Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now?
Corresponding Author: Chuyang Y. Tang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 91
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Highlights:
1 The theoretical separation performance and practical separation performance of various membranes were collected and compared.
2 An up-to-date holistic and systematic evaluation of membranes from five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) is provided and visualized by radar charts.
3 The critical deficiencies revealed in the review are important in guiding the development of next-generation reverse osmosis membranes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
- C. He, Z. Liu, J. Wu, X. Pan, Z. Fang et al., Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas et al., Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
- R.W. Baker, in Membrane Technology and Applications. (Wiley, 2023). https://doi.org/10.1002/9781118359686
- E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020). https://doi.org/10.3390/membranes10050089
- Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 590, 117297 (2019). https://doi.org/10.1016/j.memsci.2019.117297
- Z. Yang, L. Long, C. Wu, C.Y. Tang, High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound. ACS EST Eng. 2, 377–390 (2022). https://doi.org/10.1021/acsestengg.1c00237
- H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017). https://doi.org/10.1126/science.aab0530
- G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
- J. Glater, S.-K. Hong, M. Elimelech, The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994). https://doi.org/10.1016/0011-9164(94)00068-9
- V.T. Do, C.Y. Tang, M. Reinhard, J.O. Leckie, Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012). https://doi.org/10.1021/es203090y
- C. Liu, W. Wang, B. Yang, K. Xiao, H. Zhao, Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Res. 195, 116976 (2021). https://doi.org/10.1016/j.watres.2021.116976
- W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling. Bioresour. Technol. 122, 27–34 (2012). https://doi.org/10.1016/j.biortech.2012.04.089
- P.S. Goh, W.J. Lau, M.H.D. Othman, A.F. Ismail, Membrane fouling in desalination and its mitigation strategies. Desalination 425, 130–155 (2018). https://doi.org/10.1016/j.desal.2017.10.018
- M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. U.S.A. 104, 20719–20724 (2007). https://doi.org/10.1073/pnas.0708762104
- M. Di Vincenzo, A. Tiraferri, V.E. Musteata, S. Chisca, R. Sougrat et al., Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 16, 190–196 (2021). https://doi.org/10.1038/s41565-020-00796-x
- M. Di Vincenzo, A. Tiraferri, V.E. Musteata, S. Chisca, M. Deleanu et al., Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. Proc. Natl. Acad. Sci. U.S.A. 118, e2022200118 (2021). https://doi.org/10.1073/pnas.2022200118
- M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005). https://doi.org/10.1038/43844a
- J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006). https://doi.org/10.1126/science.1126298
- Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng et al., Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019). https://doi.org/10.1126/science.aau5321
- X. Ma, X. Zhu, C. Huang, J. Fan, Revealing the effects of terminal groups of MXene on the water desalination performance. J. Membr. Sci. 647, 120334 (2022). https://doi.org/10.1016/j.memsci.2022.120334
- Z. Wang, C. Ma, C. Xu, S.A. Sinquefield, M.L. Shofner et al., Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat. Sustain. 4, 402–408 (2021). https://doi.org/10.1038/s41893-020-00674-3
- M. Jian, R. Qiu, Y. Xia, J. Lu, Y. Chen et al., Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020). https://doi.org/10.1126/sciadv.aay3998
- M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu et al., Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022). https://doi.org/10.1038/s41893-022-00870-3
- P. Iacomi, G. Maurin, Respon ZIF structures: zeolitic imidazolate frameworks as stimuli-responsive materials. ACS Appl. Mater. Interfaces 13, 50602–50642 (2021). https://doi.org/10.1021/acsami.1c12403
- K.M. Gupta, K. Zhang, J. Jiang, Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir 31, 13230–13237 (2015). https://doi.org/10.1021/acs.langmuir.5b03593
- Z. Hu, Y. Chen, J. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation. J. Chem. Phys. 134, 134705 (2011). https://doi.org/10.1063/1.3573902
- F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27, 8437–8443 (2011). https://doi.org/10.1021/la200995r
- J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
- Y.J. Lim, K. Goh, R. Wang, The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem. Soc. Rev. 51, 4537–4582 (2022). https://doi.org/10.1039/D1CS01061A
- M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011). https://doi.org/10.1039/c0ee00541j
- S. Loeb, S. Sourirajan in Sea water demineralization by means of an osmotic membrane. Advances in Chemistry (American Chemical Society, 1963), pp. 117–132. https://doi.org/10.1021/ba-1963-0038.ch009
- S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: developments and challenges. Desalination 368, 10–26 (2015). https://doi.org/10.1016/j.desal.2014.12.042
- R.J. Petersen, Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83, 81–150 (1993). https://doi.org/10.1016/0376-7388(93)80014-O
- G.M. Geise, Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021). https://doi.org/10.1126/science.abe9741
- Y. Yao, P. Zhang, F. Sun, W. Zhang, M. Li et al., More resilient polyester membranes for high-performance reverse osmosis desalination. Science 384, 333–338 (2024). https://doi.org/10.1126/science.adk0632
- C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim et al., Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18, 1551–1559 (2012). https://doi.org/10.1016/j.jiec.2012.04.005
- B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang et al., Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
- M.A. Al, TiO2 polyamide thin film nanocomposite reverses osmosis membrane for water desalination. Membranes 8, 66 (2018). https://doi.org/10.3390/membranes8030066
- P. Kedchaikulrat, I.F.J. Vankelecom, K. Faungnawakij, C. Klaysom, Effects of colloidal TiO2 and additives on the interfacial polymerization of thin film nanocomposite membranes. Colloids Surf. A Physicochem. Eng. Aspects 601, 125046 (2020). https://doi.org/10.1016/j.colsurfa.2020.125046
- Z. Yang, H. Guo, Z.-K. Yao, Y. Mei, C.Y. Tang, Hydrophilic silver nanops induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 53, 5301–5308 (2019). https://doi.org/10.1021/acs.est.9b00473
- S. Jeon, J.-H. Lee, Rationally designed in situ fabrication of thin film nanocomposite membranes with enhanced desalination and anti-biofouling performance. J. Membr. Sci. 615, 118542 (2020). https://doi.org/10.1016/j.memsci.2020.118542
- Y. Tong, Y. Wei, H. Zhang, L. Wang, L. Li et al., Fabrication of polyamide thin film nanocomposite membranes with enhanced desalination performance modified by silica nanops formed in situ polymerization of tetramethoxysilane. J. Environ. Chem. Eng. 11, 109415 (2023). https://doi.org/10.1016/j.jece.2023.109415
- H. Shen, S. Wang, H. Xu, Y. Zhou, C. Gao, Preparation of polyamide thin film nanocomposite membranes containing silica nanops via an in situ polymerization of SiCl4 in organic solution. J. Membr. Sci. 565, 145–156 (2018). https://doi.org/10.1016/j.memsci.2018.08.016
- M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016). https://doi.org/10.1016/j.desal.2016.02.034
- J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016). https://doi.org/10.1016/j.desal.2015.11.001
- D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko et al., Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Res. 173, 115557 (2020). https://doi.org/10.1016/j.watres.2020.115557
- S.Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanop self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35, 2388–2394 (2001). https://doi.org/10.1021/es0017099
- E.-S. Kim, G. Hwang, M. Gamal El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 394, 37–48 (2012). https://doi.org/10.1016/j.memsci.2011.11.041
- S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim et al., Silver nanops immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym. Adv. Technol. 18, 562–568 (2007). https://doi.org/10.1002/pat.918
- M. Barboiu, A. Gilles, From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013). https://doi.org/10.1021/ar400025e
- Y. Zheng, X. Li, P.K. Dutta, Exploitation of unique properties of zeolites in the development of gas sensors. Sensors (Basel) 12, 5170–5194 (2012). https://doi.org/10.3390/s120405170
- J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
- S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
- B. Mi, Scaling up nanoporous graphene membranes. Science 364, 1033–1034 (2019). https://doi.org/10.1126/science.aax3103
- P. Choudhury, B. Basu, Graphene oxide nanosheets as sustainable carbocatalysts: synthesis of medicinally important heterocycles, in Green Approaches in Medicinal Chemistry for Sustainable Drug Design. (Elsevier, Amsterdam, 2020), pp.47–74. https://doi.org/10.1016/B978-0-12-817592-7.00003-4
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- L. Mei, Z. Cao, T. Ying, R. Yang, H. Peng et al., Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, e2201416 (2022). https://doi.org/10.1002/adma.202201416
- P. Agre, Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. 43, 4278–4290 (2004). https://doi.org/10.1002/anie.200460804
- D. Kozono, M. Yasui, L.S. King, P. Agre, Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002). https://doi.org/10.1172/JCI15851
- P. Agre, L.S. King, M. Yasui, W.B. Guggino, O.P. Ottersen et al., Aquaporin water channels: from atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002). https://doi.org/10.1113/jphysiol.2002.020818
- L.B. Huang, M. Di Vincenzo, Y. Li, M. Barboiu, Artificial water channels: towards biomimetic membranes for desalination. Chemistry 27, 2224–2239 (2021). https://doi.org/10.1002/chem.202003470
- M. Barboiu, Artificial water channels. Angew. Chem. Int. Ed. 51, 11674–11676 (2012). https://doi.org/10.1002/anie.201205819
- V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, Y. Miura, J. Smidrkal et al., Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004). https://doi.org/10.1038/nature02770
- M.S. Kaucher, M. Peterca, A.E. Dulcey, A.J. Kim, S.A. Vinogradov et al., Selective transport of water mediated by porous dendritic dipeptides. J. Am. Chem. Soc. 129, 11698–11699 (2007). https://doi.org/10.1021/ja076066c
- Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y.-M. Legrand et al., Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011). https://doi.org/10.1002/anie.201103312
- E. Licsandru, I. Kocsis, Y.X. Shen, S. Murail, Y.M. Legrand et al., Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138, 5403–5409 (2016). https://doi.org/10.1021/jacs.6b01811
- X.-B. Hu, Z. Chen, G. Tang, J.-L. Hou, Z.-T. Li, Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012). https://doi.org/10.1021/ja302292c
- Y.X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi et al., Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl. Acad. Sci. U.S.A. 112, 9810–9815 (2015). https://doi.org/10.1073/pnas.1508575112
- A. Roy, J. Shen, H. Joshi, W. Song, Y.-M. Tu et al., Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nat. Nanotechnol. 16, 911–917 (2021). https://doi.org/10.1038/s41565-021-00915-2
- J. Shen, A. Roy, H. Joshi, L. Samineni, R. Ye et al., Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport. Nano Lett. 22, 4831–4838 (2022). https://doi.org/10.1021/acs.nanolett.2c01137
- B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008). https://doi.org/10.1021/jp709845u
- B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011). https://doi.org/10.1039/C0EE00481B
- R.H. Tunuguntla, R.Y. Henley, Y.C. Yao, T.A. Pham, M. Wanunu et al., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017). https://doi.org/10.1126/science.aan2438
- S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007). https://doi.org/10.1021/la701067r
- M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding et al., Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015). https://doi.org/10.1021/es5056337
- W. Ding, J. Cai, Z. Yu, Q. Wang, Z. Xu et al., Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A 3, 20118–20126 (2015). https://doi.org/10.1039/C5TA05751E
- B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas et al., Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004). https://doi.org/10.1126/science.1092048
- D.F. Savage, P.F. Egea, Y. Robles-Colmenares, J.D. O’Connell, R.M. Stroud, Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS Biol. 1, E72 (2003). https://doi.org/10.1371/journal.pbio.0000072
- M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999). https://doi.org/10.1006/jmbi.1999.3032
- L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando et al., The smallest carbon nanotube. Nature 408, 50 (2000). https://doi.org/10.1038/35040699
- N. Wang, Z.K. Tang, G.D. Li, J.S. Chen, Single-walled 4 A carbon nanotube arrays. Nature 408, 50–51 (2000). https://doi.org/10.1038/35040702
- D.H. Olson, G.T. Kokotailo, S.L. Lawton, W.M. Meier, Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 2238–2243 (1981). https://doi.org/10.1021/j150615a020
- J. Lin, S. Murad, A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Mol. Phys. 99, 1175–1181 (2001). https://doi.org/10.1080/00268970110041236
- H. Yang, H. Chen, H. Du, R. Hawkins, F. Craig et al., Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite. Microporous Mesoporous Mater. 117, 33–40 (2009). https://doi.org/10.1016/j.micromeso.2008.06.009
- Q. Lyu, X. Deng, S. Hu, L.-C. Lin, W.S.W. Ho, Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. J. Phys. Chem. C 123, 16118–16126 (2019). https://doi.org/10.1021/acs.jpcc.9b01765
- S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). https://doi.org/10.1021/ja206846p
- S. Kandambeth, V. Venkatesh, D.B. Shinde, S. Kumari, A. Halder et al., Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 6, 6786 (2015). https://doi.org/10.1038/ncomms7786
- L.-C. Lin, J. Choi, J.C. Grossman, Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem. Commun. 51, 14921–14924 (2015). https://doi.org/10.1039/C5CC05969K
- W. Zhou, M. Wei, X. Zhang, F. Xu, Y. Wang, Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Interfaces 11, 16847–16854 (2019). https://doi.org/10.1021/acsami.9b01883
- Y. Zhang, T. Fang, Q. Hou, Z. Li, Y. Yan, Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. 22, 16978–16984 (2020). https://doi.org/10.1039/d0cp01792b
- X. Chen, S. Zhang, D. Hou, H. Duan, B. Deng et al., Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl. Mater. Interfaces 13, 29926–29935 (2021). https://doi.org/10.1021/acsami.1c06243
- Y. Fu, S. Su, N. Zhang, Y. Wang, X. Guo et al., Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 12, 24281–24288 (2020). https://doi.org/10.1021/acsami.0c03932
- D. Jang, J.-C. Idrobo, T. Laoui, R. Karnik, Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 11, 10042–10052 (2017). https://doi.org/10.1021/acsnano.7b04299
- S.C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song et al., Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015). https://doi.org/10.1021/acs.nanolett.5b00456
- S.C. O’Hern, M.S.H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014). https://doi.org/10.1021/nl404118f
- S.C. O’Hern, C.A. Stewart, M.S.H. Boutilier, J.-C. Idrobo, S. Bhaviripudi et al., Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012). https://doi.org/10.1021/nn303869m
- D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012). https://doi.org/10.1021/nl3012853
- M. Mojtabavi, A. VahidMohammadi, W. Liang, M. Beidaghi, M. Wanunu, Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019). https://doi.org/10.1021/acsnano.8b08017
- Z. Fan, Y. Yang, H. Ma, Y. Wang, Z. Xie et al., High-volumetric capacitance and high-rate performance in liquid-mediated densified holey MXene film. Carbon 186, 150–159 (2022). https://doi.org/10.1016/j.carbon.2021.10.021
- S. Hong, J.K. El-Demellawi, Y. Lei, Z. Liu, F.A. Marzooqi et al., Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 16, 792–800 (2022). https://doi.org/10.1021/acsnano.1c08347
- K. Meidani, Z. Cao, A. Barati Farimani, Titanium carbide MXene for water desalination: a molecular dynamics study. ACS Appl. Nano Mater. 4, 6145–6151 (2021). https://doi.org/10.1021/acsanm.1c00944
- J. Feng, K. Liu, R.D. Bulushev, S. Khlybov, D. Dumcenco et al., Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015). https://doi.org/10.1038/nnano.2015.219
- J.P. Thiruraman, K. Fujisawa, G. Danda, P.M. Das, T. Zhang et al., Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett. 18, 1651–1659 (2018). https://doi.org/10.1021/acs.nanolett.7b04526
- J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu et al., Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016). https://doi.org/10.1039/c6cp01967f
- R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012). https://doi.org/10.1126/science.1211694
- R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su et al., Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014). https://doi.org/10.1126/science.1245711
- Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia et al., Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019). https://doi.org/10.1021/acs.est.9b01914
- A. Jabbari, H. Ghanbari, R. Naghizadeh, Partial reduction of graphene oxide toward the facile fabrication of desalination membrane. Int. J. Environ. Sci. Technol. 20, 831–842 (2023). https://doi.org/10.1007/s13762-022-04592-z
- H.-H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, Fabrication of reduced graphene oxide membranes for water desalination. J. Membr. Sci. 572, 12–19 (2019). https://doi.org/10.1016/j.memsci.2018.10.085
- D. Chung, Review graphite. J. Mater. Sci. 37, 1475–1489 (2002). https://doi.org/10.1023/A:1014915307738
- H. Dai, Z. Xu, X. Yang, Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecular dynamics simulation. J. Phys. Chem. C 120, 22585–22596 (2016). https://doi.org/10.1021/acs.jpcc.6b05337
- H. Huang, Y. Mao, Y. Ying, Y. Liu, L. Sun et al., Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 49, 5963–5965 (2013). https://doi.org/10.1039/c3cc41953c
- S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011). https://doi.org/10.1021/nn202451x
- J. Wang, Z. Zhang, J. Zhu, M. Tian, S. Zheng et al., Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 11, 3540 (2020). https://doi.org/10.1038/s41467-020-17373-4
- L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu et al., Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020). https://doi.org/10.1038/s41893-020-0474-0
- Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li et al., Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019). https://doi.org/10.1021/acsnano.9b04612
- T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3, 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
- K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti2C3Tx MXene. ACS Nano 10, 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
- B. Sapkota, W. Liang, A. VahidMohammadi, R. Karnik, A. Noy et al., High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 11, 2747 (2020). https://doi.org/10.1038/s41467-020-16577-y
- L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais et al., Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019). https://doi.org/10.1038/s41563-019-0464-7
- Z. Wang, Q. Tu, S. Zheng, J.J. Urban, S. Li et al., Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017). https://doi.org/10.1021/acs.nanolett.7b02804
- M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 17, 2342–2348 (2017). https://doi.org/10.1021/acs.nanolett.6b05238
- P. Afanasiev, C. Lorentz, Oxidation of nanodispersed MoS2 in ambient air: the products and the mechanistic steps. J. Phys. Chem. C 123, 7486–7494 (2019). https://doi.org/10.1021/acs.jpcc.9b01682
- J. Kaur, M. Singh, C. Dell’Aversana, R. Benedetti, P. Giardina et al., Biological interactions of biocompatible and water-dispersed MoS2 nanosheets with bacteria and human cells. Sci. Rep. 8, 16386 (2018). https://doi.org/10.1038/s41598-018-34679-y
- R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, E. Cornelissen, A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends. J. Chem. Technol. Biotechnol. 97, 575–596 (2022). https://doi.org/10.1002/jctb.6963
- N. Abdullah, N. Yusof, A.F. Ismail, W.J. Lau, Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination 500, 114867 (2021). https://doi.org/10.1016/j.desal.2020.114867
- B.-M. Jun, Y.A.J. Al-Hamadani, A. Son, C.M. Park, M. Jang et al., Applications of metal-organic framework based membranes in water purification: a review. Sep. Purif. Technol. 247, 116947 (2020). https://doi.org/10.1016/j.seppur.2020.116947
- D.W. Burke, Z. Jiang, A.G. Livingston, W.R. Dichtel, 2D covalent organic framework membranes for liquid-phase molecular separations: state of the field, common pitfalls, and future opportunities. Adv. Mater. 36, e2300525 (2024). https://doi.org/10.1002/adma.202300525
- A. Knebel, J. Caro, Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022). https://doi.org/10.1038/s41565-022-01168-3
- N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015). https://doi.org/10.1039/c5cs00292c
- O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
- A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
- K. Zhang, Z. He, K.M. Gupta, J. Jiang, Computational design of 2D functional covalent–organic framework membranes for water desalination. Environ. Sci.: Water Res. Technol. 3, 735–743 (2017). https://doi.org/10.1039/C7EW00074J
- A. Corcos, G.A. Levato, Z. Jiang, A.M. Evans, A.G. Livingston et al., Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection. ACS Mater. Lett. 1, 440–446 (2019). https://doi.org/10.1021/acsmaterialslett.9b00272
- L. Li, N. Liu, B. McPherson, R. Lee, Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents. Ind. Eng. Chem. Res. 46, 1584–1589 (2007). https://doi.org/10.1021/ie0612818
- M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78
- Z. Xia, Y. Zhao, S.B. Darling, Covalent organic frameworks for water treatment. Adv. Mater. Interfaces 8, 2001507 (2021). https://doi.org/10.1002/admi.202001507
- X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015). https://doi.org/10.1021/jacs.5b02276
- K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith et al., Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015). https://doi.org/10.1038/nnano.2015.37
- A.S. Kazemi, Y. Abdi, J. Eslami, R. Das, Support based novel single layer nanoporous graphene membrane for efficacious water desalination. Desalination 451, 148–159 (2019). https://doi.org/10.1016/j.desal.2018.03.003
- S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination. npg Asia Mater. 9, e427 (2017). https://doi.org/10.1038/am.2017.135
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- O. Kwon, Y. Choi, J. Kang, J.H. Kim, E. Choi et al., A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination 522, 115448 (2022). https://doi.org/10.1016/j.desal.2021.115448
- P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986). https://doi.org/10.1016/0025-5408(86)90011-5
- Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013). https://doi.org/10.1002/adfm.201202601
- M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013). https://doi.org/10.1021/es400571g
- Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing et al., Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Membr. Sci. 591, 117350 (2019). https://doi.org/10.1016/j.memsci.2019.117350
- A. Nicolaï, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654 (2014). https://doi.org/10.1039/c4cp01051e
- W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe et al., Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017). https://doi.org/10.1021/acsnano.7b05124
- Y. Oh, D.L. Armstrong, C. Finnerty, S. Zheng, M. Hu et al., Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. J. Membr. Sci. 541, 235–243 (2017). https://doi.org/10.1016/j.memsci.2017.07.005
- Y. Zhang, D. Chen, N. Li, Q. Xu, H. Li et al., High-performance and stable two-dimensional MXene-polyethyleneimine composite lamellar membranes for molecular separation. ACS Appl. Mater. Interfaces 14, 10237–10245 (2022). https://doi.org/10.1021/acsami.1c20540
- C. Xing, J. Han, X. Pei, Y. Zhang, J. He et al., Tunable graphene oxide nanofiltration membrane for effective dye/salt separation and desalination. ACS Appl. Mater. Interfaces 13, 55339–55348 (2021). https://doi.org/10.1021/acsami.1c16141
- H.D. Lee, H.W. Kim, Y.H. Cho, H.B. Park, Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes. Small 10, 2653–2660 (2014). https://doi.org/10.1002/smll.201303945
- C.L. Ritt, T. Stassin, D.M. Davenport, R.M. DuChanois, I. Nulens et al., The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 641, 119927 (2022). https://doi.org/10.1016/j.memsci.2021.119927
- L. Li, J. Dong, T.M. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolite membranes. J. Membr. Sci. 243, 401–404 (2004). https://doi.org/10.1016/j.memsci.2004.06.045
- L. Lia, J. Dong, T.M. Nenoff, R. Lee, Reverse osmosis of ionic aqueous solutions on aMFI zeolite membrane. Desalination 170, 309–316 (2004). https://doi.org/10.1016/j.desal.2004.02.102
- N. Liu, L. Li, B. McPherson, R. Lee, Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J. Membr. Sci. 325, 357–361 (2008). https://doi.org/10.1016/j.memsci.2008.07.056
- L. Li, N. Liu, B. McPherson, R. Lee, Influence of counter ions on the reverse osmosis through MFI zeolite membranes: implications for produced water desalination. Desalination 228, 217–225 (2008). https://doi.org/10.1016/j.desal.2007.10.010
- J. Lu, N. Liu, L. Li, R. Lee, Organic fouling and regeneration of zeolite membrane in wastewater treatment. Sep. Purif. Technol. 72, 203–207 (2010). https://doi.org/10.1016/j.seppur.2010.02.010
- X. Song, B. Gan, S. Qi, H. Guo, C.Y. Tang et al., Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environ. Sci. Technol. 54, 3559–3569 (2020). https://doi.org/10.1021/acs.est.9b05892
- C. Tang, Z. Wang, I. Petrinić, A.G. Fane, C. Hélix-Nielsen, Biomimetic aquaporin membranes coming of age. Desalination 368, 89–105 (2015). https://doi.org/10.1016/j.desal.2015.04.026
- L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
- Z. Ahmed, F. Rehman, U. Ali, A. Ali, M. Iqbal et al., Recent advances in MXene-based separation membranes. ChemBioEng Rev. 8, 110–120 (2021). https://doi.org/10.1002/cben.202000026
- B. Meng, G. Liu, Y. Mao, F. Liang, G. Liu et al., Fabrication of surface-charged MXene membrane and its application for water desalination. J. Membr. Sci. 623, 119076 (2021). https://doi.org/10.1016/j.memsci.2021.119076
- Y. Wu, Y. Wang, F. Xu, K. Qu, L. Dai et al., Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. J. Membr. Sci. 659, 120799 (2022). https://doi.org/10.1016/j.memsci.2022.120799
- D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014). https://doi.org/10.1063/1.4892638
- D. Cohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014). https://doi.org/10.1021/nl502399y
- M. Peplow, Graphene: the quest for supercarbon. Nature 503, 327–329 (2013). https://doi.org/10.1038/503327a
- W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen et al., A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80, 306–324 (2015). https://doi.org/10.1016/j.watres.2015.04.037
- X. Wang, Q. Li, J. Zhang, H. Huang, S. Wu et al., Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. J. Membr. Sci. 603, 118036 (2020). https://doi.org/10.1016/j.memsci.2020.118036
- L. Xu, B. Shan, C. Gao, J. Xu, Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Membr. Sci. 593, 117398 (2020). https://doi.org/10.1016/j.memsci.2019.117398
- www.lgwatersolutions.com/en/main (Accessed 26 October 2024)
- https://aquaporin.com (Accessed 26 October 2024)
- https://aquaporin.com/industrial/ (Accessed 26 October 2024)
- Lenntech. https://www.lenntech.com/ (Accessed 26 October 2024)
- A. Mollahosseini, A. Abdelrasoul, A. Shoker, A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 248, 122911 (2020). https://doi.org/10.1016/j.matchemphys.2020.122911
- J. Geisler-Lee, Q. Wang, Y. Yao, W. Zhang, M. Geisler et al., Phytotoxicity, accumulation and transport of silver nanops by Arabidopsis thaliana. Nanotoxicology 7, 323–337 (2013). https://doi.org/10.3109/17435390.2012.658094
- X. Zhu, Y. Chang, Y. Chen, Toxicity and bioaccumulation of TiO2 nanop aggregates in Daphnia magna. Chemosphere 78, 209–215 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.013
- M. Sajid, M. Ilyas, C. Basheer, M. Tariq, M. Daud et al., Impact of nanops on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 22, 4122–4143 (2015). https://doi.org/10.1007/s11356-014-3994-1
- X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao et al., Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B Biointerfaces 94, 333–340 (2012). https://doi.org/10.1016/j.colsurfb.2012.02.013
- A. Fuwad, H. Ryu, E.D. Han, J.-H. Lee, N. Malmstadt et al., Highly permeable and shelf-stable aquaporin biomimetic membrane based on an anodic aluminum oxide substrate. npj Clean Water 7, 11 (2024). https://doi.org/10.1038/s41545-024-00301-0
- Y. Yang, Z. Chen, X. Song, Z. Zhang, J. Zhang et al., Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv. Mater. 29, 201605750 (2017). https://doi.org/10.1002/adma.201605750
- J.H. Lee, H.S. Kim, E.T. Yun, S.Y. Ham, J.H. Park et al., Vertically aligned carbon nanotube membranes: water purification and beyond. Membranes 10, 273 (2020). https://doi.org/10.3390/membranes10100273
- L. Li, R. Lee, Purification of produced water by ceramic membranes: material screening, process design and economics. Sep. Sci. Technol. 44, 3455–3484 (2009). https://doi.org/10.1080/01496390903253395
- S. Cong, Y. Yuan, J. Wang, Z. Wang, F. Kapteijn et al., Highly water-permeable metal-organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 143, 20055–20058 (2021). https://doi.org/10.1021/jacs.1c10192
- M.U. Shahid, T. Najam, M. Islam, A.M. Hassan, M.A. Assiri et al., Engineering of metal organic framework (MOF) membrane for waste water treatment: synthesis, applications and future challenges. J. Water Process. Eng. 57, 104676 (2024). https://doi.org/10.1016/j.jwpe.2023.104676
- M.C. Duke, B. Zhu, C.M. Doherty, M.R. Hill, A.J. Hill et al., Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377, 128–137 (2016). https://doi.org/10.1016/j.desal.2015.09.004
- X. Ren, X. Zhang, D. Tang, A. Yang, Y. Feng, Decorating a metal−organic framework UiO-66 layer on ceramics substrate by the seed-assisted solvothermal method for high-performance desalination. Desalin. Water Treat. 161, 156–160 (2019). https://doi.org/10.5004/dwt.2019.24307
- L. Valentino, M. Matsumoto, W.R. Dichtel, B.J. Mariñas, Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane. Environ. Sci. Technol. 51, 14352–14359 (2017). https://doi.org/10.1021/acs.est.7b04056
- H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
- S. Wu, J. Qiu, J. Wang, L. Wang, C.Y. Tang, Co valent organic framework membranes modified by end-capping monomers for organic solvent nanofiltration. J. Membr. Sci. 703, 122854 (2024). https://doi.org/10.1016/j.memsci.2024.122854
- A. Xiao, X. Shi, Z. Zhang, C. Yin, S. Xiong et al., Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. J. Membr. Sci. 624, 119122 (2021). https://doi.org/10.1016/j.memsci.2021.119122
- C. Liu, Y. Jiang, A. Nalaparaju, J. Jiang, A. Huang, Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. J. Mater. Chem. A 7, 24205–24210 (2019). https://doi.org/10.1039/C9TA06325K
- A. Jrad, M.A. Olson, A. Trabolsi, Molecular design of covalent organic frameworks for seawater desalination: a state-of-the-art review. Chem 9, 1413–1451 (2023). https://doi.org/10.1016/j.chempr.2023.04.012
- C. Wu, L. Xia, S. Xia, B. Van der Bruggen, Y. Zhao, Advanced covalent organic framework-based membranes for recovery of ionic resources. Small 19, e2206041 (2023). https://doi.org/10.1002/smll.202206041
- M. Wang, Y. Wang, J. Zhao, J. Zou, X. Liang et al., Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed. 62, e202219084 (2023). https://doi.org/10.1002/anie.202219084
- X. Shi, A. Xiao, C. Zhang, Y. Wang, Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. J. Membr. Sci. 576, 116–122 (2019). https://doi.org/10.1016/j.memsci.2019.01.034
- L.-P. Yue, F.-X. Kong, Y. Wang, G.-D. Sun, J.-F. Chen, PTSA-mediated interfacial catalytic polymerization of crystalline dense covalent organic framework membranes for enhanced desalination. J. Membr. Sci. 685, 121877 (2023). https://doi.org/10.1016/j.memsci.2023.121877
- M.C. Duke, J. O’Brien-Abraham, N. Milne, B. Zhu, J.Y.S. Lin et al., Seawater desalination performance of MFI type membranes made by secondary growth. Sep. Purif. Technol. 68, 343–350 (2009). https://doi.org/10.1016/j.seppur.2009.06.003
- W. Lai, L. Shan, J. Bai, L. Xiao, L. Liu et al., Highly permeable and acid-resistant nanofiltration membrane fabricated by in situ interlaced stacking of COF and polysulfonamide films. Chem. Eng. J. 450, 137965 (2022). https://doi.org/10.1016/j.cej.2022.137965
- A.K. Mohammed, A.A. Al Khoori, M.A. Addicoat, S. Varghese, I. Othman et al., Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angew. Chem. Int. Ed. 61, e202200905 (2022). https://doi.org/10.1002/anie.202200905
- X. You, L. Cao, Y. Liu, H. Wu, R. Li et al., Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion. ACS Nano 16, 11781–11791 (2022). https://doi.org/10.1021/acsnano.2c04767
- F. Pan, W. Guo, Y. Su, N.A. Khan, H. Yang et al., Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Sep. Purif. Technol. 215, 582–589 (2019). https://doi.org/10.1016/j.seppur.2019.01.064
- X. Wang, Q. Lyu, T. Tong, K. Sun, L.-C. Lin et al., Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022). https://doi.org/10.1038/s41467-021-27873-6
- P.J. Bereciartua, Á. Cantín, A. Corma, J.L. Jordá, M. Palomino et al., Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017). https://doi.org/10.1126/science.aao0092
- A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
- B. Ilić, S.G. Wettstein, A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous Mesoporous Mater. 239, 221–234 (2017). https://doi.org/10.1016/j.micromeso.2016.10.005
- T.D. Bennett, A.K. Cheetham, A.H. Fuchs, F.-X. Coudert, Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2016). https://doi.org/10.1038/nchem.2691
- J. Zhu, J. Hou, A. Uliana, Y. Zhang, M. Tian et al., The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 6, 3773–3792 (2018). https://doi.org/10.1039/C7TA10814A
- C. Buelke, A. Alshami, J. Casler, Y. Lin, M. Hickner et al., Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. J. Membr. Sci. 588, 117195 (2019). https://doi.org/10.1016/j.memsci.2019.117195
- V.A. Kuehl, J. Yin, P.H.H. Duong, B. Mastorovich, B. Newell et al., A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140, 18200–18207 (2018). https://doi.org/10.1021/jacs.8b11482
- Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao et al., Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014). https://doi.org/10.1126/science.1254227
- Z. Yang, C. Wu, C.Y. Tang, Making waves: why do we need ultra-permeable nanofiltration membranes for water treatment? Water Res. X 19, 100172 (2023). https://doi.org/10.1016/j.wroa.2023.100172
- S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin et al., The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13, 1694–1710 (2020). https://doi.org/10.1039/D0EE00341G
- J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016). https://doi.org/10.1021/acs.estlett.6b00050
- B. Shi, P. Marchetti, D. Peshev, S. Zhang, A.G. Livingston, Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J. Membr. Sci. 525, 35–47 (2017). https://doi.org/10.1016/j.memsci.2016.10.014
- C. Zhou, S. Shao, K. Xiong, C.Y. Tang, Nanofiltration-based membrane bioreactor operated under an ultralow flux: fouling behavior and feasibility toward a low-carbon system for municipal wastewater reuse. ACS ES&T Engg. 3, 1267–1275 (2023). https://doi.org/10.1021/acsestengg.3c00083
- Y. Zhang, L. Wang, W. Sun, Y. Hu, H. Tang, Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J. Ind. Eng. Chem. 81, 7–23 (2020). https://doi.org/10.1016/j.jiec.2019.09.002
- X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang et al., Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Membr. Sci. 591, 117317 (2019). https://doi.org/10.1016/j.memsci.2019.117317
- B. Liang, X. He, J. Hou, L. Li, Z. Tang, Membrane separation in organic liquid: technologies, achievements, and opportunities. Adv. Mater. 31, e1806090 (2019). https://doi.org/10.1002/adma.201806090
- G.M. Shi, Y. Feng, B. Li, H.M. Tham, J.-Y. Lai et al., Recent progress of organic solvent nanofiltration membranes. Prog. Polym. Sci. 123, 101470 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101470
- H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014). https://doi.org/10.1039/C4EE01432D
- S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-T. Lau et al., Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36, 813–843 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.003
- A.X. Swamikannu, S.S. Kulkarni, E.W. Funk, R.A. Madsen, Recovery of space station hygiene water by membrane technology. SAE Technical Paper 881032 (1988). https://doi.org/10.4271/881032
References
M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
C. He, Z. Liu, J. Wu, X. Pan, Z. Fang et al., Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021). https://doi.org/10.1038/s41467-021-25026-3
M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas et al., Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008). https://doi.org/10.1038/nature06599
R.W. Baker, in Membrane Technology and Applications. (Wiley, 2023). https://doi.org/10.1002/9781118359686
E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020). https://doi.org/10.3390/membranes10050089
Z. Yang, H. Guo, C.Y. Tang, The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 590, 117297 (2019). https://doi.org/10.1016/j.memsci.2019.117297
Z. Yang, L. Long, C. Wu, C.Y. Tang, High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound. ACS EST Eng. 2, 377–390 (2022). https://doi.org/10.1021/acsestengg.1c00237
H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017). https://doi.org/10.1126/science.aab0530
G.M. Geise, H.B. Park, A.C. Sagle, B.D. Freeman, J.E. McGrath, Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011). https://doi.org/10.1016/j.memsci.2010.11.054
J. Glater, S.-K. Hong, M. Elimelech, The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994). https://doi.org/10.1016/0011-9164(94)00068-9
V.T. Do, C.Y. Tang, M. Reinhard, J.O. Leckie, Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 46, 852–859 (2012). https://doi.org/10.1021/es203090y
C. Liu, W. Wang, B. Yang, K. Xiao, H. Zhao, Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: from mechanisms to mitigation strategies. Water Res. 195, 116976 (2021). https://doi.org/10.1016/j.watres.2021.116976
W. Guo, H.-H. Ngo, J. Li, A mini-review on membrane fouling. Bioresour. Technol. 122, 27–34 (2012). https://doi.org/10.1016/j.biortech.2012.04.089
P.S. Goh, W.J. Lau, M.H.D. Othman, A.F. Ismail, Membrane fouling in desalination and its mitigation strategies. Desalination 425, 130–155 (2018). https://doi.org/10.1016/j.desal.2017.10.018
M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl. Acad. Sci. U.S.A. 104, 20719–20724 (2007). https://doi.org/10.1073/pnas.0708762104
M. Di Vincenzo, A. Tiraferri, V.E. Musteata, S. Chisca, R. Sougrat et al., Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 16, 190–196 (2021). https://doi.org/10.1038/s41565-020-00796-x
M. Di Vincenzo, A. Tiraferri, V.E. Musteata, S. Chisca, M. Deleanu et al., Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. Proc. Natl. Acad. Sci. U.S.A. 118, e2022200118 (2021). https://doi.org/10.1073/pnas.2022200118
M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005). https://doi.org/10.1038/43844a
J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin et al., Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006). https://doi.org/10.1126/science.1126298
Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng et al., Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019). https://doi.org/10.1126/science.aau5321
X. Ma, X. Zhu, C. Huang, J. Fan, Revealing the effects of terminal groups of MXene on the water desalination performance. J. Membr. Sci. 647, 120334 (2022). https://doi.org/10.1016/j.memsci.2022.120334
Z. Wang, C. Ma, C. Xu, S.A. Sinquefield, M.L. Shofner et al., Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat. Sustain. 4, 402–408 (2021). https://doi.org/10.1038/s41893-020-00674-3
M. Jian, R. Qiu, Y. Xia, J. Lu, Y. Chen et al., Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020). https://doi.org/10.1126/sciadv.aay3998
M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu et al., Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022). https://doi.org/10.1038/s41893-022-00870-3
P. Iacomi, G. Maurin, Respon ZIF structures: zeolitic imidazolate frameworks as stimuli-responsive materials. ACS Appl. Mater. Interfaces 13, 50602–50642 (2021). https://doi.org/10.1021/acsami.1c12403
K.M. Gupta, K. Zhang, J. Jiang, Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir 31, 13230–13237 (2015). https://doi.org/10.1021/acs.langmuir.5b03593
Z. Hu, Y. Chen, J. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation. J. Chem. Phys. 134, 134705 (2011). https://doi.org/10.1063/1.3573902
F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27, 8437–8443 (2011). https://doi.org/10.1021/la200995r
J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
Y.J. Lim, K. Goh, R. Wang, The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem. Soc. Rev. 51, 4537–4582 (2022). https://doi.org/10.1039/D1CS01061A
M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011). https://doi.org/10.1039/c0ee00541j
S. Loeb, S. Sourirajan in Sea water demineralization by means of an osmotic membrane. Advances in Chemistry (American Chemical Society, 1963), pp. 117–132. https://doi.org/10.1021/ba-1963-0038.ch009
S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: developments and challenges. Desalination 368, 10–26 (2015). https://doi.org/10.1016/j.desal.2014.12.042
R.J. Petersen, Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83, 81–150 (1993). https://doi.org/10.1016/0376-7388(93)80014-O
G.M. Geise, Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021). https://doi.org/10.1126/science.abe9741
Y. Yao, P. Zhang, F. Sun, W. Zhang, M. Li et al., More resilient polyester membranes for high-performance reverse osmosis desalination. Science 384, 333–338 (2024). https://doi.org/10.1126/science.adk0632
C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim et al., Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18, 1551–1559 (2012). https://doi.org/10.1016/j.jiec.2012.04.005
B.-H. Jeong, E.M.V. Hoek, Y. Yan, A. Subramani, X. Huang et al., Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
M.A. Al, TiO2 polyamide thin film nanocomposite reverses osmosis membrane for water desalination. Membranes 8, 66 (2018). https://doi.org/10.3390/membranes8030066
P. Kedchaikulrat, I.F.J. Vankelecom, K. Faungnawakij, C. Klaysom, Effects of colloidal TiO2 and additives on the interfacial polymerization of thin film nanocomposite membranes. Colloids Surf. A Physicochem. Eng. Aspects 601, 125046 (2020). https://doi.org/10.1016/j.colsurfa.2020.125046
Z. Yang, H. Guo, Z.-K. Yao, Y. Mei, C.Y. Tang, Hydrophilic silver nanops induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 53, 5301–5308 (2019). https://doi.org/10.1021/acs.est.9b00473
S. Jeon, J.-H. Lee, Rationally designed in situ fabrication of thin film nanocomposite membranes with enhanced desalination and anti-biofouling performance. J. Membr. Sci. 615, 118542 (2020). https://doi.org/10.1016/j.memsci.2020.118542
Y. Tong, Y. Wei, H. Zhang, L. Wang, L. Li et al., Fabrication of polyamide thin film nanocomposite membranes with enhanced desalination performance modified by silica nanops formed in situ polymerization of tetramethoxysilane. J. Environ. Chem. Eng. 11, 109415 (2023). https://doi.org/10.1016/j.jece.2023.109415
H. Shen, S. Wang, H. Xu, Y. Zhou, C. Gao, Preparation of polyamide thin film nanocomposite membranes containing silica nanops via an in situ polymerization of SiCl4 in organic solution. J. Membr. Sci. 565, 145–156 (2018). https://doi.org/10.1016/j.memsci.2018.08.016
M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386, 67–76 (2016). https://doi.org/10.1016/j.desal.2016.02.034
J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016). https://doi.org/10.1016/j.desal.2015.11.001
D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko et al., Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Res. 173, 115557 (2020). https://doi.org/10.1016/j.watres.2020.115557
S.Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanop self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35, 2388–2394 (2001). https://doi.org/10.1021/es0017099
E.-S. Kim, G. Hwang, M. Gamal El-Din, Y. Liu, Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 394, 37–48 (2012). https://doi.org/10.1016/j.memsci.2011.11.041
S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim et al., Silver nanops immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym. Adv. Technol. 18, 562–568 (2007). https://doi.org/10.1002/pat.918
M. Barboiu, A. Gilles, From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013). https://doi.org/10.1021/ar400025e
Y. Zheng, X. Li, P.K. Dutta, Exploitation of unique properties of zeolites in the development of gas sensors. Sensors (Basel) 12, 5170–5194 (2012). https://doi.org/10.3390/s120405170
J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
S. Kandambeth, A. Mallick, B. Lukose, M.V. Mane, T. Heine et al., Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012). https://doi.org/10.1021/ja308278w
B. Mi, Scaling up nanoporous graphene membranes. Science 364, 1033–1034 (2019). https://doi.org/10.1126/science.aax3103
P. Choudhury, B. Basu, Graphene oxide nanosheets as sustainable carbocatalysts: synthesis of medicinally important heterocycles, in Green Approaches in Medicinal Chemistry for Sustainable Drug Design. (Elsevier, Amsterdam, 2020), pp.47–74. https://doi.org/10.1016/B978-0-12-817592-7.00003-4
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
L. Mei, Z. Cao, T. Ying, R. Yang, H. Peng et al., Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, e2201416 (2022). https://doi.org/10.1002/adma.202201416
P. Agre, Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. 43, 4278–4290 (2004). https://doi.org/10.1002/anie.200460804
D. Kozono, M. Yasui, L.S. King, P. Agre, Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine. J. Clin. Invest. 109, 1395–1399 (2002). https://doi.org/10.1172/JCI15851
P. Agre, L.S. King, M. Yasui, W.B. Guggino, O.P. Ottersen et al., Aquaporin water channels: from atomic structure to clinical medicine. J. Physiol. 542, 3–16 (2002). https://doi.org/10.1113/jphysiol.2002.020818
L.B. Huang, M. Di Vincenzo, Y. Li, M. Barboiu, Artificial water channels: towards biomimetic membranes for desalination. Chemistry 27, 2224–2239 (2021). https://doi.org/10.1002/chem.202003470
M. Barboiu, Artificial water channels. Angew. Chem. Int. Ed. 51, 11674–11676 (2012). https://doi.org/10.1002/anie.201205819
V. Percec, A.E. Dulcey, V.S.K. Balagurusamy, Y. Miura, J. Smidrkal et al., Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430, 764–768 (2004). https://doi.org/10.1038/nature02770
M.S. Kaucher, M. Peterca, A.E. Dulcey, A.J. Kim, S.A. Vinogradov et al., Selective transport of water mediated by porous dendritic dipeptides. J. Am. Chem. Soc. 129, 11698–11699 (2007). https://doi.org/10.1021/ja076066c
Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y.-M. Legrand et al., Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011). https://doi.org/10.1002/anie.201103312
E. Licsandru, I. Kocsis, Y.X. Shen, S. Murail, Y.M. Legrand et al., Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138, 5403–5409 (2016). https://doi.org/10.1021/jacs.6b01811
X.-B. Hu, Z. Chen, G. Tang, J.-L. Hou, Z.-T. Li, Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012). https://doi.org/10.1021/ja302292c
Y.X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi et al., Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl. Acad. Sci. U.S.A. 112, 9810–9815 (2015). https://doi.org/10.1073/pnas.1508575112
A. Roy, J. Shen, H. Joshi, W. Song, Y.-M. Tu et al., Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. Nat. Nanotechnol. 16, 911–917 (2021). https://doi.org/10.1038/s41565-021-00915-2
J. Shen, A. Roy, H. Joshi, L. Samineni, R. Ye et al., Fluorofoldamer-based salt- and proton-rejecting artificial water channels for ultrafast water transport. Nano Lett. 22, 4831–4838 (2022). https://doi.org/10.1021/acs.nanolett.2c01137
B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008). https://doi.org/10.1021/jp709845u
B. Corry, Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011). https://doi.org/10.1039/C0EE00481B
R.H. Tunuguntla, R.Y. Henley, Y.C. Yao, T.A. Pham, M. Wanunu et al., Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017). https://doi.org/10.1126/science.aan2438
S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23, 8670–8673 (2007). https://doi.org/10.1021/la701067r
M. Wang, Z. Wang, X. Wang, S. Wang, W. Ding et al., Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Environ. Sci. Technol. 49, 3761–3768 (2015). https://doi.org/10.1021/es5056337
W. Ding, J. Cai, Z. Yu, Q. Wang, Z. Xu et al., Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support. J. Mater. Chem. A 3, 20118–20126 (2015). https://doi.org/10.1039/C5TA05751E
B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas et al., Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004). https://doi.org/10.1126/science.1092048
D.F. Savage, P.F. Egea, Y. Robles-Colmenares, J.D. O’Connell, R.M. Stroud, Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS Biol. 1, E72 (2003). https://doi.org/10.1371/journal.pbio.0000072
M.J. Borgnia, D. Kozono, G. Calamita, P.C. Maloney, P. Agre, Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999). https://doi.org/10.1006/jmbi.1999.3032
L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando et al., The smallest carbon nanotube. Nature 408, 50 (2000). https://doi.org/10.1038/35040699
N. Wang, Z.K. Tang, G.D. Li, J.S. Chen, Single-walled 4 A carbon nanotube arrays. Nature 408, 50–51 (2000). https://doi.org/10.1038/35040702
D.H. Olson, G.T. Kokotailo, S.L. Lawton, W.M. Meier, Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 2238–2243 (1981). https://doi.org/10.1021/j150615a020
J. Lin, S. Murad, A computer simulation study of the separation of aqueous solutions using thin zeolite membranes. Mol. Phys. 99, 1175–1181 (2001). https://doi.org/10.1080/00268970110041236
H. Yang, H. Chen, H. Du, R. Hawkins, F. Craig et al., Incorporating platinum precursors into a NaA-zeolite synthesis mixture promoting the formation of nanosized zeolite. Microporous Mesoporous Mater. 117, 33–40 (2009). https://doi.org/10.1016/j.micromeso.2008.06.009
Q. Lyu, X. Deng, S. Hu, L.-C. Lin, W.S.W. Ho, Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. J. Phys. Chem. C 123, 16118–16126 (2019). https://doi.org/10.1021/acs.jpcc.9b01765
S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song et al., Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011). https://doi.org/10.1021/ja206846p
S. Kandambeth, V. Venkatesh, D.B. Shinde, S. Kumari, A. Halder et al., Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 6, 6786 (2015). https://doi.org/10.1038/ncomms7786
L.-C. Lin, J. Choi, J.C. Grossman, Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem. Commun. 51, 14921–14924 (2015). https://doi.org/10.1039/C5CC05969K
W. Zhou, M. Wei, X. Zhang, F. Xu, Y. Wang, Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Interfaces 11, 16847–16854 (2019). https://doi.org/10.1021/acsami.9b01883
Y. Zhang, T. Fang, Q. Hou, Z. Li, Y. Yan, Water desalination of a new three-dimensional covalent organic framework: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. 22, 16978–16984 (2020). https://doi.org/10.1039/d0cp01792b
X. Chen, S. Zhang, D. Hou, H. Duan, B. Deng et al., Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl. Mater. Interfaces 13, 29926–29935 (2021). https://doi.org/10.1021/acsami.1c06243
Y. Fu, S. Su, N. Zhang, Y. Wang, X. Guo et al., Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 12, 24281–24288 (2020). https://doi.org/10.1021/acsami.0c03932
D. Jang, J.-C. Idrobo, T. Laoui, R. Karnik, Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 11, 10042–10052 (2017). https://doi.org/10.1021/acsnano.7b04299
S.C. O’Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song et al., Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015). https://doi.org/10.1021/acs.nanolett.5b00456
S.C. O’Hern, M.S.H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014). https://doi.org/10.1021/nl404118f
S.C. O’Hern, C.A. Stewart, M.S.H. Boutilier, J.-C. Idrobo, S. Bhaviripudi et al., Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6, 10130–10138 (2012). https://doi.org/10.1021/nn303869m
D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012). https://doi.org/10.1021/nl3012853
M. Mojtabavi, A. VahidMohammadi, W. Liang, M. Beidaghi, M. Wanunu, Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. ACS Nano 13, 3042–3053 (2019). https://doi.org/10.1021/acsnano.8b08017
Z. Fan, Y. Yang, H. Ma, Y. Wang, Z. Xie et al., High-volumetric capacitance and high-rate performance in liquid-mediated densified holey MXene film. Carbon 186, 150–159 (2022). https://doi.org/10.1016/j.carbon.2021.10.021
S. Hong, J.K. El-Demellawi, Y. Lei, Z. Liu, F.A. Marzooqi et al., Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano 16, 792–800 (2022). https://doi.org/10.1021/acsnano.1c08347
K. Meidani, Z. Cao, A. Barati Farimani, Titanium carbide MXene for water desalination: a molecular dynamics study. ACS Appl. Nano Mater. 4, 6145–6151 (2021). https://doi.org/10.1021/acsanm.1c00944
J. Feng, K. Liu, R.D. Bulushev, S. Khlybov, D. Dumcenco et al., Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070–1076 (2015). https://doi.org/10.1038/nnano.2015.219
J.P. Thiruraman, K. Fujisawa, G. Danda, P.M. Das, T. Zhang et al., Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett. 18, 1651–1659 (2018). https://doi.org/10.1021/acs.nanolett.7b04526
J. Kou, J. Yao, L. Wu, X. Zhou, H. Lu et al., Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Phys. Chem. Chem. Phys. 18, 22210–22216 (2016). https://doi.org/10.1039/c6cp01967f
R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012). https://doi.org/10.1126/science.1211694
R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su et al., Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014). https://doi.org/10.1126/science.1245711
Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia et al., Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019). https://doi.org/10.1021/acs.est.9b01914
A. Jabbari, H. Ghanbari, R. Naghizadeh, Partial reduction of graphene oxide toward the facile fabrication of desalination membrane. Int. J. Environ. Sci. Technol. 20, 831–842 (2023). https://doi.org/10.1007/s13762-022-04592-z
H.-H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, Fabrication of reduced graphene oxide membranes for water desalination. J. Membr. Sci. 572, 12–19 (2019). https://doi.org/10.1016/j.memsci.2018.10.085
D. Chung, Review graphite. J. Mater. Sci. 37, 1475–1489 (2002). https://doi.org/10.1023/A:1014915307738
H. Dai, Z. Xu, X. Yang, Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecular dynamics simulation. J. Phys. Chem. C 120, 22585–22596 (2016). https://doi.org/10.1021/acs.jpcc.6b05337
H. Huang, Y. Mao, Y. Ying, Y. Liu, L. Sun et al., Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 49, 5963–5965 (2013). https://doi.org/10.1039/c3cc41953c
S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011). https://doi.org/10.1021/nn202451x
J. Wang, Z. Zhang, J. Zhu, M. Tian, S. Zheng et al., Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing. Nat. Commun. 11, 3540 (2020). https://doi.org/10.1038/s41467-020-17373-4
L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu et al., Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020). https://doi.org/10.1038/s41893-020-0474-0
Z. Lu, Y. Wei, J. Deng, L. Ding, Z.-K. Li et al., Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019). https://doi.org/10.1021/acsnano.9b04612
T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3, 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi et al., Antibacterial activity of Ti2C3Tx MXene. ACS Nano 10, 3674–3684 (2016). https://doi.org/10.1021/acsnano.6b00181
B. Sapkota, W. Liang, A. VahidMohammadi, R. Karnik, A. Noy et al., High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 11, 2747 (2020). https://doi.org/10.1038/s41467-020-16577-y
L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais et al., Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019). https://doi.org/10.1038/s41563-019-0464-7
Z. Wang, Q. Tu, S. Zheng, J.J. Urban, S. Li et al., Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 17, 7289–7298 (2017). https://doi.org/10.1021/acs.nanolett.7b02804
M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 17, 2342–2348 (2017). https://doi.org/10.1021/acs.nanolett.6b05238
P. Afanasiev, C. Lorentz, Oxidation of nanodispersed MoS2 in ambient air: the products and the mechanistic steps. J. Phys. Chem. C 123, 7486–7494 (2019). https://doi.org/10.1021/acs.jpcc.9b01682
J. Kaur, M. Singh, C. Dell’Aversana, R. Benedetti, P. Giardina et al., Biological interactions of biocompatible and water-dispersed MoS2 nanosheets with bacteria and human cells. Sci. Rep. 8, 16386 (2018). https://doi.org/10.1038/s41598-018-34679-y
R. Mahdavi Far, B. Van der Bruggen, A. Verliefde, E. Cornelissen, A review of zeolite materials used in membranes for water purification: history, applications, challenges and future trends. J. Chem. Technol. Biotechnol. 97, 575–596 (2022). https://doi.org/10.1002/jctb.6963
N. Abdullah, N. Yusof, A.F. Ismail, W.J. Lau, Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination 500, 114867 (2021). https://doi.org/10.1016/j.desal.2020.114867
B.-M. Jun, Y.A.J. Al-Hamadani, A. Son, C.M. Park, M. Jang et al., Applications of metal-organic framework based membranes in water purification: a review. Sep. Purif. Technol. 247, 116947 (2020). https://doi.org/10.1016/j.seppur.2020.116947
D.W. Burke, Z. Jiang, A.G. Livingston, W.R. Dichtel, 2D covalent organic framework membranes for liquid-phase molecular separations: state of the field, common pitfalls, and future opportunities. Adv. Mater. 36, e2300525 (2024). https://doi.org/10.1002/adma.202300525
A. Knebel, J. Caro, Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 17, 911–923 (2022). https://doi.org/10.1038/s41565-022-01168-3
N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015). https://doi.org/10.1039/c5cs00292c
O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi et al., Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003). https://doi.org/10.1038/nature01650
A.P. Côté, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger et al., Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005). https://doi.org/10.1126/science.1120411
K. Zhang, Z. He, K.M. Gupta, J. Jiang, Computational design of 2D functional covalent–organic framework membranes for water desalination. Environ. Sci.: Water Res. Technol. 3, 735–743 (2017). https://doi.org/10.1039/C7EW00074J
A. Corcos, G.A. Levato, Z. Jiang, A.M. Evans, A.G. Livingston et al., Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection. ACS Mater. Lett. 1, 440–446 (2019). https://doi.org/10.1021/acsmaterialslett.9b00272
L. Li, N. Liu, B. McPherson, R. Lee, Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents. Ind. Eng. Chem. Res. 46, 1584–1589 (2007). https://doi.org/10.1021/ie0612818
M.S. Denny Jr., J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016). https://doi.org/10.1038/natrevmats.2016.78
Z. Xia, Y. Zhao, S.B. Darling, Covalent organic frameworks for water treatment. Adv. Mater. Interfaces 8, 2001507 (2021). https://doi.org/10.1002/admi.202001507
X. Liu, N.K. Demir, Z. Wu, K. Li, Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015). https://doi.org/10.1021/jacs.5b02276
K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A. 103, 10186–10191 (2006). https://doi.org/10.1073/pnas.0602439103
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877
S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith et al., Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015). https://doi.org/10.1038/nnano.2015.37
A.S. Kazemi, Y. Abdi, J. Eslami, R. Das, Support based novel single layer nanoporous graphene membrane for efficacious water desalination. Desalination 451, 148–159 (2019). https://doi.org/10.1016/j.desal.2018.03.003
S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination. npg Asia Mater. 9, e427 (2017). https://doi.org/10.1038/am.2017.135
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary : MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138
O. Kwon, Y. Choi, J. Kang, J.H. Kim, E. Choi et al., A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination 522, 115448 (2022). https://doi.org/10.1016/j.desal.2021.115448
P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986). https://doi.org/10.1016/0025-5408(86)90011-5
Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013). https://doi.org/10.1002/adfm.201202601
M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013). https://doi.org/10.1021/es400571g
Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing et al., Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Membr. Sci. 591, 117350 (2019). https://doi.org/10.1016/j.memsci.2019.117350
A. Nicolaï, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654 (2014). https://doi.org/10.1039/c4cp01051e
W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe et al., Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017). https://doi.org/10.1021/acsnano.7b05124
Y. Oh, D.L. Armstrong, C. Finnerty, S. Zheng, M. Hu et al., Understanding the pH-responsive behavior of graphene oxide membrane in removing ions and organic micropollulants. J. Membr. Sci. 541, 235–243 (2017). https://doi.org/10.1016/j.memsci.2017.07.005
Y. Zhang, D. Chen, N. Li, Q. Xu, H. Li et al., High-performance and stable two-dimensional MXene-polyethyleneimine composite lamellar membranes for molecular separation. ACS Appl. Mater. Interfaces 14, 10237–10245 (2022). https://doi.org/10.1021/acsami.1c20540
C. Xing, J. Han, X. Pei, Y. Zhang, J. He et al., Tunable graphene oxide nanofiltration membrane for effective dye/salt separation and desalination. ACS Appl. Mater. Interfaces 13, 55339–55348 (2021). https://doi.org/10.1021/acsami.1c16141
H.D. Lee, H.W. Kim, Y.H. Cho, H.B. Park, Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes. Small 10, 2653–2660 (2014). https://doi.org/10.1002/smll.201303945
C.L. Ritt, T. Stassin, D.M. Davenport, R.M. DuChanois, I. Nulens et al., The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 641, 119927 (2022). https://doi.org/10.1016/j.memsci.2021.119927
L. Li, J. Dong, T.M. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolite membranes. J. Membr. Sci. 243, 401–404 (2004). https://doi.org/10.1016/j.memsci.2004.06.045
L. Lia, J. Dong, T.M. Nenoff, R. Lee, Reverse osmosis of ionic aqueous solutions on aMFI zeolite membrane. Desalination 170, 309–316 (2004). https://doi.org/10.1016/j.desal.2004.02.102
N. Liu, L. Li, B. McPherson, R. Lee, Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J. Membr. Sci. 325, 357–361 (2008). https://doi.org/10.1016/j.memsci.2008.07.056
L. Li, N. Liu, B. McPherson, R. Lee, Influence of counter ions on the reverse osmosis through MFI zeolite membranes: implications for produced water desalination. Desalination 228, 217–225 (2008). https://doi.org/10.1016/j.desal.2007.10.010
J. Lu, N. Liu, L. Li, R. Lee, Organic fouling and regeneration of zeolite membrane in wastewater treatment. Sep. Purif. Technol. 72, 203–207 (2010). https://doi.org/10.1016/j.seppur.2010.02.010
X. Song, B. Gan, S. Qi, H. Guo, C.Y. Tang et al., Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environ. Sci. Technol. 54, 3559–3569 (2020). https://doi.org/10.1021/acs.est.9b05892
C. Tang, Z. Wang, I. Petrinić, A.G. Fane, C. Hélix-Nielsen, Biomimetic aquaporin membranes coming of age. Desalination 368, 89–105 (2015). https://doi.org/10.1016/j.desal.2015.04.026
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro et al., A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56, 1825–1829 (2017). https://doi.org/10.1002/anie.201609306
Z. Ahmed, F. Rehman, U. Ali, A. Ali, M. Iqbal et al., Recent advances in MXene-based separation membranes. ChemBioEng Rev. 8, 110–120 (2021). https://doi.org/10.1002/cben.202000026
B. Meng, G. Liu, Y. Mao, F. Liang, G. Liu et al., Fabrication of surface-charged MXene membrane and its application for water desalination. J. Membr. Sci. 623, 119076 (2021). https://doi.org/10.1016/j.memsci.2021.119076
Y. Wu, Y. Wang, F. Xu, K. Qu, L. Dai et al., Solvent-induced interfacial polymerization enables highly crystalline covalent organic framework membranes. J. Membr. Sci. 659, 120799 (2022). https://doi.org/10.1016/j.memsci.2022.120799
D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J. Chem. Phys. 141, 074704 (2014). https://doi.org/10.1063/1.4892638
D. Cohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014). https://doi.org/10.1021/nl502399y
M. Peplow, Graphene: the quest for supercarbon. Nature 503, 327–329 (2013). https://doi.org/10.1038/503327a
W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen et al., A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80, 306–324 (2015). https://doi.org/10.1016/j.watres.2015.04.037
X. Wang, Q. Li, J. Zhang, H. Huang, S. Wu et al., Novel thin-film reverse osmosis membrane with MXene Ti3C2Tx embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination. J. Membr. Sci. 603, 118036 (2020). https://doi.org/10.1016/j.memsci.2020.118036
L. Xu, B. Shan, C. Gao, J. Xu, Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Membr. Sci. 593, 117398 (2020). https://doi.org/10.1016/j.memsci.2019.117398
www.lgwatersolutions.com/en/main (Accessed 26 October 2024)
https://aquaporin.com (Accessed 26 October 2024)
https://aquaporin.com/industrial/ (Accessed 26 October 2024)
Lenntech. https://www.lenntech.com/ (Accessed 26 October 2024)
A. Mollahosseini, A. Abdelrasoul, A. Shoker, A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 248, 122911 (2020). https://doi.org/10.1016/j.matchemphys.2020.122911
J. Geisler-Lee, Q. Wang, Y. Yao, W. Zhang, M. Geisler et al., Phytotoxicity, accumulation and transport of silver nanops by Arabidopsis thaliana. Nanotoxicology 7, 323–337 (2013). https://doi.org/10.3109/17435390.2012.658094
X. Zhu, Y. Chang, Y. Chen, Toxicity and bioaccumulation of TiO2 nanop aggregates in Daphnia magna. Chemosphere 78, 209–215 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.013
M. Sajid, M. Ilyas, C. Basheer, M. Tariq, M. Daud et al., Impact of nanops on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 22, 4122–4143 (2015). https://doi.org/10.1007/s11356-014-3994-1
X. Li, R. Wang, C. Tang, A. Vararattanavech, Y. Zhao et al., Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B Biointerfaces 94, 333–340 (2012). https://doi.org/10.1016/j.colsurfb.2012.02.013
A. Fuwad, H. Ryu, E.D. Han, J.-H. Lee, N. Malmstadt et al., Highly permeable and shelf-stable aquaporin biomimetic membrane based on an anodic aluminum oxide substrate. npj Clean Water 7, 11 (2024). https://doi.org/10.1038/s41545-024-00301-0
Y. Yang, Z. Chen, X. Song, Z. Zhang, J. Zhang et al., Biomimetic anisotropic reinforcement architectures by electrically assisted nanocomposite 3D printing. Adv. Mater. 29, 201605750 (2017). https://doi.org/10.1002/adma.201605750
J.H. Lee, H.S. Kim, E.T. Yun, S.Y. Ham, J.H. Park et al., Vertically aligned carbon nanotube membranes: water purification and beyond. Membranes 10, 273 (2020). https://doi.org/10.3390/membranes10100273
L. Li, R. Lee, Purification of produced water by ceramic membranes: material screening, process design and economics. Sep. Sci. Technol. 44, 3455–3484 (2009). https://doi.org/10.1080/01496390903253395
S. Cong, Y. Yuan, J. Wang, Z. Wang, F. Kapteijn et al., Highly water-permeable metal-organic framework MOF-303 membranes for desalination. J. Am. Chem. Soc. 143, 20055–20058 (2021). https://doi.org/10.1021/jacs.1c10192
M.U. Shahid, T. Najam, M. Islam, A.M. Hassan, M.A. Assiri et al., Engineering of metal organic framework (MOF) membrane for waste water treatment: synthesis, applications and future challenges. J. Water Process. Eng. 57, 104676 (2024). https://doi.org/10.1016/j.jwpe.2023.104676
M.C. Duke, B. Zhu, C.M. Doherty, M.R. Hill, A.J. Hill et al., Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377, 128–137 (2016). https://doi.org/10.1016/j.desal.2015.09.004
X. Ren, X. Zhang, D. Tang, A. Yang, Y. Feng, Decorating a metal−organic framework UiO-66 layer on ceramics substrate by the seed-assisted solvothermal method for high-performance desalination. Desalin. Water Treat. 161, 156–160 (2019). https://doi.org/10.5004/dwt.2019.24307
L. Valentino, M. Matsumoto, W.R. Dichtel, B.J. Mariñas, Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane. Environ. Sci. Technol. 51, 14352–14359 (2017). https://doi.org/10.1021/acs.est.7b04056
H. Wang, J. Zhao, Y. Li, Y. Cao, Z. Zhu et al., Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett. 14, 216 (2022). https://doi.org/10.1007/s40820-022-00968-5
S. Wu, J. Qiu, J. Wang, L. Wang, C.Y. Tang, Co valent organic framework membranes modified by end-capping monomers for organic solvent nanofiltration. J. Membr. Sci. 703, 122854 (2024). https://doi.org/10.1016/j.memsci.2024.122854
A. Xiao, X. Shi, Z. Zhang, C. Yin, S. Xiong et al., Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. J. Membr. Sci. 624, 119122 (2021). https://doi.org/10.1016/j.memsci.2021.119122
C. Liu, Y. Jiang, A. Nalaparaju, J. Jiang, A. Huang, Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. J. Mater. Chem. A 7, 24205–24210 (2019). https://doi.org/10.1039/C9TA06325K
A. Jrad, M.A. Olson, A. Trabolsi, Molecular design of covalent organic frameworks for seawater desalination: a state-of-the-art review. Chem 9, 1413–1451 (2023). https://doi.org/10.1016/j.chempr.2023.04.012
C. Wu, L. Xia, S. Xia, B. Van der Bruggen, Y. Zhao, Advanced covalent organic framework-based membranes for recovery of ionic resources. Small 19, e2206041 (2023). https://doi.org/10.1002/smll.202206041
M. Wang, Y. Wang, J. Zhao, J. Zou, X. Liang et al., Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed. 62, e202219084 (2023). https://doi.org/10.1002/anie.202219084
X. Shi, A. Xiao, C. Zhang, Y. Wang, Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration. J. Membr. Sci. 576, 116–122 (2019). https://doi.org/10.1016/j.memsci.2019.01.034
L.-P. Yue, F.-X. Kong, Y. Wang, G.-D. Sun, J.-F. Chen, PTSA-mediated interfacial catalytic polymerization of crystalline dense covalent organic framework membranes for enhanced desalination. J. Membr. Sci. 685, 121877 (2023). https://doi.org/10.1016/j.memsci.2023.121877
M.C. Duke, J. O’Brien-Abraham, N. Milne, B. Zhu, J.Y.S. Lin et al., Seawater desalination performance of MFI type membranes made by secondary growth. Sep. Purif. Technol. 68, 343–350 (2009). https://doi.org/10.1016/j.seppur.2009.06.003
W. Lai, L. Shan, J. Bai, L. Xiao, L. Liu et al., Highly permeable and acid-resistant nanofiltration membrane fabricated by in situ interlaced stacking of COF and polysulfonamide films. Chem. Eng. J. 450, 137965 (2022). https://doi.org/10.1016/j.cej.2022.137965
A.K. Mohammed, A.A. Al Khoori, M.A. Addicoat, S. Varghese, I. Othman et al., Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angew. Chem. Int. Ed. 61, e202200905 (2022). https://doi.org/10.1002/anie.202200905
X. You, L. Cao, Y. Liu, H. Wu, R. Li et al., Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion. ACS Nano 16, 11781–11791 (2022). https://doi.org/10.1021/acsnano.2c04767
F. Pan, W. Guo, Y. Su, N.A. Khan, H. Yang et al., Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation. Sep. Purif. Technol. 215, 582–589 (2019). https://doi.org/10.1016/j.seppur.2019.01.064
X. Wang, Q. Lyu, T. Tong, K. Sun, L.-C. Lin et al., Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022). https://doi.org/10.1038/s41467-021-27873-6
P.J. Bereciartua, Á. Cantín, A. Corma, J.L. Jordá, M. Palomino et al., Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017). https://doi.org/10.1126/science.aao0092
A. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle et al., A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nat. Mater. 21, 463–470 (2022). https://doi.org/10.1038/s41563-021-01168-z
B. Ilić, S.G. Wettstein, A review of adsorbate and temperature-induced zeolite framework flexibility. Microporous Mesoporous Mater. 239, 221–234 (2017). https://doi.org/10.1016/j.micromeso.2016.10.005
T.D. Bennett, A.K. Cheetham, A.H. Fuchs, F.-X. Coudert, Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2016). https://doi.org/10.1038/nchem.2691
J. Zhu, J. Hou, A. Uliana, Y. Zhang, M. Tian et al., The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 6, 3773–3792 (2018). https://doi.org/10.1039/C7TA10814A
C. Buelke, A. Alshami, J. Casler, Y. Lin, M. Hickner et al., Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. J. Membr. Sci. 588, 117195 (2019). https://doi.org/10.1016/j.memsci.2019.117195
V.A. Kuehl, J. Yin, P.H.H. Duong, B. Mastorovich, B. Newell et al., A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140, 18200–18207 (2018). https://doi.org/10.1021/jacs.8b11482
Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao et al., Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014). https://doi.org/10.1126/science.1254227
Z. Yang, C. Wu, C.Y. Tang, Making waves: why do we need ultra-permeable nanofiltration membranes for water treatment? Water Res. X 19, 100172 (2023). https://doi.org/10.1016/j.wroa.2023.100172
S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin et al., The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13, 1694–1710 (2020). https://doi.org/10.1039/D0EE00341G
J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016). https://doi.org/10.1021/acs.estlett.6b00050
B. Shi, P. Marchetti, D. Peshev, S. Zhang, A.G. Livingston, Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J. Membr. Sci. 525, 35–47 (2017). https://doi.org/10.1016/j.memsci.2016.10.014
C. Zhou, S. Shao, K. Xiong, C.Y. Tang, Nanofiltration-based membrane bioreactor operated under an ultralow flux: fouling behavior and feasibility toward a low-carbon system for municipal wastewater reuse. ACS ES&T Engg. 3, 1267–1275 (2023). https://doi.org/10.1021/acsestengg.3c00083
Y. Zhang, L. Wang, W. Sun, Y. Hu, H. Tang, Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive review. J. Ind. Eng. Chem. 81, 7–23 (2020). https://doi.org/10.1016/j.jiec.2019.09.002
X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang et al., Membrane-based technologies for lithium recovery from water lithium resources: a review. J. Membr. Sci. 591, 117317 (2019). https://doi.org/10.1016/j.memsci.2019.117317
B. Liang, X. He, J. Hou, L. Li, Z. Tang, Membrane separation in organic liquid: technologies, achievements, and opportunities. Adv. Mater. 31, e1806090 (2019). https://doi.org/10.1002/adma.201806090
G.M. Shi, Y. Feng, B. Li, H.M. Tham, J.-Y. Lai et al., Recent progress of organic solvent nanofiltration membranes. Prog. Polym. Sci. 123, 101470 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101470
H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7, 3857–3886 (2014). https://doi.org/10.1039/C4EE01432D
S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-T. Lau et al., Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci. 36, 813–843 (2011). https://doi.org/10.1016/j.progpolymsci.2011.01.003
A.X. Swamikannu, S.S. Kulkarni, E.W. Funk, R.A. Madsen, Recovery of space station hygiene water by membrane technology. SAE Technical Paper 881032 (1988). https://doi.org/10.4271/881032