, Y. Li, X. Wang, V. Petrova, H. Liu et al., Cathode electrolyte interface enabling stable Li–S batteries. Energy Storage Mater. 21, 474–480 (2019). https://doi.org/10.1016/j.ensm.2019.06.022
- R. Cao, J. Chen, K.S. Han, W. Xu, D. Mei et al., Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 26, 3059–3066 (2016). https://doi.org/10.1002/adfm.201505074
- H. Kim, F. Wu, J.T. Lee, N. Nitta, H.-T. Lin et al., In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv. Energy Mater. 5, 1401792 (2015). https://doi.org/10.1002/aenm.201401792
- J. Wang, S. Cheng, L. Li, L. Jia, J. Wu et al., Robust interfacial engineering construction to alleviate polysulfide shuttling in metal sulfide electrodes for achieving fast-charge high-capacity lithium storages. Chem. Eng. J. 446, 137291 (2022). https://doi.org/10.1016/j.cej.2022.137291
- Y. Xiao, B. Han, Y. Zeng, S.-S. Chi, X. Zeng et al., New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv. Energy Mater. 10, 1903937 (2020). https://doi.org/10.1002/aenm.201903937
- Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang et al., Tailored electrolytes enabling practical lithium–sulfur full batteries via interfacial protection. ACS Energy Lett. 6, 2673–2681 (2021). https://doi.org/10.1021/acsenergylett.1c01091
- C.-D. Qiu, Y. Hu, K. Cao, X. Wu, B.-H. Huang et al., Engineering peculiar cathode electrolyte interphase toward sustainable and high-rate Li–S batteries. Adv. Energy Mater. 13, 2300229 (2023). https://doi.org/10.1002/aenm.202300229
- H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen et al., Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018). https://doi.org/10.1002/adfm.201707234
- F. Liu, C. Zong, L. He, Z. Li, B. Hong et al., Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive. Chem. Eng. J. 443, 136489 (2022). https://doi.org/10.1016/j.cej.2022.136489
- Y. Liu, Y. Pan, J. Ban, T. Li, X. Jiao et al., Promoted rate and cycling capability of Li–S batteries enabled by targeted selection of co-solvent for the electrolyte. Energy Storage Mater. 25, 131–136 (2020). https://doi.org/10.1016/j.ensm.2019.10.022
- Z. Li, Y. Zhou, Y. Wang, Y.-C. Lu, Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 9, 1802207 (2019). https://doi.org/10.1002/aenm.201802207
- H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee et al., Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019). https://doi.org/10.1038/s41467-018-07975-4
- J. Jung, H. Chu, I. Kim, D.H. Lee, G. Doo et al., Confronting sulfur electrode passivation and Li metal electrode degradation in lithium-sulfur batteries using thiocyanate anion. Adv. Sci. 10, e2301006 (2023). https://doi.org/10.1002/advs.202301006
- D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Heterogeneous mediator enabling three-dimensional growth of lithium sulfide for high-performance lithium–sulfur batteries. Energy Environ. Mater. 5, 1214–1221 (2022). https://doi.org/10.1002/eem2.12236
- J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium-sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
- R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li et al., Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. Energy Storage Mater. 51, 890–899 (2022). https://doi.org/10.1016/j.ensm.2022.07.024
- M. Zhao, H.-J. Peng, J.-Y. Wei, J.-Q. Huang, B.-Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Meth. 4, 1900344 (2020). https://doi.org/10.1002/smtd.201900344
- J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
- J.G. Kim, Y. Noh, Y. Kim, Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode. Chem. Eng. J. 435, 131339 (2022). https://doi.org/10.1016/j.cej.2021.131339
- R. Li, H. Shen, E. Pervaiz, M. Yang, Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries. Chem. Eng. J. 404, 126462 (2021). https://doi.org/10.1016/j.cej.2020.126462
- W. Qi, W. Jiang, F. Xu, J. Jia, C. Yang et al., Improving confinement and redox kinetics of polysufides through hollow NC@CeO2 nanospheres for high-performance lithium-sulfur batteries. Chem. Eng. J. 382, 122852 (2020). https://doi.org/10.1016/j.cej.2019.122852
- Q. Wang, Z.-B. Wang, R. Li, H. Liu, M. Yang et al., Flower-like nitrogen-oxygen-doped carbon encapsulating sulfur composite synthesized via in situ oxidation approach. Chem. Eng. J. 345, 271–279 (2018). https://doi.org/10.1016/j.cej.2018.03.179
- F. Wu, Y.-S. Ye, J.-Q. Huang, T. Zhao, J. Qian et al., Sulfur nanodots stitched in 2D “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries. ACS Nano 11, 4694–4702 (2017). https://doi.org/10.1021/acsnano.7b00596
- R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10, 24422–24433 (2022). https://doi.org/10.1039/d2ta06686f
- P. Yu, L.-X. Feng, D.-C. Ma, X.-R. Sun, J.-K. Pei et al., Template-free self-caging nanochemistry for large-scale synthesis of sulfonated-graphene@sulfur nanocage for long-life lithium-sulfur batteries. Adv. Funct. Mater. 31, 2008652 (2021). https://doi.org/10.1002/adfm.202008652
- H. Jiang, X.-C. Liu, Y. Wu, Y. Shu, X. Gong et al., Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
- G. Wen, X. Zhang, Y. Sui, K. Rao, J. Liu et al., PPy-encapsulated Hydrangea-type 1T MoS2 microspheres as catalytic sulfur hosts for long-life and high-rate lithium-sulfur batteries. Chem. Eng. J. 430, 133041 (2022). https://doi.org/10.1016/j.cej.2021.133041
- T. Wu, G. Sun, W. Lu, L. Zhao, A. Mauger et al., A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries. Electrochim. Acta 353, 136529 (2020). https://doi.org/10.1016/j.electacta.2020.136529
- P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang et al., In situ polymerization of nanostructured conductive polymer on 3D sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5, 1701598 (2018). https://doi.org/10.1002/admi.201701598
- W. Li, Q. Zhang, G. Zheng, Z.W. Seh, H. Yao et al., Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013). https://doi.org/10.1021/nl403130h
- B. Long, Z. Qiao, J. Zhang, S. Zhang, M.-S. Balogun et al., Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. J. Mater. Chem. A 7, 11370–11378 (2019). https://doi.org/10.1039/c9ta01358j
- P. Geng, S. Cao, X. Guo, J. Ding, S. Zhang et al., Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. J. Mater. Chem. A 7, 19465–19470 (2019). https://doi.org/10.1039/c9ta05812e
- H. Dong, S. Qi, L. Wang, X. Chen, Y. Xiao et al., Conductive polymer coated layered double hydroxide as a novel sulfur reservoir for flexible lithium-sulfur batteries. Small 19, e2300843 (2023). https://doi.org/10.1002/smll.202300843
- J. Lei, X.-X. Fan, T. Liu, P. Xu, Q. Hou et al., Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 13, 202 (2022). https://doi.org/10.1038/s41467-021-27866-5
- B. Qin, Q. Wang, W. Yao, Y. Cai, Y. Chen et al., Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium–sulfur batteries. Energy Environ. Mater. 6, e12475 (2023). https://doi.org/10.1002/eem2.12475
- Y. Ren, J. Hu, H. Zhong, L. Zhang, Multiple core–shelled sulfur composite based on spherical double-layered hollow carbon and PEDOT:PSS as cathode for lithium–sulfur batteries. J. Alloys Compd. 837, 155498 (2020). https://doi.org/10.1016/j.jallcom.2020.155498
- Y. Zhang, H.W. Song, K.R. Crompton, X. Yang, K. Zhao et al., A sulfur cathode design strategy for polysulfide restrictions and kinetic enhancements in Li-S batteries through oxidative chemical vapor deposition. Nano Energy 115, 108756 (2023). https://doi.org/10.1016/j.nanoen.2023.108756
- Y. Zhang, C.S. Kim, H.W. Song, S.-J. Chang, H. Kim et al., Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition. Energy Storage Mater. 48, 1–11 (2022). https://doi.org/10.1016/j.ensm.2022.03.001
- F. Shi, J. Yu, C. Chen, S.P. Lau, W. Lv et al., Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 10, 19412–19443 (2022). https://doi.org/10.1039/d2ta02217f
- S. Deng, T. Guo, J. Heier, C.J. Zhang, Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 10, e2204930 (2023). https://doi.org/10.1002/advs.202204930
- X. Wang, N. Deng, L. Wei, Q. Yang, H. Xiang et al., Recent progress in high-performance lithium sulfur batteries: the emerging strategies for advanced separators/electrolytes based on nanomaterials and corresponding interfaces. Chem 16, 2852–2870 (2021). https://doi.org/10.1002/asia.202100765
- Y. Li, J. Liu, X. Wang, X. Zhang, N. Chen et al., CoFe2O4@rGO as a separator coating for advanced lithium–sulfur batteries. Small Sci. 3, 2300045 (2023). https://doi.org/10.1002/smsc.202300045
- B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
- W. Feng, H. Yang, Z. Pu, L. Zhang, Study of CNTs-MoS2/CeO2 composites for lithium-sulfur battery performance. Ionics 28, 2781–2791 (2022). https://doi.org/10.1007/s11581-022-04535-1
- Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li-S batteries. Small 17, e2102710 (2021). https://doi.org/10.1002/smll.202102710
- M. Yu, J. Ma, H. Song, A. Wang, F. Tian et al., Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci. 9, 1495–1503 (2016). https://doi.org/10.1039/C5EE03902A
- Y. Kim, W.I. Kim, H. Park, J.S. Kim, H. Cho et al., Multifunctional polymeric phthalocyanine-coated carbon nanotubes for efficient redox mediators of lithium–sulfur batteries. Adv. Energy Mater. 13, 2370095 (2023). https://doi.org/10.1002/aenm.202370095
- W. Chen, Y. Hu, W. Lv, T. Lei, X. Wang et al., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10, 4973 (2019). https://doi.org/10.1038/s41467-019-12952-6
- X. Zhang, Y. Chen, F. Ma, X. Chen, B. Wang et al., Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem. Eng. J. 436, 134945 (2022). https://doi.org/10.1016/j.cej.2022.134945
- J. Wang, L. Wang, Z. Li, J. Bi, Q. Shi et al., Recent advances of metal groups and their heterostructures as catalytic materials for lithium-sulfur battery cathodes. J. Electron. Mater. 52, 3526–3548 (2023). https://doi.org/10.1007/s11664-023-10355-4
- R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, e2000315 (2020). https://doi.org/10.1002/adma.202000315
- L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019). https://doi.org/10.1002/aenm.201900219
- S. Nam, J. Kim, V.H. Nguyen, M. Mahato, S. Oh et al., Collectively exhaustive MXene and graphene oxide multilayer for suppressing shuttling effect in flexible lithium sulfur battery. Adv. Mater. Technol. 7, 2101025 (2022). https://doi.org/10.1002/admt.202101025
- H. Wang, S.-A. He, Z. Cui, C. Xu, J. Zhu et al., Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 420, 129693 (2021). https://doi.org/10.1016/j.cej.2021.129693
- F. Yin, Q. Jin, H. Gao, X. Zhang, Z. Zhang, A strategy to achieve high loading and high energy density Li-S batteries. J. Energy Chem. 53, 340–346 (2021). https://doi.org/10.1016/j.jechem.2020.05.014
- Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31, 2100457 (2021). https://doi.org/10.1002/adfm.202100457
- T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2, 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
- M. He, X. Li, X. Yang, C. Wang, M.L. Zheng et al., Realizing solid-phase reaction in Li–S batteries via localized high-concentration carbonate electrolyte. Adv. Energy Mater. 11, 2101004 (2021). https://doi.org/10.1002/aenm.202101004
- H. Li, X. Wu, S. Jiang, Q. Zhang, Y. Cao et al., A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2023). https://doi.org/10.1007/s12274-022-5156-y
- L. Yu, S. Chen, H. Lee, L. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
- J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387–394 (2022). https://doi.org/10.1016/j.ensm.2022.05.044
- T. Ma, Y. Ni, D. Li, Z. Zha, S. Jin et al., Reversible solid–solid conversion of sulfurized polyacrylonitrile cathodes in lithium–sulfur batteries by weakly solvating ether electrolytes. Angew. Chem. Int. Ed. 135, e202310761 (2023). https://doi.org/10.1002/ange.202310761
- X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 9, 4509 (2018). https://doi.org/10.1038/s41467-018-06877-9
- W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu et al., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021). https://doi.org/10.1038/s41467-021-23155-3
- Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu et al., Graphdiyne-like porous organic framework as a solid-phase sulfur conversion cathodic host for stable Li-S batteries. ACS Appl. Mater. Interfaces 13, 59983–59992 (2021). https://doi.org/10.1021/acsami.1c19484
- X. Li, D. Liu, Z. Cao, Y. Liao, Z. Cheng et al., Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries. J. Energy Chem. 84, 459–466 (2023). https://doi.org/10.1016/j.jechem.2023.05.052
- X. Zhang, G. Hu, K. Chen, L. Shen, R. Xiao et al., Structure-related electrochemical behavior of sulfur-rich polymer cathode with solid-solid conversion in lithium-sulfur batteries. Energy Storage Mater. 45, 1144–1152 (2022). https://doi.org/10.1016/j.ensm.2021.11.014
- S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621, 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
- G.W. Sun, M.J. Jin, Q.Y. Liu, C.Y. Zhang, J.L. Pan et al., Unveiling the enhancement essence on Li2S deposition by the polarized topological β-polyvinylidene fluoride: beyond built-in electric field effect. Chem. Eng. J. 453, 139752 (2023). https://doi.org/10.1016/j.cej.2022.139752
- Z. Zhang, Z. Fang, Y. Xiang, D. Liu, Z. Xie et al., Cellulose-based material in lithium-sulfur batteries: a review. Carbohydr. Polym. 255, 117469 (2021). https://doi.org/10.1016/j.carbpol.2020.117469
- L. Dong, J. Liu, D. Chen, Y. Han, Y. Liang et al., Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries. ACS Nano 13, 14172–14181 (2019). https://doi.org/10.1021/acsnano.9b06934
- B. Wang, L. Wang, B. Zhang, S. Zeng, F. Tian et al., Niobium diboride nanops accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries. ACS Nano 16, 4947–4960 (2022). https://doi.org/10.1021/acsnano.2c01179
- L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
- Y. Wu, Y. Feng, X. Qiu, F. Ren, J. Cen et al., Construction of polypyrrole-coated CoSe2 composite material for lithium-sulfur battery. Nanomaterials 13, 865 (2023). https://doi.org/10.3390/nano13050865
- J.-L. Yang, S.-X. Zhao, X.-T. Zeng, Y.-M. Lu, G.-Z. Cao, Catalytic interfaces-enriched hybrid hollow spheres sulfur host for advanced Li–S batteries. Adv. Mater. Interfaces 7, 1901420 (2020). https://doi.org/10.1002/admi.201901420
- W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485
- J. Huang, M. Tao, W. Zhang, G. Zheng, L. Du et al., Realizing a “solid to solid” process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries. Nano Res. 16, 5018–5025 (2023). https://doi.org/10.1007/s12274-023-5443-2
- L. Li, J.S. Nam, M.S. Kim, Y. Wang, S. Jiang et al., Sulfur–carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium–sulfur batteries. Adv. Energy Mater. 13, 2302139 (2023). https://doi.org/10.1002/aenm.202302139
- G. Li, X. Wang, M.H. Seo, M. Li, L. Ma et al., Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 9, 705 (2018). https://doi.org/10.1038/s41467-018-03116-z
- C. Hu, H. Chen, Y. Shen, D. Lu, Y. Zhao et al., In situ wrapping of the cathode material in lithium-sulfur batteries. Nat. Commun. 8, 479 (2017). https://doi.org/10.1038/s41467-017-00656-8
References
B.J. van Ruijven, E. DeCian, I. SueWing, Amplification of future energy demand growth due to climate change. Nat. Commun. 10, 2762 (2019). https://doi.org/10.1038/s41467-019-10399-3
W. Gao, Z. Wang, C. Peng, S. Kang, L. Cui, Accelerating the redox kinetics by catalytic activation of “dead sulfur” in lithium–sulfur batteries. J. Mater. Chem. A 9, 13442–13458 (2021). https://doi.org/10.1039/d1ta00772f
Z. Zhuang, J. Huang, Y. Li, L. Zhou, L. Mai, The holy grail in platinum-free electrocatalytic hydrogen evolution: molybdenum-based catalysts and recent advances. ChemElectroChem 6, 3570–3589 (2019). https://doi.org/10.1002/celc.201900143
S.-J. Kim, K. Kim, J. Park, Y.-E. Sung, Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem 11, 2373–2387 (2019). https://doi.org/10.1002/cctc.201900184
Z. Zhuang, Q. Kang, D. Wang, Y. Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 13, 1856–1866 (2020). https://doi.org/10.1007/s12274-020-2827-4
G. Zhou, H. Chen, Y. Cui, Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0
D. Wang, N. Liu, F. Chen, Y. Wang, J. Mao, Progress and prospects of energy storage technology research: based on multidimensional comparison. J. Energy Storage 75, 109710 (2024). https://doi.org/10.1016/j.est.2023.109710
N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li et al., Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31, e1806620 (2019). https://doi.org/10.1002/adma.201806620
B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power. Sources 195, 2419–2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
M.V. Reddy, A. Mauger, C.M. Julien, A. Paolella, K. Zaghib, Brief history of early lithium-battery development. Materials 13, 1884 (2020). https://doi.org/10.3390/ma13081884
L. Trahey, F.R. Brushett, N.P. Balsara, G. Ceder, L. Cheng et al., Energy storage emerging: a perspective from the joint center for energy storage research. Proc. Natl. Acad. Sci. U.S.A. 117, 12550–12557 (2020). https://doi.org/10.1073/pnas.1821672117
J. Xie, Y.-C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9
Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020). https://doi.org/10.1038/s41570-020-0160-9
J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng et al., Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 43, 132–165 (2021). https://doi.org/10.1016/j.mattod.2020.10.028
J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016). https://doi.org/10.1038/natrevmats.2016.13
L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16, 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
C. Sun, X. Zhang, C. Li, K. Wang, X. Sun et al., Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Mater. 32, 497–516 (2020). https://doi.org/10.1016/j.ensm.2020.07.009
X. Yu, W. Li, V. Gupta, H. Gao, D. Tran et al., Current challenges in efficient lithium-ion batteries’ recycling: a perspective. Glob. Chall. 6, 2200099 (2022). https://doi.org/10.1002/gch2.202200099
J. Li, Z. Niu, C. Guo, M. Li, W. Bao, Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review. J. Energy Chem. 54, 434–451 (2021). https://doi.org/10.1016/j.jechem.2020.06.009
W.-M. Zhao, J.-D. Shen, X.-J. Xu, W.-X. He, L. Liu et al., Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Met. 41, 1080–1100 (2022). https://doi.org/10.1007/s12598-021-01865-3
Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1
C. Yang, Running battery electric vehicles with extended range: coupling cost and energy analysis. Appl. Energy 306, 118116 (2022). https://doi.org/10.1016/j.apenergy.2021.118116
M.C. Argyrou, P. Christodoulides, S.A. Kalogirou, Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018). https://doi.org/10.1016/j.rser.2018.06.044
H. Pan, Z. Cheng, Z. Zhou, S. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021). https://doi.org/10.1002/aenm.202002893
R. Deng, H. Yu, J. Liu, F. Chu, J. Lei et al., Adsorption-catalytic effects of metallurgical ferrous slag on polysulfides in Li–S batteries. J. Mater. Chem. A 11, 15769–15777 (2023). https://doi.org/10.1039/d3ta02327c
Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang et al., Advances in lithium–sulfur batteries: from academic research to commercial viability. Adv. Mater. 33, 2003666 (2021). https://doi.org/10.1002/adma.202003666
C. Deng, X. Li, R. Chen, K. Ye, J. Lipton et al., Recent advances in rocking chair batteries and beyond. Energy Storage Mater. 60, 102820 (2023). https://doi.org/10.1016/j.ensm.2023.102820
F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ. Sci. 14, 2269–2277 (2021). https://doi.org/10.1039/D1EE00317H
P. Jing, M. Liu, H.-P. Ho, Y. Ma, W. Hua et al., Tailoring the Wadsley-Roth crystallographic shear structures for high-power lithium-ion batteries. Energy Environ. Sci. 17, 6571–6581 (2024). https://doi.org/10.1039/d4ee02293a
M. Liu, B. Wu, D. Si, H. Dong, K. Chen et al., Electronic states tailoring and pinning effect boost high-power sodium-ion storage of oriented hollow P2-type cathode materials. ACS Appl. Mater. Interfaces 15, 53623–53631 (2023). https://doi.org/10.1021/acsami.3c14951
M. Liu, Z. Cheng, X. Zhu, H. Dong, T. Yan et al., Biphase-to-monophase structure evolution of Na0.766+xLixNi0.33−xMn0.5Fe0.1Ti0.07O2 toward ultradurable Na-ion batteries. Carbon Energy 6, e565 (2024). https://doi.org/10.1002/cey2.565
S. Lang, S.-H. Yu, X. Feng, M.R. Krumov, H.D. Abruña, Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13, 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w
R. Deng, M. Wang, H. Yu, S. Luo, J. Li et al., Recent advances and applications toward emerging lithium–sulfur batteries: working principles and opportunities. Energy Environ. Mater. 5, 777–799 (2022). https://doi.org/10.1002/eem2.12257
R. Chu, T.T. Nguyen, Y. Bai, N.H. Kim, J.H. Lee, Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium–sulfur batteries. Adv. Energy Mater. 12, 2102805 (2022). https://doi.org/10.1002/aenm.202102805
Q. Shao, S. Zhu, J. Chen, A review on lithium-sulfur batteries: challenge, development, and perspective. Nano Res. 16, 8097–8138 (2023). https://doi.org/10.1007/s12274-022-5227-0
W. Sun, Z. Song, Z. Feng, Y. Huang, Z.J. Xu et al., Carbon-nitride-based materials for advanced lithium-sulfur batteries. Nano-Micro Lett. 14, 222 (2022). https://doi.org/10.1007/s40820-022-00954-x
J. Sun, Y. Liu, L. Liu, S. He, Z. Du et al., Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: a comprehensive kinetic map. Nano Lett. 22, 3728–3736 (2022). https://doi.org/10.1021/acs.nanolett.2c00642
C. Tong, H. Chen, S. Jiang, L. Li, M. Shao et al., Suppress loss of polysulfides in lithium-sulfur battery by regulating the rate-determining step via 1T MoS2-MnO2 covering layer. ACS Appl. Mater. Interfaces 15, 1175–1183 (2023). https://doi.org/10.1021/acsami.2c18594
M. Zhen, K. Li, M. Liu, Manipulating Li2 S redox kinetics and lithium dendrites by core-shell catalysts under high sulfur loading and lean-electrolyte conditions. Adv. Sci. 10, e2207442 (2023). https://doi.org/10.1002/advs.202207442
S. Waluś, G. Offer, I. Hunt, Y. Patel, T. Stockley et al., Volumetric expansion of lithium-sulfur cell during operation–fundamental insight into applicable characteristics. Energy Storage Mater. 10, 233–245 (2018). https://doi.org/10.1016/j.ensm.2017.05.017
R. Chen, Y. Zhou, X. Li, Nanocarbon-enabled mitigation of sulfur expansion in lithium–sulfur batteries. Energy Storage Mater. 68, 103353 (2024). https://doi.org/10.1016/j.ensm.2024.103353
Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai et al., Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li–S batteries. Adv. Energy Mater. 8, 1802130 (2018). https://doi.org/10.1002/aenm.201802130
C.-X. Bi, L.-P. Hou, Z. Li, M. Zhao, X.-Q. Zhang et al., Protecting lithium metal anodes in lithium–sulfur batteries: a review. Energy Mater. Adv. 4, 0010 (2023). https://doi.org/10.34133/energymatadv.0010
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
M. Chen, M. Shao, J. Jin, L. Cui, H. Tu et al., Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy Storage Mater. 47, 629–648 (2022). https://doi.org/10.1016/j.ensm.2022.02.051
W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
L. Qie, C. Zu, A. Manthiram, A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 6, 1502459 (2016). https://doi.org/10.1002/aenm.201502459
M. Liu, S. Jhulki, Z. Sun, A. Magasinski, C. Hendrix et al., Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li–S batteries. Nano Energy 79, 105428 (2021). https://doi.org/10.1016/j.nanoen.2020.105428
R. Yan, M. Oschatz, F. Wu, Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon 161, 162–168 (2020). https://doi.org/10.1016/j.carbon.2020.01.046
F. Wu, H. Lv, S. Chen, S. Lorger, V. Srot et al., Natural vermiculite enables high-performance in lithium–sulfur batteries via electrical double layer effects. Adv. Funct. Mater. 29, 1902820 (2019). https://doi.org/10.1002/adfm.201902820
Z. Song, W. Jiang, B. Li, Y. Qu, R. Mao et al., Advanced polymers in cathodes and electrolytes for lithium-sulfur batteries: progress and prospects. Small 20, e2308550 (2024). https://doi.org/10.1002/smll.202308550
W. Liu, Y. Chu, J. Zhou, X. Chen, Y. Wang et al., A honeycomb-structured CoF2-modified separator enabling high-performance lithium−sulfur batteries. Small Sci. 3, 2300006 (2023). https://doi.org/10.1002/smsc.202300006
X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Separator modification by MoxC/N-doped graphene enabling polysulfide catalytic conversion for high-performance Li–S batteries. Mater. Today Energy 35, 101318 (2023). https://doi.org/10.1016/j.mtener.2023.101318
M. Liu, S. Jhulki, A. Magasinski, P.-F. Wang, G. Yushin, Porous TiO2–x/C nanofibers with axially aligned tunnel pores as effective sulfur hosts for stabilized lithium–sulfur batteries. ACS Appl. Mater. Interfaces 14, 54725–54735 (2022). https://doi.org/10.1021/acsami.2c16578
W. Li, B. Yang, R. Pang, M. Zhang, Sandwiched aramid nanofiber/Al2O3-coated polyolefin separators for advanced lithium–sulfur batteries. Compos. Commun. 38, 101489 (2023). https://doi.org/10.1016/j.coco.2022.101489
Y. Li, T. Gao, D. Ni, Y. Zhou, M. Yousaf et al., Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 34, e2107638 (2022). https://doi.org/10.1002/adma.202107638
J. Yan, F. Liu, Z. Hu, J. Gao, W. Zhou et al., Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 20, 3798–3807 (2020). https://doi.org/10.1021/acs.nanolett.0c00819
R. Gao, M. Zhang, Z. Han, X. Xiao, X. Wu et al., Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries. Adv. Mater. 36, e2303610 (2024). https://doi.org/10.1002/adma.202303610
S. Yuan, Q. Lai, X. Duan, Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: a review. J. Energy Storage 61, 106716 (2023). https://doi.org/10.1016/j.est.2023.106716
J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang et al., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 9, 4480 (2018). https://doi.org/10.1038/s41467-018-06879-7
W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
S. Li, H. Dai, Y. Li, C. Lai, J. Wang et al., Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Mater. 18, 222–228 (2019). https://doi.org/10.1016/j.ensm.2018.09.012
E. Coleman, D.G. Li, H.F. Lv, R.Y. Wang, D. Strmcnik et al., Energy and fuels from tailored nanomaterials and electrochemical interfaces. Nat. Mater. 16, 57–69 (2017). https://doi.org/10.1038/nmat4738
Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou et al., Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021). https://doi.org/10.1016/j.joule.2021.06.009
L.L. Su, N. Yao, Z. Li, C.X. Bi, Z.X. Chen et al., Improving rate performance of encapsulating lithium-polysulfide electrolytes for practical lithium-sulfur batteries. Angew. Chem. Int. Ed. 63, e202318785 (2024). https://doi.org/10.1002/anie.202318785
J. Kim, F. Zhao, L.K.S. Bonagiri, Q. Ai, Y. Zhang, Electrical double layers modulate the growth of solid–electrolyte interphases. Chem. Mater. 36, 9156–9166 (2024). https://doi.org/10.1021/acs.chemmater.4c01745
Z. Guo, X. Song, X. Wang, C. Wang, X. An et al., Inhibition of polysulfide shuttling in high-polarity electrolytes via liquid/quasi-solid interface in lithium-sulfur batteries. Sci. China Mater. 66, 505–512 (2023). https://doi.org/10.1007/s40843-022-2154-8
C. Xiao, W. Song, J. Liang, J. Zhang, Z. Huang et al., P-block tin single atom catalyst for improved electrochemistry in a lithium–sulfur battery: a theoretical and experimental study. J. Mater. Chem. A 10, 3667–3677 (2022). https://doi.org/10.1039/D1TA09422J
R. Liu, J. Duay, S.B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 47, 1384–1404 (2011). https://doi.org/10.1039/C0CC03158E
H. Su, Z. Xie, J. Feng, Q. Wang, J. Zhou et al., Electrolyte additive strategy enhancing the electrochemical performance of a soft-packed LiCoO2// graphite full cell. Dalton Trans. 51, 8723–8732 (2022). https://doi.org/10.1039/d2dt01088g
T. Wulandari, D. Fawcett, S.B. Majumder, G.E.J. Poinern, Lithium-based batteries, history, current status, challenges, and future perspectives. Battery Energy 2, 20230030 (2023). https://doi.org/10.1002/bte2.20230030
M. Chen, S. Zhao, S. Jiang, C. Huang, X. Wang et al., Suppressing the polysulfide shuttle effect by heteroatom-doping for high-performance lithium–sulfur batteries. ACS Sustain. Chem. Eng. 6, 7545–7557 (2018). https://doi.org/10.1021/acssuschemeng.8b00273
J.-H. Tian, T. Jiang, M. Wang, Z. Hu, X. Zhu et al., In situ/operando spectroscopic characterizations guide the compositional and structural design of lithium–sulfur batteries. Small Methods 4, 1900467 (2020). https://doi.org/10.1002/smtd.201900467
Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li–S batteries. Adv. Sci. 9, 2106004 (2022). https://doi.org/10.1002/advs.202106004
L. Wang, Y. Lin, S. DeCarlo, Y. Wang, K. Leung et al., Compositions and formation mechanisms of solid–electrolyte interphase on microporous carbon/sulfur cathodes. Chem. Mater. 32, 3765–3775 (2020). https://doi.org/10.1021/acs.chemmater.9b05027
M. Helen, M. Fichtner, M.A. Reddy, Toward improving the areal energy density of lithium–sulfur batteries with ultramicroporous carbon–sulfur composite electrodes. Energy Technol. 7, 1900183 (2019). https://doi.org/10.1002/ente.201900183
J. Zhang, S. Ma, J. Zhang, J. Zhang, X. Wang et al., Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries. Nano Energy 128, 109814 (2024). https://doi.org/10.1016/j.nanoen.2024.109814
Z. Zhang, J. Yang, W. Huang, H. Wang, W. Zhou et al., Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 4, 302–312 (2021). https://doi.org/10.1016/j.matt.2020.10.021
Y. Liao, H. Zhang, Y. Peng, Y. Hu, J. Liang et al., Electrolyte degradation during aging process of lithium-ion batteries: mechanisms, characterization, and quantitative analysis. Adv. Energy Mater. 14, 2304295 (2024). https://doi.org/10.1002/aenm.202304295
Sungjemmenla, S.K. Vineeth, C.B. Soni, V. Kumar, Z.W. Seh, Understanding the cathode-electrolyte interphase in lithium-ion batteries. Energy Technol. 10, 2200421 (2022). https://doi.org/10.1002/ente.202200421
H. Wang, X. Li, F. Li, X. Liu, S. Yang et al., Formation and modification of cathode electrolyte interphase: a mini review. Electrochem. Commun. 122, 106870 (2021). https://doi.org/10.1016/j.elecom.2020.106870
F. Chu, M. Wang, J. Liu, Z. Guan, H. Yu et al., Low concentration electrolyte enabling cryogenic lithium–sulfur batteries. Adv. Funct. Mater. 32, 2205393 (2022). https://doi.org/10.1002/adfm.202205393
R. Glaser, F. Wu, E. Register, M. Tolksdorf, B. Johnson et al., Tuning low concentration electrolytes for high rate performance in lithium-sulfur batteries. J. Electrochem. Soc. 167, 100512 (2020). https://doi.org/10.1149/1945-7111/ab7183
X. Zhang, P. Gao, Z. Wu, M.H. Engelhard, X. Cao et al., Pinned electrode/electrolyte interphase and its formation origin for sulfurized polyacrylonitrile cathode in stable lithium batteries. ACS Appl. Mater. Interfaces 14, 52046–52057 (2022). https://doi.org/10.1021/acsami.2c16890
T. Yim, M.-S. Park, J.-S. Yu, K.J. Kim, K.Y. Im et al., Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries. Electrochim. Acta 107, 454–460 (2013). https://doi.org/10.1016/j.electacta.2013.06.039
H. Yang, J. Chen, J. Yang, J. Wang, Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 59, 7306–7318 (2020). https://doi.org/10.1002/anie.201913540
C. Kensy, D. Leistenschneider, S. Wang, H. Tanaka, S. Dörfler et al., The role of carbon electrodes pore size distribution on the formation of the cathode–electrolyte interphase in lithium–sulfur batteries. Batter. Supercaps 4, 612–622 (2021). https://doi.org/10.1002/batt.202000195
X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen et al., Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium–sulfur batteries. Adv. Energy Mater. 12, 2102774 (2022). https://doi.org/10.1002/aenm.202102774
J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium-sulfur batteries: a critical review. Adv. Mater. 35, e2211168 (2023). https://doi.org/10.1002/adma.202211168
W.-G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019). https://doi.org/10.1002/anie.201902413
L. Kong, J.-X. Chen, H.-J. Peng, J.-Q. Huang, W. Zhu et al., Current-density dependence of Li2S/Li2S2 growth in lithium–sulfur batteries. Energy Environ. Sci. 12, 2976–2982 (2019). https://doi.org/10.1039/c9ee01257e
M. Sadd, S. De Angelis, S. Colding-Jørgensen, D. Blanchard, R.E. Johnsen et al., Visualization of dissolution-precipitation processes in lithium–sulfur batteries. Adv. Energy Mater. 12, 2103126 (2022). https://doi.org/10.1002/aenm.202103126
Z. Guan, X. Chen, F. Chu, R. Deng, S. Wang et al., Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li–S conversion chemistry. Adv. Energy Mater. 13, 2302850 (2023). https://doi.org/10.1002/aenm.202302850
R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 5, 1500408 (2015). https://doi.org/10.1002/aenm.201500408
S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117
Y.-W. Song, J.-L. Qin, C.-X. Zhao, M. Zhao, L.-P. Hou et al., The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium–sulfur batteries. J. Energy Chem. 64, 568–573 (2022). https://doi.org/10.1016/j.jechem.2021.05.023
L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen et al., A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020). https://doi.org/10.1038/s41929-020-0498-x
W. Ren, W. Ma, S. Zhang, B. Tang, Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019). https://doi.org/10.1016/j.ensm.2019.02.022
Z. Shi, Y. Ding, Q. Zhang, J. Sun, Electrocatalyst modulation toward bidirectional sulfur redox in Li–S batteries: from strategic probing to mechanistic understanding. Adv. Energy Mater. 12, 2201056 (2022). https://doi.org/10.1002/aenm.202201056
B. Yue, L. Wang, N. Zhang, Y. Xie, W. Yu et al., Dual-confinement effect of nanocages@nanotubes suppresses polysulfide shuttle effect for high-performance lithium–sulfur batteries. Small 20, 2308603 (2024). https://doi.org/10.1002/smll.202308603
S.-Y. Lang, R.-J. Xiao, L. Gu, Y.-G. Guo, R. Wen et al., Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 140, 8147–8155 (2018). https://doi.org/10.1021/jacs.8b02057
W. Li, K. Chen, Q. Xu, X. Li, Q. Zhang et al., Mo2C/C hierarchical double-shelled hollow spheres as sulfur host for advanced Li-S batteries. Angew. Chem. Int. Ed. 60, 21512–21520 (2021). https://doi.org/10.1002/anie.202108343
A. Kraytsberg, Y. Ein-Eli, Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922–939 (2012). https://doi.org/10.1002/aenm.201200068
X. Chen, Z. Miao, X. Zhang, L. Yuan, Y. Huang et al., Optimizing the operation strategy of solid-conversion sulfur cathodes for achieving high total capacity contribution throughout the lifespan. J. Power. Sources 543, 231837 (2022). https://doi.org/10.1016/j.jpowsour.2022.231837
Z. Wu, S.-M. Bak, Z. Shadike, S. Yu, E. Hu et al., Understanding the roles of the electrode/electrolyte interface for enabling stable Li∥Sulfurized polyacrylonitrile batteries. ACS Appl. Mater. Interfaces 13, 31733–31740 (2021). https://doi.org/10.1021/acsami.1c07903
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
X. Xing, Y. Li, X. Wang, V. Petrova, H. Liu et al., Cathode electrolyte interface enabling stable Li–S batteries. Energy Storage Mater. 21, 474–480 (2019). https://doi.org/10.1016/j.ensm.2019.06.022
R. Cao, J. Chen, K.S. Han, W. Xu, D. Mei et al., Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 26, 3059–3066 (2016). https://doi.org/10.1002/adfm.201505074
H. Kim, F. Wu, J.T. Lee, N. Nitta, H.-T. Lin et al., In situ formation of protective coatings on sulfur cathodes in lithium batteries with LiFSI-based organic electrolytes. Adv. Energy Mater. 5, 1401792 (2015). https://doi.org/10.1002/aenm.201401792
J. Wang, S. Cheng, L. Li, L. Jia, J. Wu et al., Robust interfacial engineering construction to alleviate polysulfide shuttling in metal sulfide electrodes for achieving fast-charge high-capacity lithium storages. Chem. Eng. J. 446, 137291 (2022). https://doi.org/10.1016/j.cej.2022.137291
Y. Xiao, B. Han, Y. Zeng, S.-S. Chi, X. Zeng et al., New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv. Energy Mater. 10, 1903937 (2020). https://doi.org/10.1002/aenm.201903937
Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang et al., Tailored electrolytes enabling practical lithium–sulfur full batteries via interfacial protection. ACS Energy Lett. 6, 2673–2681 (2021). https://doi.org/10.1021/acsenergylett.1c01091
C.-D. Qiu, Y. Hu, K. Cao, X. Wu, B.-H. Huang et al., Engineering peculiar cathode electrolyte interphase toward sustainable and high-rate Li–S batteries. Adv. Energy Mater. 13, 2300229 (2023). https://doi.org/10.1002/aenm.202300229
H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen et al., Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018). https://doi.org/10.1002/adfm.201707234
F. Liu, C. Zong, L. He, Z. Li, B. Hong et al., Improving the electrochemical performance of lithium-sulfur batteries by interface modification with a bifunctional electrolyte additive. Chem. Eng. J. 443, 136489 (2022). https://doi.org/10.1016/j.cej.2022.136489
Y. Liu, Y. Pan, J. Ban, T. Li, X. Jiao et al., Promoted rate and cycling capability of Li–S batteries enabled by targeted selection of co-solvent for the electrolyte. Energy Storage Mater. 25, 131–136 (2020). https://doi.org/10.1016/j.ensm.2019.10.022
Z. Li, Y. Zhou, Y. Wang, Y.-C. Lu, Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 9, 1802207 (2019). https://doi.org/10.1002/aenm.201802207
H. Chu, H. Noh, Y.-J. Kim, S. Yuk, J.-H. Lee et al., Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019). https://doi.org/10.1038/s41467-018-07975-4
J. Jung, H. Chu, I. Kim, D.H. Lee, G. Doo et al., Confronting sulfur electrode passivation and Li metal electrode degradation in lithium-sulfur batteries using thiocyanate anion. Adv. Sci. 10, e2301006 (2023). https://doi.org/10.1002/advs.202301006
D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang et al., Heterogeneous mediator enabling three-dimensional growth of lithium sulfide for high-performance lithium–sulfur batteries. Energy Environ. Mater. 5, 1214–1221 (2022). https://doi.org/10.1002/eem2.12236
J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium-sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li et al., Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries. Energy Storage Mater. 51, 890–899 (2022). https://doi.org/10.1016/j.ensm.2022.07.024
M. Zhao, H.-J. Peng, J.-Y. Wei, J.-Q. Huang, B.-Q. Li et al., Dictating high-capacity lithium–sulfur batteries through redox-mediated lithium sulfide growth. Small Meth. 4, 1900344 (2020). https://doi.org/10.1002/smtd.201900344
J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
J.G. Kim, Y. Noh, Y. Kim, Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode. Chem. Eng. J. 435, 131339 (2022). https://doi.org/10.1016/j.cej.2021.131339
R. Li, H. Shen, E. Pervaiz, M. Yang, Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries. Chem. Eng. J. 404, 126462 (2021). https://doi.org/10.1016/j.cej.2020.126462
W. Qi, W. Jiang, F. Xu, J. Jia, C. Yang et al., Improving confinement and redox kinetics of polysufides through hollow NC@CeO2 nanospheres for high-performance lithium-sulfur batteries. Chem. Eng. J. 382, 122852 (2020). https://doi.org/10.1016/j.cej.2019.122852
Q. Wang, Z.-B. Wang, R. Li, H. Liu, M. Yang et al., Flower-like nitrogen-oxygen-doped carbon encapsulating sulfur composite synthesized via in situ oxidation approach. Chem. Eng. J. 345, 271–279 (2018). https://doi.org/10.1016/j.cej.2018.03.179
F. Wu, Y.-S. Ye, J.-Q. Huang, T. Zhao, J. Qian et al., Sulfur nanodots stitched in 2D “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries. ACS Nano 11, 4694–4702 (2017). https://doi.org/10.1021/acsnano.7b00596
R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10, 24422–24433 (2022). https://doi.org/10.1039/d2ta06686f
P. Yu, L.-X. Feng, D.-C. Ma, X.-R. Sun, J.-K. Pei et al., Template-free self-caging nanochemistry for large-scale synthesis of sulfonated-graphene@sulfur nanocage for long-life lithium-sulfur batteries. Adv. Funct. Mater. 31, 2008652 (2021). https://doi.org/10.1002/adfm.202008652
H. Jiang, X.-C. Liu, Y. Wu, Y. Shu, X. Gong et al., Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem. Int. Ed. 57, 3916–3921 (2018). https://doi.org/10.1002/anie.201712872
G. Wen, X. Zhang, Y. Sui, K. Rao, J. Liu et al., PPy-encapsulated Hydrangea-type 1T MoS2 microspheres as catalytic sulfur hosts for long-life and high-rate lithium-sulfur batteries. Chem. Eng. J. 430, 133041 (2022). https://doi.org/10.1016/j.cej.2021.133041
T. Wu, G. Sun, W. Lu, L. Zhao, A. Mauger et al., A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries. Electrochim. Acta 353, 136529 (2020). https://doi.org/10.1016/j.electacta.2020.136529
P. Zhu, J. Zhu, C. Yan, M. Dirican, J. Zang et al., In situ polymerization of nanostructured conductive polymer on 3D sulfur/carbon nanofiber composite network as cathode for high-performance lithium–sulfur batteries. Adv. Mater. Interfaces 5, 1701598 (2018). https://doi.org/10.1002/admi.201701598
W. Li, Q. Zhang, G. Zheng, Z.W. Seh, H. Yao et al., Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013). https://doi.org/10.1021/nl403130h
B. Long, Z. Qiao, J. Zhang, S. Zhang, M.-S. Balogun et al., Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. J. Mater. Chem. A 7, 11370–11378 (2019). https://doi.org/10.1039/c9ta01358j
P. Geng, S. Cao, X. Guo, J. Ding, S. Zhang et al., Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. J. Mater. Chem. A 7, 19465–19470 (2019). https://doi.org/10.1039/c9ta05812e
H. Dong, S. Qi, L. Wang, X. Chen, Y. Xiao et al., Conductive polymer coated layered double hydroxide as a novel sulfur reservoir for flexible lithium-sulfur batteries. Small 19, e2300843 (2023). https://doi.org/10.1002/smll.202300843
J. Lei, X.-X. Fan, T. Liu, P. Xu, Q. Hou et al., Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 13, 202 (2022). https://doi.org/10.1038/s41467-021-27866-5
B. Qin, Q. Wang, W. Yao, Y. Cai, Y. Chen et al., Heterostructured Mn3O4-MnS multi-shelled hollow spheres for enhanced polysulfide regulation in lithium–sulfur batteries. Energy Environ. Mater. 6, e12475 (2023). https://doi.org/10.1002/eem2.12475
Y. Ren, J. Hu, H. Zhong, L. Zhang, Multiple core–shelled sulfur composite based on spherical double-layered hollow carbon and PEDOT:PSS as cathode for lithium–sulfur batteries. J. Alloys Compd. 837, 155498 (2020). https://doi.org/10.1016/j.jallcom.2020.155498
Y. Zhang, H.W. Song, K.R. Crompton, X. Yang, K. Zhao et al., A sulfur cathode design strategy for polysulfide restrictions and kinetic enhancements in Li-S batteries through oxidative chemical vapor deposition. Nano Energy 115, 108756 (2023). https://doi.org/10.1016/j.nanoen.2023.108756
Y. Zhang, C.S. Kim, H.W. Song, S.-J. Chang, H. Kim et al., Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition. Energy Storage Mater. 48, 1–11 (2022). https://doi.org/10.1016/j.ensm.2022.03.001
F. Shi, J. Yu, C. Chen, S.P. Lau, W. Lv et al., Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 10, 19412–19443 (2022). https://doi.org/10.1039/d2ta02217f
S. Deng, T. Guo, J. Heier, C.J. Zhang, Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 10, e2204930 (2023). https://doi.org/10.1002/advs.202204930
X. Wang, N. Deng, L. Wei, Q. Yang, H. Xiang et al., Recent progress in high-performance lithium sulfur batteries: the emerging strategies for advanced separators/electrolytes based on nanomaterials and corresponding interfaces. Chem 16, 2852–2870 (2021). https://doi.org/10.1002/asia.202100765
Y. Li, J. Liu, X. Wang, X. Zhang, N. Chen et al., CoFe2O4@rGO as a separator coating for advanced lithium–sulfur batteries. Small Sci. 3, 2300045 (2023). https://doi.org/10.1002/smsc.202300045
B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou et al., Optimized catalytic WS2–WO3 heterostructure design for accelerated polysulfide conversion in lithium–sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020). https://doi.org/10.1002/aenm.202000091
W. Feng, H. Yang, Z. Pu, L. Zhang, Study of CNTs-MoS2/CeO2 composites for lithium-sulfur battery performance. Ionics 28, 2781–2791 (2022). https://doi.org/10.1007/s11581-022-04535-1
Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li-S batteries. Small 17, e2102710 (2021). https://doi.org/10.1002/smll.202102710
M. Yu, J. Ma, H. Song, A. Wang, F. Tian et al., Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci. 9, 1495–1503 (2016). https://doi.org/10.1039/C5EE03902A
Y. Kim, W.I. Kim, H. Park, J.S. Kim, H. Cho et al., Multifunctional polymeric phthalocyanine-coated carbon nanotubes for efficient redox mediators of lithium–sulfur batteries. Adv. Energy Mater. 13, 2370095 (2023). https://doi.org/10.1002/aenm.202370095
W. Chen, Y. Hu, W. Lv, T. Lei, X. Wang et al., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10, 4973 (2019). https://doi.org/10.1038/s41467-019-12952-6
X. Zhang, Y. Chen, F. Ma, X. Chen, B. Wang et al., Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem. Eng. J. 436, 134945 (2022). https://doi.org/10.1016/j.cej.2022.134945
J. Wang, L. Wang, Z. Li, J. Bi, Q. Shi et al., Recent advances of metal groups and their heterostructures as catalytic materials for lithium-sulfur battery cathodes. J. Electron. Mater. 52, 3526–3548 (2023). https://doi.org/10.1007/s11664-023-10355-4
R. Wang, C. Luo, T. Wang, G. Zhou, Y. Deng et al., Bidirectional catalysts for liquid–solid redox conversion in lithium-sulfur batteries. Adv. Mater. 32, e2000315 (2020). https://doi.org/10.1002/adma.202000315
L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li et al., Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019). https://doi.org/10.1002/aenm.201900219
S. Nam, J. Kim, V.H. Nguyen, M. Mahato, S. Oh et al., Collectively exhaustive MXene and graphene oxide multilayer for suppressing shuttling effect in flexible lithium sulfur battery. Adv. Mater. Technol. 7, 2101025 (2022). https://doi.org/10.1002/admt.202101025
H. Wang, S.-A. He, Z. Cui, C. Xu, J. Zhu et al., Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 420, 129693 (2021). https://doi.org/10.1016/j.cej.2021.129693
F. Yin, Q. Jin, H. Gao, X. Zhang, Z. Zhang, A strategy to achieve high loading and high energy density Li-S batteries. J. Energy Chem. 53, 340–346 (2021). https://doi.org/10.1016/j.jechem.2020.05.014
Q. Zhao, Q. Zhu, Y. Liu, B. Xu, Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31, 2100457 (2021). https://doi.org/10.1002/adfm.202100457
T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2, 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
M. He, X. Li, X. Yang, C. Wang, M.L. Zheng et al., Realizing solid-phase reaction in Li–S batteries via localized high-concentration carbonate electrolyte. Adv. Energy Mater. 11, 2101004 (2021). https://doi.org/10.1002/aenm.202101004
H. Li, X. Wu, S. Jiang, Q. Zhang, Y. Cao et al., A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2023). https://doi.org/10.1007/s12274-022-5156-y
L. Yu, S. Chen, H. Lee, L. Zhang, M.H. Engelhard et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018). https://doi.org/10.1021/acsenergylett.8b00935
J. Chen, H. Lu, X. Zhang, Y. Zhang, J. Yang et al., Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Mater. 50, 387–394 (2022). https://doi.org/10.1016/j.ensm.2022.05.044
T. Ma, Y. Ni, D. Li, Z. Zha, S. Jin et al., Reversible solid–solid conversion of sulfurized polyacrylonitrile cathodes in lithium–sulfur batteries by weakly solvating ether electrolytes. Angew. Chem. Int. Ed. 135, e202310761 (2023). https://doi.org/10.1002/ange.202310761
X. Li, M. Banis, A. Lushington, X. Yang, Q. Sun et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 9, 4509 (2018). https://doi.org/10.1038/s41467-018-06877-9
W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu et al., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021). https://doi.org/10.1038/s41467-021-23155-3
Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu et al., Graphdiyne-like porous organic framework as a solid-phase sulfur conversion cathodic host for stable Li-S batteries. ACS Appl. Mater. Interfaces 13, 59983–59992 (2021). https://doi.org/10.1021/acsami.1c19484
X. Li, D. Liu, Z. Cao, Y. Liao, Z. Cheng et al., Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries. J. Energy Chem. 84, 459–466 (2023). https://doi.org/10.1016/j.jechem.2023.05.052
X. Zhang, G. Hu, K. Chen, L. Shen, R. Xiao et al., Structure-related electrochemical behavior of sulfur-rich polymer cathode with solid-solid conversion in lithium-sulfur batteries. Energy Storage Mater. 45, 1144–1152 (2022). https://doi.org/10.1016/j.ensm.2021.11.014
S. Zhou, J. Shi, S. Liu, G. Li, F. Pei et al., Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 621, 75–81 (2023). https://doi.org/10.1038/s41586-023-06326-8
G.W. Sun, M.J. Jin, Q.Y. Liu, C.Y. Zhang, J.L. Pan et al., Unveiling the enhancement essence on Li2S deposition by the polarized topological β-polyvinylidene fluoride: beyond built-in electric field effect. Chem. Eng. J. 453, 139752 (2023). https://doi.org/10.1016/j.cej.2022.139752
Z. Zhang, Z. Fang, Y. Xiang, D. Liu, Z. Xie et al., Cellulose-based material in lithium-sulfur batteries: a review. Carbohydr. Polym. 255, 117469 (2021). https://doi.org/10.1016/j.carbpol.2020.117469
L. Dong, J. Liu, D. Chen, Y. Han, Y. Liang et al., Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries. ACS Nano 13, 14172–14181 (2019). https://doi.org/10.1021/acsnano.9b06934
B. Wang, L. Wang, B. Zhang, S. Zeng, F. Tian et al., Niobium diboride nanops accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries. ACS Nano 16, 4947–4960 (2022). https://doi.org/10.1021/acsnano.2c01179
L.C.H. Gerber, P.D. Frischmann, F.Y. Fan, S.E. Doris, X. Qu et al., Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549–554 (2016). https://doi.org/10.1021/acs.nanolett.5b04189
Y. Wu, Y. Feng, X. Qiu, F. Ren, J. Cen et al., Construction of polypyrrole-coated CoSe2 composite material for lithium-sulfur battery. Nanomaterials 13, 865 (2023). https://doi.org/10.3390/nano13050865
J.-L. Yang, S.-X. Zhao, X.-T. Zeng, Y.-M. Lu, G.-Z. Cao, Catalytic interfaces-enriched hybrid hollow spheres sulfur host for advanced Li–S batteries. Adv. Mater. Interfaces 7, 1901420 (2020). https://doi.org/10.1002/admi.201901420
W. Bao, L. Liu, C. Wang, S. Choi, D. Wang et al., Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 8, 1702485 (2018). https://doi.org/10.1002/aenm.201702485
J. Huang, M. Tao, W. Zhang, G. Zheng, L. Du et al., Realizing a “solid to solid” process via in situ cathode electrolyte interface (CEI) by solvent-in-salt electrolyte for Li-S batteries. Nano Res. 16, 5018–5025 (2023). https://doi.org/10.1007/s12274-023-5443-2
L. Li, J.S. Nam, M.S. Kim, Y. Wang, S. Jiang et al., Sulfur–carbon electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life lithium–sulfur batteries. Adv. Energy Mater. 13, 2302139 (2023). https://doi.org/10.1002/aenm.202302139
G. Li, X. Wang, M.H. Seo, M. Li, L. Ma et al., Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 9, 705 (2018). https://doi.org/10.1038/s41467-018-03116-z
C. Hu, H. Chen, Y. Shen, D. Lu, Y. Zhao et al., In situ wrapping of the cathode material in lithium-sulfur batteries. Nat. Commun. 8, 479 (2017). https://doi.org/10.1038/s41467-017-00656-8