Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications
Corresponding Author: Amir Sheikhi
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 103
Abstract
Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure–property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofabrication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcapsules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative soft materials and elucidating the complex structure–property relationships inherent in native CWs.
Highlights:
1 This review provides a detailed account of engineered plant cell wall (CW)-mimetic soft materials, which are designed to replicate the intricate composition, structure, and mechanical properties of natural plant CWs.
2 Experimental methods to create CW-like materials are reviewed, and relevant characterization techniques, including mechanical, chemical, structural, and morphological analyses, are discussed.
3 The applications of CW-like materials in several fields, including food packaging, edible films, drug delivery, construction materials, and biocatalysis are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Cosgrove, Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014). https://doi.org/10.1016/j.pbi.2014.11.001
- D.J. Cosgrove, M.C. Jarvis, Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3, 204 (2012). https://doi.org/10.3389/fpls.2012.00204
- N. Carpita, M. Tierney, M. Campbell, Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol. Biol. 47, 1–5 (2001). https://doi.org/10.1007/978-94-010-0668-2_1
- D.J. Cosgrove, Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005). https://doi.org/10.1038/nrm1746
- E.R. Lampugnani, G.A. Khan, M. Somssich, S. Persson, Building a plant cell wall at a glance. J. Cell Sci. 131, jcs207373 (2018). https://doi.org/10.1242/jcs.207373
- D.J. Cosgrove, Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 25, 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y
- C. Voiniciuc, M. Pauly, B. Usadel, Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiol. 176, 2590–2600 (2018). https://doi.org/10.1104/pp.17.01776
- J. Cybulska, E. Vanstreels, Q.T. Ho, C.M. Courtin, V. Van Craeyveld et al., Mechanical characteristics of artificial cell walls. J. Food Eng. 96, 287–294 (2010). https://doi.org/10.1016/j.jfoodeng.2009.08.001
- S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Progress and opportunities in the characterization of cellulose - an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9, 1894 (2019). https://doi.org/10.3389/fpls.2018.01894
- S.E. Whitney, M.G. Gothard, J.T. Mitchell, M.J. Gidley, Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol. 121, 657–664 (1999). https://doi.org/10.1104/pp.121.2.657
- R. Calcutt, R. Vincent, D. Dean, T.L. Arinzeh, R. Dixit, Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv. 7, eabj1469 (2021). https://doi.org/10.1126/sciadv.abj1469
- W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 23 (2017). https://doi.org/10.1007/s40820-016-0125-1
- H. Yu, J. Zhang, S. Zhang, Z. Han, Bionic structures and materials inspired by plant leaves: a comprehensive review for innovative problem-solving. Prog. Mater. Sci. 139, 101181 (2023). https://doi.org/10.1016/j.pmatsci.2023.101181
- Y. Navon, Interaction of plant cell wall building blocks: towards a bioinspired model system. (Thesis, 2020).
- S. Zhou, K. Jin, M.J. Buehler, Understanding plant biomass via computational modeling. Adv. Mater. 33, e2003206 (2021). https://doi.org/10.1002/adma.202003206
- H. Yi, V.M. Puri, Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol. 160, 1281–1292 (2012). https://doi.org/10.1104/pp.112.201228
- H.C. Woolfenden, G. Bourdais, M. Kopischke, E. Miedes, A. Molina et al., A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. 92, 5–18 (2017). https://doi.org/10.1111/tpj.13640
- D.J. Cosgrove, Building an extensible cell wall. Plant Physiol. 189, 1246–1277 (2022). https://doi.org/10.1093/plphys/kiac184
- C. Plomion, G. Leprovost, A. Stokes, Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001). https://doi.org/10.1104/pp.010816
- B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., The Plant Cell Wall, in: Mol Biol Cell, 4th ed., Garland Science, New York, 2002. https://www.ncbi.nlm.nih.gov/books/NBK26928/ (accessed February 4, 2023).
- L.J. Gibson, The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface. 9, 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341
- B. Zhang, Y. Gao, L. Zhang, Y. Zhou, The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 63, 251–272 (2021). https://doi.org/10.1111/jipb.13055
- R. Zhong, Z.-H. Ye, Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 56, 195–214 (2015). https://doi.org/10.1093/pcp/pcu140
- P.M. Pieczywek, V. Chibrikov, A. Zdunek, In silico studies of plant primary cell walls–structure and mechanics. Biol. Rev. 98, 887–899 (2023). https://doi.org/10.1111/brv.12935
- P.B. Green, Multinet growth in the cell wall of Nitella. J. Biophys. Biochem. Cytol. 7, 289–296 (1960). https://doi.org/10.1083/jcb.7.2.289
- R.D. Preston, The case for multinet growth in growing walls of plant cells. Planta 155, 356–363 (1982). https://doi.org/10.1007/BF00429465
- N. Yilmaz, Y. Kodama, K. Numata, Revealing the architecture of the cell wall in living plant cells by bioimaging and enzymatic degradation. Biomacromol 21, 95–103 (2020). https://doi.org/10.1021/acs.biomac.9b00979
- J. Chan, Microtubule and cellulose microfibril orientation during plant cell and organ growth. J. Microsc. 247, 23–32 (2012). https://doi.org/10.1111/j.1365-2818.2011.03585.x
- Y. Zhang, J. Yu, X. Wang, D.M. Durachko, S. Zhang et al., Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021). https://doi.org/10.1126/science.abf2824
- C.T. Anderson, J.J. Kieber, Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71, 39–69 (2020). https://doi.org/10.1146/annurev-arplant-081519-035846
- M. Sorieul, A. Dickson, S.J. Hill, H. Pearson, Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9, 618 (2016). https://doi.org/10.3390/ma9080618
- N. Terashima, K. Kitano, M. Kojima, M. Yoshida, H. Yamamoto et al., Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of Ginkgo tracheid. J. Wood Sci. 55, 409–416 (2009). https://doi.org/10.1007/s10086-009-1049-x
- L. Salmén, Micromechanical understanding of the cell-wall structure. Comptes Rendus Biol. 327, 873–880 (2004). https://doi.org/10.1016/j.crvi.2004.03.010
- C. Lian, J. Yuan, J. Luo, S. Zhang, R. Liu et al., Microfibril orientation of the secondary cell wall in parenchyma cells of Phyllostachys edulis culms. Cellulose 29, 3153–3161 (2022). https://doi.org/10.1007/s10570-022-04485-x
- L.A. Donaldson, Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy. Plant Methods 18, 27 (2022). https://doi.org/10.1186/s13007-022-00865-3
- M. Behr, M. El Jaziri, M. Baucher Glycobiology of the plant secondary cell wall dynamics. Advances in Botanical Research. Elsevier, (2022)., pp 97–131. https://doi.org/10.1016/bs.abr.2022.02.003
- X. Kang, A. Kirui, M.C. Dickwella Widanage, F. Mentink-Vigier, D.J. Cosgrove et al., Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 10, 347 (2019). https://doi.org/10.1038/s41467-018-08252-0
- U. Ray, S. Zhu, Z. Pang, T. Li, Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 33, e2002504 (2021). https://doi.org/10.1002/adma.202002504
- S.E.C. Whitney, M.J. Gidley, S.J. McQueen-Mason, Probing expansin action using cellulose/hemicellulose composites. Plant J. 22, 327–334 (2000). https://doi.org/10.1046/j.1365-313x.2000.00742.x
- S.W. Fanta, W. Vanderlinden, M.K. Abera, P. Verboven, R. Karki et al., Water transport properties of artificial cell walls. J. Food Eng. 108, 393–402 (2012). https://doi.org/10.1016/j.jfoodeng.2011.09.010
- S.M. Choi, K.M. Rao, S.M. Zo, E.J. Shin, S.S. Han, Bacterial cellulose and its applications. Polymers 14, 1080 (2022). https://doi.org/10.3390/polym14061080
- J. Yu, Y. Zhang, D.J. Cosgrove, The nonlinear mechanics of highly extensible plant epidermal cell walls. Proc. Natl. Acad. Sci. U.S.A. 121, e2316396121 (2024). https://doi.org/10.1073/pnas.2316396121
- O.M. Astley, E. Chanliaud, A.M. Donald, M.J. Gidley, Tensile deformation of bacterial cellulose composites. Int. J. Biol. Macromol. 32, 28–35 (2003). https://doi.org/10.1016/s0141-8130(03)00022-9
- J.R. Barnett, V.A. Bonham, Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79, 461–472 (2004). https://doi.org/10.1017/S1464793103006377
- H. Lichtenegger, A. Reiterer, S.E. Stanzl-Tschegg, P. Fratzl, Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization. J. Struct. Biol. 128, 257–269 (1999). https://doi.org/10.1006/jsbi.1999.4194
- S.E.C. Whitney, J.E. Brigham, A.H. Darke, J.S.G. Reid, M.J. Gidley, In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J. 8, 491–504 (1995). https://doi.org/10.1046/j.1365-313X.1995.8040491.x
- S.E.C. Whitney, J.E. Brigham, A.H. Darke, J.S.G. Reid, M.J. Gidley Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr. Res. 307, 299–309 (1998). https://doi.org/10.1016/S0008-6215(98)00004-4
- D.J. Cosgrove, Measuring in vitro extensibility of growing plant cell walls. Z.A. Popper (ed) Methods in Molecular Biology. Humana Press, (2010)., pp 291–303. https://doi.org/10.1007/978-1-61779-008-9_20
- T. Zhang, H. Tang, D. Vavylonis, D.J. Cosgrove, Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 100, 1101–1117 (2019). https://doi.org/10.1111/tpj.14519
- Y.B. Park, D.J. Cosgrove, Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180–194 (2015). https://doi.org/10.1093/pcp/pcu204
- E. Chanliaud, K.M. Burrows, G. Jeronimidis, M.J. Gidley, Mechanical properties of primary plant cell wall analogues. Planta 215, 989–996 (2002). https://doi.org/10.1007/s00425-002-0783-8
- M. Shafayet Zamil, H. Yi, V.M. Puri, A multiscale FEA framework for bridging cell-wall to tissue-scale mechanical properties: the contributions of middle Lamella interface and cell shape. J. Mater. Sci. 52, 7947–7968 (2017). https://doi.org/10.1007/s10853-017-0999-4
- J. Cybulska, A. Zdunek, K. Konstankiewicz, Calcium effect on mechanical properties of model cell walls and apple tissue. J. Food Eng. 102, 217–223 (2011). https://doi.org/10.1016/j.jfoodeng.2010.08.019
- Y. Lyu, T. Matsumoto, S. Taira, K. Ijiri, A. Yoshinaga et al., Influences of polysaccharides in wood cell walls on lignification in vitro. Cellulose 28, 9907–9917 (2021). https://doi.org/10.1007/s10570-021-04108-x
- X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16, 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
- E.A. Guggenheim, Applications of statistical mechanics (Clarendon P, Oxford, 1996)
- C.F. Fontan, J. Chirife, E. Sancho, H.A. Iglesias, Analysis of a model for water sorption phenomena in foods. J. Food Sci. 47, 1590–1594 (1982). https://doi.org/10.1111/j.1365-2621.1982.tb04989.x
- C. Bertolin, L. de Ferri, M. Strojecki, Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Procedia Struct. Integr. 26, 147–154 (2020). https://doi.org/10.1016/j.prostr.2020.06.018
- S. Zhao, F. Caruso, L. Dähne, G. Decher, B.G. De Geest et al., The future of layer-by-layer assembly: a tribute to ACS nano associate editor helmuth möhwald. ACS Nano 13, 6151–6169 (2019). https://doi.org/10.1021/acsnano.9b03326
- M. Kolasińska, P. Warszyński, The effect of nature of polyions and treatment after deposition on wetting characteristics of polyelectrolyte multilayers. Appl. Surf. Sci. 252, 759–765 (2005). https://doi.org/10.1016/j.apsusc.2005.02.060
- A. Dammak, C. Moreau, F. Azzam, B. Jean, F. Cousin et al., Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals–xyloglucan multilayered thin films. J. Colloid Interface Sci. 460, 214–220 (2015). https://doi.org/10.1016/j.jcis.2015.08.048
- C. Cerclier, F. Cousin, H. Bizot, C. Moreau, B. Cathala, Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26, 17248–17255 (2010). https://doi.org/10.1021/la102614b
- B. Jean, L. Heux, F. Dubreuil, G. Chambat, F. Cousin, Non-electrostatic building of biomimetic Cellulose−Xyloglucan multilayers. Langmuir 25, 3920–3923 (2009). https://doi.org/10.1021/la802801q
- G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997). https://doi.org/10.1126/science.277.5330.1232
- R. Valentin, C. Cerclier, N. Geneix, V. Aguié-Béghin, C. Gaillard et al., Elaboration of extensin-pectin thin film model of primary plant cell wall. Langmuir 26, 9891–9898 (2010). https://doi.org/10.1021/la100265d
- A.M. Showalter, Structure and function of plant cell wall proteins. Plant Cell 5, 9–23 (1993). https://doi.org/10.1105/tpc.5.1.9
- A. Hambardzumyan, M. Molinari, N. Dumelie, L. Foulon, A. Habrant et al., Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites. Comptes Rendus Biol. 334, 839–850 (2011). https://doi.org/10.1016/j.crvi.2011.07.003
- E. Lambert, V. Aguié-Béghin, D. Dessaint, L. Foulon, B. Chabbert et al., Real time and quantitative imaging of lignocellulosic films hydrolysis by atomic force microscopy reveals lignin recalcitrance at nanoscale. Biomacromol 20, 515–527 (2019). https://doi.org/10.1021/acs.biomac.8b01539
- L. Muraille, V. Aguié-Béghin, B. Chabbert, M. Molinari, Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale. Sci. Rep. 7, 44065 (2017). https://doi.org/10.1038/srep44065
- L. Muraille, M. Pernes, A. Habrant, R. Serimaa, M. Molinari et al., Impact of lignin on water sorption properties of bioinspired self-assemblies of lignocellulosic polymers. Eur. Polym. J. 64, 21–35 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.040
- T. Horseman, M. Tajvidi, C.I.K. Diop, D.J. Gardner, Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose 24, 2455–2468 (2017). https://doi.org/10.1007/s10570-017-1266-1
- K. Abe, T. Yonekawa, T. Natsume, Artificial lignification of a cellulose microfibril-based hydrogel and resulting effect on tensile properties. Holzforschung 76, 838–844 (2022). https://doi.org/10.1515/hf-2022-0028
- L. Ma, Y. Zhu, Y. Huang, L. Zhang, Z. Wang, Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds. Carbohydr. Polym. 281, 119083 (2022). https://doi.org/10.1016/j.carbpol.2021.119083
- M. Farooq, T. Zou, G. Riviere, M.H. Sipponen, M. Österberg, Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin ps. Biomacromol 20, 693–704 (2019). https://doi.org/10.1021/acs.biomac.8b01364
- A. Hambardzumyan, L. Foulon, B. Chabbert, V. Aguié-Béghin, Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13, 4081–4088 (2012). https://doi.org/10.1021/bm301373b
- D. Da Silva Perez, R. Ruggiero, L.C. Morais, A.E.H. Machado, K. Mazeau, Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20, 3151–3158 (2004). https://doi.org/10.1021/la0357817
- X. Yang, E. Jungstedt, M.S. Reid, L.A. Berglund, Polymer films from cellulose nanofibrils—effects from interfibrillar interphase on mechanical behavior. Macromolecules 54, 4443–4452 (2021). https://doi.org/10.1021/acs.macromol.1c00305
- J. Sunamoto, T. Sato, T. Taguchi, H. Hamazaki, Naturally occurring polysaccharide derivatives which behave as an artificial cell wall on an artificial cell liposome. Macromolecules 25, 5665–5670 (1992). https://doi.org/10.1021/ma00047a017
- E.C. Kang, K. Akiyoshi, J. Sunamoto, Partition of polysaccharide-coated liposomes in aqueous two-phase systems. Int. J. Biol. Macromol. 16, 348–353 (1994). https://doi.org/10.1016/0141-8130(94)90068-x
- T. Paulraj, A.V. Riazanova, K. Yao, R.L. Andersson, A. Müllertz et al., Bioinspired layer-by-layer microcapsules based on cellulose nanofibers with switchable permeability. Biomacromol 18, 1401–1410 (2017). https://doi.org/10.1021/acs.biomac.7b00126
- Z.-J. Guo, S. Kallus, K. Akiyoshi, J. Sunamoto, Artificial cell wall for plant protoplast. coating of plasma membrane with hydrophobized polysaccharides. Chem. Lett. 24, 415–416 (1995). https://doi.org/10.1246/cl.1995.415
- P.J. Dowding, R. Atkin, B. Vincent, P. Bouillot, Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells. Langmuir 20, 11374–11379 (2004). https://doi.org/10.1021/la048561h
- T. Paulraj, A.V. Riazanova, A.J. Svagan, Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties. Acta Biomater. 69, 196–205 (2018). https://doi.org/10.1016/j.actbio.2018.01.003
- I. Kalashnikova, H. Bizot, B. Cathala, I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011). https://doi.org/10.1021/la200971f
- I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, I. Capron, Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9, 952–959 (2013). https://doi.org/10.1039/C2SM26472B
- A.J. Svagan, A. Musyanovych, M. Kappl, M. Bernhardt, G. Glasser et al., Cellulose nanofiber/nanocrystal reinforced capsules: a fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromol 15, 1852–1859 (2014). https://doi.org/10.1021/bm500232h
- T. Paulraj, S. Wennmalm, D.C.F. Wieland, A.V. Riazanova, A. Dėdinaitė et al., Primary cell wall inspired micro containers as a step towards a synthetic plant cell. Nat. Commun. 11, 958 (2020). https://doi.org/10.1038/s41467-020-14718-x
- S. Mele, O. Söderman, H. Ljusberg-Wahrén, K. Thuresson, M. Monduzzi et al., Phase behavior in the biologically important oleic acid/sodium oleate/water system. Chem. Phys. Lipids 211, 30–36 (2018). https://doi.org/10.1016/j.chemphyslip.2017.11.017
- X.-G. Zhu, J.P. Lynch, D.S. LeBauer, A.J. Millar, M. Stitt et al., Plants in silico: why, why now and what? : an integrative platform for plant systems biology research. Plant Cell Environ. 39, 1049–1057 (2016). https://doi.org/10.1111/pce.12673
- C. Zhang, M. Chen, S. Keten, B. Coasne, D. Derome et al., Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919 (2021). https://doi.org/10.1126/sciadv.abi8919
- K. Jin, Z. Qin, M.J. Buehler, Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198–206 (2015). https://doi.org/10.1016/j.jmbbm.2014.11.010
- L.M. Davies, P.J. Harris, Atomic force microscopy of microfibrils in primary cell walls. Planta 217, 283–289 (2003). https://doi.org/10.1007/s00425-003-0979-6
- F. Marga, M. Grandbois, D.J. Cosgrove, T.I. Baskin, Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J. 43, 181–190 (2005). https://doi.org/10.1111/j.1365-313X.2005.02447.x
- J.C. Thimm, D.J. Burritt, W.A. Ducker, L.D. Melton, Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J. Struct. Biol. 168, 337–344 (2009). https://doi.org/10.1016/j.jsb.2009.06.017
- A. Kozioł, J. Cybulska, P.M. Pieczywek, A. Zdunek, Evaluation of structure and assembly of xyloglucan from tamarind seed (Tamarindus indica L) with atomic force microscopy. Food Biophys. 10, 396–402 (2015). https://doi.org/10.1007/s11483-015-9395-2
- J. Cybulska, K. Konstankiewicz, A. Zdunek, K. Skrzypiec, Nanostructure of natural and model cell wall materials. Int. Agrophys. 24, 107–114 (2010). https://doi.org/10.1016/j.indcrop.2009.09.012
- Y. Zheng, X. Wang, Y. Chen, E. Wagner, D.J. Cosgrove, Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. Plant J. 93, 211–226 (2018). https://doi.org/10.1111/tpj.13778
- C. Xiao, C.T. Anderson, Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: teasing out causes and consequences. Plant Signal. Behav. 11, e1215396 (2016). https://doi.org/10.1080/15592324.2016.1215396
- K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromol 4, 1099–1120 (2003). https://doi.org/10.1021/bm020116i
- B.D. Vogt, E.K. Lin, W.-L. Wu, C.C. White, Effect of film thickness on the validity of the sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 108, 12685–12690 (2004). https://doi.org/10.1021/jp0481005
- M.C. Dixon, Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008). PMID: 19137101; PMCID: PMC2563918.
- R.P.H. Kooyman, R.M. Corn, A. Wark, H.J. Lee, E. Gedig et al., Handbook of Surface Plasmon Resonance, RCS Publishing, (2008). https://doi.org/10.1039/9781847558220
- M. Martínez-Sanz, M.J. Gidley, E.P. Gilbert, Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review. Carbohydr. Polym. 125, 120–134 (2015). https://doi.org/10.1016/j.carbpol.2015.02.010
- D. Ye, S. Rongpipi, S.N. Kiemle, W.J. Barnes, A.M. Chaves et al., Preferred crystallographic orientation of cellulose in plant primary cell walls. Nat. Commun. 11, 4720 (2020). https://doi.org/10.1038/s41467-020-18449-x
- V. Abhilash, N. Rajender, K. Suresh, X-ray diffraction spectroscopy of polymer nanocomposites. Spectroscopy Polym Nanocompos. (2016). https://doi.org/10.1016/b978-0-323-40183-8.00014-8
- M. Müller, C. Czihak, G. Vogl, P. Fratzl, H. Schober et al., Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31, 3953–3957 (1998). https://doi.org/10.1021/ma980004c
- O. Kratky, G. Miholic, Small-angle X-ray investigations with absolute intensity measurements on regenerated, air-swollen cellulose. J. Polym. Sci. Part C. Polym. Symp. 2, 449–476 (1963). https://doi.org/10.1002/polc.5070020142
- O.M. Astley, A.M. Donald, A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromol 2, 672–680 (2001). https://doi.org/10.1021/bm005643l
- F. Saxe, M. Eder, G. Benecke, B. Aichmayer, P. Fratzl et al., Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 10, 25 (2014). https://doi.org/10.1186/1746-4811-10-25
- D. Chen, L.D. Melton, D.J. McGillivray, T.M. Ryan, P.J. Harris, Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Planta 250, 1819–1832 (2019). https://doi.org/10.1007/s00425-019-03262-8
- J. Gu, J.M. Catchmark, Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr. Polym. 88, 547–557 (2012). https://doi.org/10.1016/j.carbpol.2011.12.040
- M.J. Lundahl, A.G. Cunha, E. Rojo, A.C. Papageorgiou, L. Rautkari et al., Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci. Rep. 6, 30695 (2016). https://doi.org/10.1038/srep30695
- S. Hooshmand, Y. Aitomäki, N. Norberg, A.P. ew, K. Oksman, Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7, 13022–13028 (2015). https://doi.org/10.1021/acsami.5b03091
- J. Yao, S. Chen, Y. Chen, B. Wang, Q. Pei et al., Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl. Mater. Interfaces 9, 20330–20339 (2017). https://doi.org/10.1021/acsami.6b14650
- J. Yu, J.T. Del Mundo, G. Freychet, M. Zhernenkov, E. Schaible et al., Dynamic structural change of plant epidermal cell walls under strain. Small 20, e2311832 (2024). https://doi.org/10.1002/smll.202311832
- Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002). https://doi.org/10.1021/ja0257319
- Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003). https://doi.org/10.1021/ja037055w
- P. Langan, Y. Nishiyama, H. Chanzy, A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121, 9940–9946 (1999). https://doi.org/10.1021/ja9916254
- M. Martínez-Sanz, M.J. Gidley, E.P. Gilbert, Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering. Soft Matter 12, 1534–1549 (2016). https://doi.org/10.1039/c5sm02085a
- S.-Q. Chen, D. Mikkelsen, P. Lopez-Sanchez, D. Wang, M. Martinez-Sanz et al., Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24, 1211–1226 (2017). https://doi.org/10.1007/s10570-017-1203-3
- D.J. Cosgrove, Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121–130 (1989). https://doi.org/10.1007/BF00392162
- M.C. Piontek, W.H. Roos, Atomic force microscopy: an introduction. Methods Mol. Biol. 1665, 243–258 (2018). https://doi.org/10.1007/978-1-4939-7271-5_13
- S.-V. Kontomaris, The hertz model in AFM nanoindentation experiments: applications in biological samples and biomaterials. Micro Nanosyst. 10, 11–22 (2018). https://doi.org/10.2174/1876402910666180426114700
- S. Bhagia, J. Ďurkovič, R. Lagaňa, M. Kardošová, F. Kačík et al., Nanoscale FTIR and mechanical mapping of plant cell walls for understanding biomass deconstruction. ACS Sustai. Chem. Eng. 10, 3016–3026 (2022). https://doi.org/10.1021/acssuschemeng.1c08163
- S.V. Kontomaris, A. Malamou, A. Stylianou, The hertzian theory in AFM nanoindentation experiments regarding biological samples: overcoming limitations in data processing. Micron 155, 103228 (2022). https://doi.org/10.1016/j.micron.2022.103228
- X. Xi, S.H. Kim, B. Tittmann, Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J. Appl. Phys. 117, 024703 (2015). https://doi.org/10.1063/1.4906094
- Y.M. Efremov, D.V. Bagrov, M.P. Kirpichnikov, K.V. Shaitan, Application of the Johnson-Kendall-Roberts model in AFM-based mechanical measurements on cells and gel. Colloids Surf. B Biointerfaces 134, 131–139 (2015). https://doi.org/10.1016/j.colsurfb.2015.06.044
- M. Makarem, C.M. Lee, K. Kafle, S. Huang, I. Chae et al., Probing cellulose structures with vibrational spectroscopy. Cellulose 26, 35–79 (2019). https://doi.org/10.1007/s10570-018-2199-z
- S.H. Kim, C.M. Lee, K. Kafle, Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30, 2127–2141 (2013). https://doi.org/10.1007/s11814-013-0162-0
- M. Obersriebnig, J. Konnerth, W. Gindl-Altmutter, Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation. Int. J. Adhes. Adhes. 40, 129–134 (2013). https://doi.org/10.1016/j.ijadhadh.2012.08.011
- W. Gindl, H.S. Gupta, T. Schöberl, H.C. Lichtenegger, P. Fratzl, Mechanical properties of spruce wood cell walls by nanoindentation. Appl. Phys. A 79, 2069–2073 (2004). https://doi.org/10.1007/s00339-004-2864-y
- Y. Wu, S. Wang, D. Zhou, C. Xing, Y. Zhang et al., Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresour. Technol. 101, 2867–2871 (2010). https://doi.org/10.1016/j.biortech.2009.10.074
- G. Mosca, A. Sapala, S. Strauss, A.-L. Routier-Kierzkowska, R.S. Smith, On the micro-indentation of plant cells in a tissue context. Phys. Biol. 14, 015003 (2017). https://doi.org/10.1088/1478-3975/aa5698
- T.J. Bootten, P.J. Harris, L.D. Melton, R.H. Newman, Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromol 10, 2961–2967 (2009). https://doi.org/10.1021/bm900762m
- T. Wang, P. Phyo, M. Hong, Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl. Magn. Reson. 78, 56–63 (2016). https://doi.org/10.1016/j.ssnmr.2016.08.001
- C. Lee, K. Dazen, K. Kafle, A. Moore, D.K. Johnson et al., Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. Adv. Polym. Sci. (2015). https://doi.org/10.1007/12_2015_320
- S.J. Hill, R.A. Franich, P.T. Callaghan, R.H. Newman, Nature’s nanocomposites: a new look at molecular architecture in wood cell walls. New Zealand J. Forestry Sci. 39, 251–257 (2009)
- M. Mili, S.A.R. Hashmi, M. Ather, V. Hada, N. Markandeya et al., Novel lignin as natural-biodegradable binder for various sectors—a review. J. Appl. Polym. Sci. 139, 51951 (2022). https://doi.org/10.1002/app.51951
- P.B. White, T. Wang, Y.B. Park, D.J. Cosgrove, M. Hong, Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014). https://doi.org/10.1021/ja504108h
- C. Ye, S.T. Malak, K. Hu, W. Wu, V.V. Tsukruk, Cellulose nanocrystal microcapsules as tunable cages for nano- and microps. ACS Nano 9, 10887–10895 (2015). https://doi.org/10.1021/acsnano.5b03905
- M.C. McCann, M. Hammouri, R. Wilson, P. Belton, K. Roberts, Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 100, 1940–1947 (1992). https://doi.org/10.1104/pp.100.4.1940
- K. Kafle, Y.B. Park, C.M. Lee, J.J. Stapleton, S.N. Kiemle et al., Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose 24, 3145–3154 (2017). https://doi.org/10.1007/s10570-017-1337-3
- R.H. Wilson, A.C. Smith, M. Kacuráková, P.K. Saunders, N. Wellner et al., The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 124, 397–405 (2000). https://doi.org/10.1104/pp.124.1.397
- F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann et al., Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012). https://doi.org/10.1021/nl301159v
- L. Mester, A.A. Govyadinov, S. Chen, M. Goikoetxea, R. Hillenbrand, Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020). https://doi.org/10.1038/s41467-020-17034-6
- H. Hora, Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). https://doi.org/10.1017/S0263034600001889
- A.L. Barnette, L.C. Bradley, B.D. Veres, E.P. Schreiner, Y.B. Park et al., Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12, 2434–2439 (2011). https://doi.org/10.1021/bm200518n
- C.M. Lee, K. Kafle, Y.B. Park, S.H. Kim, Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys. Chem. Chem. Phys. 16, 10844–10853 (2014). https://doi.org/10.1039/c4cp00515e
- M. Makarem, Y. Nishiyama, X. Xin, D.M. Durachko, Y. Gu et al., Distinguishing mesoscale polar order (unidirectional vs bidirectional) of cellulose microfibrils in plant cell walls using sum frequency generation spectroscopy. J. Phys. Chem. B 124, 8071–8081 (2020). https://doi.org/10.1021/acs.jpcb.0c07076
- Y.B. Park, C.M. Lee, B.W. Koo, S. Park, D.J. Cosgrove et al., Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol. 163, 907–913 (2013). https://doi.org/10.1104/pp.113.225235
- Y.B. Park, C.M. Lee, K. Kafle, S. Park, D.J. Cosgrove et al., Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromol 15, 2718–2724 (2014). https://doi.org/10.1021/bm500567v
- B. Hammouda, Probing nanoscale structures – the SANS toolbox, National Institute of Standards and Research, Center for Neutron Gaithersburg, MD 20899–6102, Gaithersburg, 2008.
- J. Choi, J. Lee, M. Makarem, S. Huang, S.H. Kim, Numerical simulation of vibrational sum frequency generation intensity for non-centrosymmetric domains interspersed in an amorphous matrix: a case study for cellulose in plant cell wall. J. Phys. Chem. B 126, 6629–6641 (2022). https://doi.org/10.1021/acs.jpcb.2c03897
- A.P.C. Almeida, J.P. Canejo, S.N. Fernandes, C. Echeverria, P.L. Almeida et al., Cellulose-based biomimetics and their applications. Adv. Mater. 30, e1703655 (2018). https://doi.org/10.1002/adma.201703655
- R. Saberi-Riseh, M. Hassanisaadi, M. Vatankhah, R.S. Varma, V.K. Thakur, Nano/micro-structural supramolecular biopolymers: innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Lett. 16, 147 (2024). https://doi.org/10.1007/s40820-024-01348-x
- V. Guillard, S. Gaucel, C. Fornaciari, H. Angellier-Coussy, P. Buche et al., The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 5, 121 (2018). https://doi.org/10.3389/fnut.2018.00121
- S.S. Ahankari, A.R. Subhedar, S.S. Bhadauria, A. Dufresne, Nanocellulose in food packaging: a review. Carbohydr. Polym. 255, 117479 (2021). https://doi.org/10.1016/j.carbpol.2020.117479
- P.J.P. Espitia, W.-X. Du, R. de Jesús-Avena-Bustillos, N. de Fátima-Ferreira-Soares, T.H. McHugh, Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 35, 287–296 (2014). https://doi.org/10.1016/j.foodhyd.2013.06.005
- M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym. 157, 167–175 (2017). https://doi.org/10.1016/j.carbpol.2016.09.062
- A. Trajkovska-Petkoska, D. Daniloski, N.M. Dcunha, N. Naumovski, A.T. Broach, Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 140, 109981 (2021). https://doi.org/10.1016/j.foodres.2020.109981
- J.A. Sirviö, M.Y. Ismail, K. Zhang, M.V. Tejesvi, A. Ämmälä, Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. J. Mater. Chem. A 8, 7935–7946 (2020). https://doi.org/10.1039/C9TA13182E
- J. Trifol, R. Moriana, Barrier packaging solutions from residual biomass: synergetic properties of CNF and LCNF in films. Ind. Crops Prod. 177, 114493 (2022). https://doi.org/10.1016/j.indcrop.2021.114493
- V. Mohanta, G. Madras, S. Patil, Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl. Mater. Interfaces 6, 20093–20101 (2014). https://doi.org/10.1021/am505681e
- L. Yang, Y. Liu, L. Sun, C. Zhao, G. Chen et al., Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 14, 4 (2021). https://doi.org/10.1007/s40820-021-00747-8
- D.L. Sanchez, J.H. Nelson, J. Johnston, A. Mileva, D.M. Kammen, Biomass enables the transition to a carbon-negative power system across western NorthAmerica. Nat. Clim. Change 5, 230–234 (2015). https://doi.org/10.1038/nclimate2488
- B. Vanholme, T. Desmet, F. Ronsse, K. Rabaey, F. Van Breusegem et al., Towards a carbon-negative sustainable bio-based economy. Front. Plant Sci. 4, 174 (2013). https://doi.org/10.3389/fpls.2013.00174
- R.J. Brienen, P.A. Zuidema, Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front. Ecol. Environ. 5, 302–306 (2007). https://doi.org/10.1890/1540-9295
- O.G. Gaoue, J. Jiang, W. Ding, F.B. Agusto, S. Lenhart, Optimal harvesting strategies for timber and non-timber forest products in tropical ecosystems. Theor. Ecol. 9, 287–297 (2016). https://doi.org/10.1007/s12080-015-0286-4
- A.J. Svagan, M.A. Samir, L.A. Berglund, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromol 8, 2556–2563 (2007). https://doi.org/10.1021/bm0703160
- W. Gindl, J. Keckes, Drawing of self-reinforced cellulose films. J. Appl. Polym. Sci. 103, 2703–2708 (2007). https://doi.org/10.1002/app.25434
- Y. Cai, L. Geng, S. Chen, S. Shi, B.S. Hsiao et al., Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness. ACS Appl. Mater. Interfaces 12, 32090–32098 (2020). https://doi.org/10.1021/acsami.0c04504
- E. Niinivaara, E.D. Cranston, Bottom-up assembly of nanocellulose structures. Carbohydr. Polym. 247, 116664 (2020). https://doi.org/10.1016/j.carbpol.2020.116664
- J.S. Srndovic, Interactions between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites. RISE Research Institutes of Sweden, Thesis for: The Degree of Doctor of Philosophy, (2011).
- J.S. Stevanic, L. Salmén, Interactions among components in the primary cell wall of Norway spruce (Picea Abies (L) Karst); Effect of a low sulphonation pretreatment. J. Pulp Paper Sci. 34, 107–112 (2008)
- X. Du, G. Gellerstedt, J. Li, Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74, 328–338 (2013). https://doi.org/10.1111/tpj.12124
- N.C. Carpita, M.C. McCann, Redesigning plant cell walls for the biomass-based bioeconomy. J. Biol. Chem. 295, 15144–15157 (2020). https://doi.org/10.1074/jbc.REV120.014561
- P.L.N. Khui, M.R. Rahman, M.K.B. Bakri, A review on the extraction of cellulose and nanocellulose as a filler through solid waste management. J. Thermoplast. Compos. Mater. 36, 1306–1327 (2023). https://doi.org/10.1177/08927057211020800
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- L. Deiana, A.A. Rafi, V.R. Naidu, C.-W. Tai, J.-E. Bäckvall et al., Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chem. Commun. 57, 8814–8817 (2021). https://doi.org/10.1039/d1cc02878b
References
D.J. Cosgrove, Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22, 122–131 (2014). https://doi.org/10.1016/j.pbi.2014.11.001
D.J. Cosgrove, M.C. Jarvis, Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3, 204 (2012). https://doi.org/10.3389/fpls.2012.00204
N. Carpita, M. Tierney, M. Campbell, Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol. Biol. 47, 1–5 (2001). https://doi.org/10.1007/978-94-010-0668-2_1
D.J. Cosgrove, Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861 (2005). https://doi.org/10.1038/nrm1746
E.R. Lampugnani, G.A. Khan, M. Somssich, S. Persson, Building a plant cell wall at a glance. J. Cell Sci. 131, jcs207373 (2018). https://doi.org/10.1242/jcs.207373
D.J. Cosgrove, Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 25, 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y
C. Voiniciuc, M. Pauly, B. Usadel, Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiol. 176, 2590–2600 (2018). https://doi.org/10.1104/pp.17.01776
J. Cybulska, E. Vanstreels, Q.T. Ho, C.M. Courtin, V. Van Craeyveld et al., Mechanical characteristics of artificial cell walls. J. Food Eng. 96, 287–294 (2010). https://doi.org/10.1016/j.jfoodeng.2009.08.001
S. Rongpipi, D. Ye, E.D. Gomez, E.W. Gomez, Progress and opportunities in the characterization of cellulose - an important regulator of cell wall growth and mechanics. Front. Plant Sci. 9, 1894 (2019). https://doi.org/10.3389/fpls.2018.01894
S.E. Whitney, M.G. Gothard, J.T. Mitchell, M.J. Gidley, Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol. 121, 657–664 (1999). https://doi.org/10.1104/pp.121.2.657
R. Calcutt, R. Vincent, D. Dean, T.L. Arinzeh, R. Dixit, Plant cell adhesion and growth on artificial fibrous scaffolds as an in vitro model for plant development. Sci. Adv. 7, eabj1469 (2021). https://doi.org/10.1126/sciadv.abj1469
W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Lett. 9, 23 (2017). https://doi.org/10.1007/s40820-016-0125-1
H. Yu, J. Zhang, S. Zhang, Z. Han, Bionic structures and materials inspired by plant leaves: a comprehensive review for innovative problem-solving. Prog. Mater. Sci. 139, 101181 (2023). https://doi.org/10.1016/j.pmatsci.2023.101181
Y. Navon, Interaction of plant cell wall building blocks: towards a bioinspired model system. (Thesis, 2020).
S. Zhou, K. Jin, M.J. Buehler, Understanding plant biomass via computational modeling. Adv. Mater. 33, e2003206 (2021). https://doi.org/10.1002/adma.202003206
H. Yi, V.M. Puri, Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol. 160, 1281–1292 (2012). https://doi.org/10.1104/pp.112.201228
H.C. Woolfenden, G. Bourdais, M. Kopischke, E. Miedes, A. Molina et al., A computational approach for inferring the cell wall properties that govern guard cell dynamics. Plant J. 92, 5–18 (2017). https://doi.org/10.1111/tpj.13640
D.J. Cosgrove, Building an extensible cell wall. Plant Physiol. 189, 1246–1277 (2022). https://doi.org/10.1093/plphys/kiac184
C. Plomion, G. Leprovost, A. Stokes, Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001). https://doi.org/10.1104/pp.010816
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., The Plant Cell Wall, in: Mol Biol Cell, 4th ed., Garland Science, New York, 2002. https://www.ncbi.nlm.nih.gov/books/NBK26928/ (accessed February 4, 2023).
L.J. Gibson, The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface. 9, 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341
B. Zhang, Y. Gao, L. Zhang, Y. Zhou, The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 63, 251–272 (2021). https://doi.org/10.1111/jipb.13055
R. Zhong, Z.-H. Ye, Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 56, 195–214 (2015). https://doi.org/10.1093/pcp/pcu140
P.M. Pieczywek, V. Chibrikov, A. Zdunek, In silico studies of plant primary cell walls–structure and mechanics. Biol. Rev. 98, 887–899 (2023). https://doi.org/10.1111/brv.12935
P.B. Green, Multinet growth in the cell wall of Nitella. J. Biophys. Biochem. Cytol. 7, 289–296 (1960). https://doi.org/10.1083/jcb.7.2.289
R.D. Preston, The case for multinet growth in growing walls of plant cells. Planta 155, 356–363 (1982). https://doi.org/10.1007/BF00429465
N. Yilmaz, Y. Kodama, K. Numata, Revealing the architecture of the cell wall in living plant cells by bioimaging and enzymatic degradation. Biomacromol 21, 95–103 (2020). https://doi.org/10.1021/acs.biomac.9b00979
J. Chan, Microtubule and cellulose microfibril orientation during plant cell and organ growth. J. Microsc. 247, 23–32 (2012). https://doi.org/10.1111/j.1365-2818.2011.03585.x
Y. Zhang, J. Yu, X. Wang, D.M. Durachko, S. Zhang et al., Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021). https://doi.org/10.1126/science.abf2824
C.T. Anderson, J.J. Kieber, Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71, 39–69 (2020). https://doi.org/10.1146/annurev-arplant-081519-035846
M. Sorieul, A. Dickson, S.J. Hill, H. Pearson, Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9, 618 (2016). https://doi.org/10.3390/ma9080618
N. Terashima, K. Kitano, M. Kojima, M. Yoshida, H. Yamamoto et al., Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of Ginkgo tracheid. J. Wood Sci. 55, 409–416 (2009). https://doi.org/10.1007/s10086-009-1049-x
L. Salmén, Micromechanical understanding of the cell-wall structure. Comptes Rendus Biol. 327, 873–880 (2004). https://doi.org/10.1016/j.crvi.2004.03.010
C. Lian, J. Yuan, J. Luo, S. Zhang, R. Liu et al., Microfibril orientation of the secondary cell wall in parenchyma cells of Phyllostachys edulis culms. Cellulose 29, 3153–3161 (2022). https://doi.org/10.1007/s10570-022-04485-x
L.A. Donaldson, Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy. Plant Methods 18, 27 (2022). https://doi.org/10.1186/s13007-022-00865-3
M. Behr, M. El Jaziri, M. Baucher Glycobiology of the plant secondary cell wall dynamics. Advances in Botanical Research. Elsevier, (2022)., pp 97–131. https://doi.org/10.1016/bs.abr.2022.02.003
X. Kang, A. Kirui, M.C. Dickwella Widanage, F. Mentink-Vigier, D.J. Cosgrove et al., Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat. Commun. 10, 347 (2019). https://doi.org/10.1038/s41467-018-08252-0
U. Ray, S. Zhu, Z. Pang, T. Li, Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 33, e2002504 (2021). https://doi.org/10.1002/adma.202002504
S.E.C. Whitney, M.J. Gidley, S.J. McQueen-Mason, Probing expansin action using cellulose/hemicellulose composites. Plant J. 22, 327–334 (2000). https://doi.org/10.1046/j.1365-313x.2000.00742.x
S.W. Fanta, W. Vanderlinden, M.K. Abera, P. Verboven, R. Karki et al., Water transport properties of artificial cell walls. J. Food Eng. 108, 393–402 (2012). https://doi.org/10.1016/j.jfoodeng.2011.09.010
S.M. Choi, K.M. Rao, S.M. Zo, E.J. Shin, S.S. Han, Bacterial cellulose and its applications. Polymers 14, 1080 (2022). https://doi.org/10.3390/polym14061080
J. Yu, Y. Zhang, D.J. Cosgrove, The nonlinear mechanics of highly extensible plant epidermal cell walls. Proc. Natl. Acad. Sci. U.S.A. 121, e2316396121 (2024). https://doi.org/10.1073/pnas.2316396121
O.M. Astley, E. Chanliaud, A.M. Donald, M.J. Gidley, Tensile deformation of bacterial cellulose composites. Int. J. Biol. Macromol. 32, 28–35 (2003). https://doi.org/10.1016/s0141-8130(03)00022-9
J.R. Barnett, V.A. Bonham, Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79, 461–472 (2004). https://doi.org/10.1017/S1464793103006377
H. Lichtenegger, A. Reiterer, S.E. Stanzl-Tschegg, P. Fratzl, Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization. J. Struct. Biol. 128, 257–269 (1999). https://doi.org/10.1006/jsbi.1999.4194
S.E.C. Whitney, J.E. Brigham, A.H. Darke, J.S.G. Reid, M.J. Gidley, In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J. 8, 491–504 (1995). https://doi.org/10.1046/j.1365-313X.1995.8040491.x
S.E.C. Whitney, J.E. Brigham, A.H. Darke, J.S.G. Reid, M.J. Gidley Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr. Res. 307, 299–309 (1998). https://doi.org/10.1016/S0008-6215(98)00004-4
D.J. Cosgrove, Measuring in vitro extensibility of growing plant cell walls. Z.A. Popper (ed) Methods in Molecular Biology. Humana Press, (2010)., pp 291–303. https://doi.org/10.1007/978-1-61779-008-9_20
T. Zhang, H. Tang, D. Vavylonis, D.J. Cosgrove, Disentangling loosening from softening: insights into primary cell wall structure. Plant J. 100, 1101–1117 (2019). https://doi.org/10.1111/tpj.14519
Y.B. Park, D.J. Cosgrove, Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 56, 180–194 (2015). https://doi.org/10.1093/pcp/pcu204
E. Chanliaud, K.M. Burrows, G. Jeronimidis, M.J. Gidley, Mechanical properties of primary plant cell wall analogues. Planta 215, 989–996 (2002). https://doi.org/10.1007/s00425-002-0783-8
M. Shafayet Zamil, H. Yi, V.M. Puri, A multiscale FEA framework for bridging cell-wall to tissue-scale mechanical properties: the contributions of middle Lamella interface and cell shape. J. Mater. Sci. 52, 7947–7968 (2017). https://doi.org/10.1007/s10853-017-0999-4
J. Cybulska, A. Zdunek, K. Konstankiewicz, Calcium effect on mechanical properties of model cell walls and apple tissue. J. Food Eng. 102, 217–223 (2011). https://doi.org/10.1016/j.jfoodeng.2010.08.019
Y. Lyu, T. Matsumoto, S. Taira, K. Ijiri, A. Yoshinaga et al., Influences of polysaccharides in wood cell walls on lignification in vitro. Cellulose 28, 9907–9917 (2021). https://doi.org/10.1007/s10570-021-04108-x
X. Zhao, H. Zhang, K.-Y. Chan, X. Huang, Y. Yang et al., Tree-inspired structurally graded aerogel with synergistic water, salt, and thermal transport for high-salinity solar-powered evaporation. Nano-Micro Lett. 16, 222 (2024). https://doi.org/10.1007/s40820-024-01448-8
E.A. Guggenheim, Applications of statistical mechanics (Clarendon P, Oxford, 1996)
C.F. Fontan, J. Chirife, E. Sancho, H.A. Iglesias, Analysis of a model for water sorption phenomena in foods. J. Food Sci. 47, 1590–1594 (1982). https://doi.org/10.1111/j.1365-2621.1982.tb04989.x
C. Bertolin, L. de Ferri, M. Strojecki, Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Procedia Struct. Integr. 26, 147–154 (2020). https://doi.org/10.1016/j.prostr.2020.06.018
S. Zhao, F. Caruso, L. Dähne, G. Decher, B.G. De Geest et al., The future of layer-by-layer assembly: a tribute to ACS nano associate editor helmuth möhwald. ACS Nano 13, 6151–6169 (2019). https://doi.org/10.1021/acsnano.9b03326
M. Kolasińska, P. Warszyński, The effect of nature of polyions and treatment after deposition on wetting characteristics of polyelectrolyte multilayers. Appl. Surf. Sci. 252, 759–765 (2005). https://doi.org/10.1016/j.apsusc.2005.02.060
A. Dammak, C. Moreau, F. Azzam, B. Jean, F. Cousin et al., Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals–xyloglucan multilayered thin films. J. Colloid Interface Sci. 460, 214–220 (2015). https://doi.org/10.1016/j.jcis.2015.08.048
C. Cerclier, F. Cousin, H. Bizot, C. Moreau, B. Cathala, Elaboration of spin-coated cellulose-xyloglucan multilayered thin films. Langmuir 26, 17248–17255 (2010). https://doi.org/10.1021/la102614b
B. Jean, L. Heux, F. Dubreuil, G. Chambat, F. Cousin, Non-electrostatic building of biomimetic Cellulose−Xyloglucan multilayers. Langmuir 25, 3920–3923 (2009). https://doi.org/10.1021/la802801q
G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997). https://doi.org/10.1126/science.277.5330.1232
R. Valentin, C. Cerclier, N. Geneix, V. Aguié-Béghin, C. Gaillard et al., Elaboration of extensin-pectin thin film model of primary plant cell wall. Langmuir 26, 9891–9898 (2010). https://doi.org/10.1021/la100265d
A.M. Showalter, Structure and function of plant cell wall proteins. Plant Cell 5, 9–23 (1993). https://doi.org/10.1105/tpc.5.1.9
A. Hambardzumyan, M. Molinari, N. Dumelie, L. Foulon, A. Habrant et al., Structure and optical properties of plant cell wall bio-inspired materials: cellulose-lignin multilayer nanocomposites. Comptes Rendus Biol. 334, 839–850 (2011). https://doi.org/10.1016/j.crvi.2011.07.003
E. Lambert, V. Aguié-Béghin, D. Dessaint, L. Foulon, B. Chabbert et al., Real time and quantitative imaging of lignocellulosic films hydrolysis by atomic force microscopy reveals lignin recalcitrance at nanoscale. Biomacromol 20, 515–527 (2019). https://doi.org/10.1021/acs.biomac.8b01539
L. Muraille, V. Aguié-Béghin, B. Chabbert, M. Molinari, Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale. Sci. Rep. 7, 44065 (2017). https://doi.org/10.1038/srep44065
L. Muraille, M. Pernes, A. Habrant, R. Serimaa, M. Molinari et al., Impact of lignin on water sorption properties of bioinspired self-assemblies of lignocellulosic polymers. Eur. Polym. J. 64, 21–35 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.040
T. Horseman, M. Tajvidi, C.I.K. Diop, D.J. Gardner, Preparation and property assessment of neat lignocellulose nanofibrils (LCNF) and their composite films. Cellulose 24, 2455–2468 (2017). https://doi.org/10.1007/s10570-017-1266-1
K. Abe, T. Yonekawa, T. Natsume, Artificial lignification of a cellulose microfibril-based hydrogel and resulting effect on tensile properties. Holzforschung 76, 838–844 (2022). https://doi.org/10.1515/hf-2022-0028
L. Ma, Y. Zhu, Y. Huang, L. Zhang, Z. Wang, Strong water-resistant, UV-blocking cellulose/glucomannan/lignin composite films inspired by natural LCC bonds. Carbohydr. Polym. 281, 119083 (2022). https://doi.org/10.1016/j.carbpol.2021.119083
M. Farooq, T. Zou, G. Riviere, M.H. Sipponen, M. Österberg, Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin ps. Biomacromol 20, 693–704 (2019). https://doi.org/10.1021/acs.biomac.8b01364
A. Hambardzumyan, L. Foulon, B. Chabbert, V. Aguié-Béghin, Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13, 4081–4088 (2012). https://doi.org/10.1021/bm301373b
D. Da Silva Perez, R. Ruggiero, L.C. Morais, A.E.H. Machado, K. Mazeau, Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20, 3151–3158 (2004). https://doi.org/10.1021/la0357817
X. Yang, E. Jungstedt, M.S. Reid, L.A. Berglund, Polymer films from cellulose nanofibrils—effects from interfibrillar interphase on mechanical behavior. Macromolecules 54, 4443–4452 (2021). https://doi.org/10.1021/acs.macromol.1c00305
J. Sunamoto, T. Sato, T. Taguchi, H. Hamazaki, Naturally occurring polysaccharide derivatives which behave as an artificial cell wall on an artificial cell liposome. Macromolecules 25, 5665–5670 (1992). https://doi.org/10.1021/ma00047a017
E.C. Kang, K. Akiyoshi, J. Sunamoto, Partition of polysaccharide-coated liposomes in aqueous two-phase systems. Int. J. Biol. Macromol. 16, 348–353 (1994). https://doi.org/10.1016/0141-8130(94)90068-x
T. Paulraj, A.V. Riazanova, K. Yao, R.L. Andersson, A. Müllertz et al., Bioinspired layer-by-layer microcapsules based on cellulose nanofibers with switchable permeability. Biomacromol 18, 1401–1410 (2017). https://doi.org/10.1021/acs.biomac.7b00126
Z.-J. Guo, S. Kallus, K. Akiyoshi, J. Sunamoto, Artificial cell wall for plant protoplast. coating of plasma membrane with hydrophobized polysaccharides. Chem. Lett. 24, 415–416 (1995). https://doi.org/10.1246/cl.1995.415
P.J. Dowding, R. Atkin, B. Vincent, P. Bouillot, Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells. Langmuir 20, 11374–11379 (2004). https://doi.org/10.1021/la048561h
T. Paulraj, A.V. Riazanova, A.J. Svagan, Bioinspired capsules based on nanocellulose, xyloglucan and pectin–The influence of capsule wall composition on permeability properties. Acta Biomater. 69, 196–205 (2018). https://doi.org/10.1016/j.actbio.2018.01.003
I. Kalashnikova, H. Bizot, B. Cathala, I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011). https://doi.org/10.1021/la200971f
I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, I. Capron, Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9, 952–959 (2013). https://doi.org/10.1039/C2SM26472B
A.J. Svagan, A. Musyanovych, M. Kappl, M. Bernhardt, G. Glasser et al., Cellulose nanofiber/nanocrystal reinforced capsules: a fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromol 15, 1852–1859 (2014). https://doi.org/10.1021/bm500232h
T. Paulraj, S. Wennmalm, D.C.F. Wieland, A.V. Riazanova, A. Dėdinaitė et al., Primary cell wall inspired micro containers as a step towards a synthetic plant cell. Nat. Commun. 11, 958 (2020). https://doi.org/10.1038/s41467-020-14718-x
S. Mele, O. Söderman, H. Ljusberg-Wahrén, K. Thuresson, M. Monduzzi et al., Phase behavior in the biologically important oleic acid/sodium oleate/water system. Chem. Phys. Lipids 211, 30–36 (2018). https://doi.org/10.1016/j.chemphyslip.2017.11.017
X.-G. Zhu, J.P. Lynch, D.S. LeBauer, A.J. Millar, M. Stitt et al., Plants in silico: why, why now and what? : an integrative platform for plant systems biology research. Plant Cell Environ. 39, 1049–1057 (2016). https://doi.org/10.1111/pce.12673
C. Zhang, M. Chen, S. Keten, B. Coasne, D. Derome et al., Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Sci. Adv. 7, eabi8919 (2021). https://doi.org/10.1126/sciadv.abi8919
K. Jin, Z. Qin, M.J. Buehler, Molecular deformation mechanisms of the wood cell wall material. J. Mech. Behav. Biomed. Mater. 42, 198–206 (2015). https://doi.org/10.1016/j.jmbbm.2014.11.010
L.M. Davies, P.J. Harris, Atomic force microscopy of microfibrils in primary cell walls. Planta 217, 283–289 (2003). https://doi.org/10.1007/s00425-003-0979-6
F. Marga, M. Grandbois, D.J. Cosgrove, T.I. Baskin, Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J. 43, 181–190 (2005). https://doi.org/10.1111/j.1365-313X.2005.02447.x
J.C. Thimm, D.J. Burritt, W.A. Ducker, L.D. Melton, Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J. Struct. Biol. 168, 337–344 (2009). https://doi.org/10.1016/j.jsb.2009.06.017
A. Kozioł, J. Cybulska, P.M. Pieczywek, A. Zdunek, Evaluation of structure and assembly of xyloglucan from tamarind seed (Tamarindus indica L) with atomic force microscopy. Food Biophys. 10, 396–402 (2015). https://doi.org/10.1007/s11483-015-9395-2
J. Cybulska, K. Konstankiewicz, A. Zdunek, K. Skrzypiec, Nanostructure of natural and model cell wall materials. Int. Agrophys. 24, 107–114 (2010). https://doi.org/10.1016/j.indcrop.2009.09.012
Y. Zheng, X. Wang, Y. Chen, E. Wagner, D.J. Cosgrove, Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. Plant J. 93, 211–226 (2018). https://doi.org/10.1111/tpj.13778
C. Xiao, C.T. Anderson, Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: teasing out causes and consequences. Plant Signal. Behav. 11, e1215396 (2016). https://doi.org/10.1080/15592324.2016.1215396
K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromol 4, 1099–1120 (2003). https://doi.org/10.1021/bm020116i
B.D. Vogt, E.K. Lin, W.-L. Wu, C.C. White, Effect of film thickness on the validity of the sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 108, 12685–12690 (2004). https://doi.org/10.1021/jp0481005
M.C. Dixon, Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008). PMID: 19137101; PMCID: PMC2563918.
R.P.H. Kooyman, R.M. Corn, A. Wark, H.J. Lee, E. Gedig et al., Handbook of Surface Plasmon Resonance, RCS Publishing, (2008). https://doi.org/10.1039/9781847558220
M. Martínez-Sanz, M.J. Gidley, E.P. Gilbert, Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review. Carbohydr. Polym. 125, 120–134 (2015). https://doi.org/10.1016/j.carbpol.2015.02.010
D. Ye, S. Rongpipi, S.N. Kiemle, W.J. Barnes, A.M. Chaves et al., Preferred crystallographic orientation of cellulose in plant primary cell walls. Nat. Commun. 11, 4720 (2020). https://doi.org/10.1038/s41467-020-18449-x
V. Abhilash, N. Rajender, K. Suresh, X-ray diffraction spectroscopy of polymer nanocomposites. Spectroscopy Polym Nanocompos. (2016). https://doi.org/10.1016/b978-0-323-40183-8.00014-8
M. Müller, C. Czihak, G. Vogl, P. Fratzl, H. Schober et al., Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31, 3953–3957 (1998). https://doi.org/10.1021/ma980004c
O. Kratky, G. Miholic, Small-angle X-ray investigations with absolute intensity measurements on regenerated, air-swollen cellulose. J. Polym. Sci. Part C. Polym. Symp. 2, 449–476 (1963). https://doi.org/10.1002/polc.5070020142
O.M. Astley, A.M. Donald, A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers. Biomacromol 2, 672–680 (2001). https://doi.org/10.1021/bm005643l
F. Saxe, M. Eder, G. Benecke, B. Aichmayer, P. Fratzl et al., Measuring the distribution of cellulose microfibril angles in primary cell walls by small angle X-ray scattering. Plant Methods 10, 25 (2014). https://doi.org/10.1186/1746-4811-10-25
D. Chen, L.D. Melton, D.J. McGillivray, T.M. Ryan, P.J. Harris, Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Planta 250, 1819–1832 (2019). https://doi.org/10.1007/s00425-019-03262-8
J. Gu, J.M. Catchmark, Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr. Polym. 88, 547–557 (2012). https://doi.org/10.1016/j.carbpol.2011.12.040
M.J. Lundahl, A.G. Cunha, E. Rojo, A.C. Papageorgiou, L. Rautkari et al., Strength and water interactions of cellulose I filaments wet-spun from cellulose nanofibril hydrogels. Sci. Rep. 6, 30695 (2016). https://doi.org/10.1038/srep30695
S. Hooshmand, Y. Aitomäki, N. Norberg, A.P. ew, K. Oksman, Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl. Mater. Interfaces 7, 13022–13028 (2015). https://doi.org/10.1021/acsami.5b03091
J. Yao, S. Chen, Y. Chen, B. Wang, Q. Pei et al., Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl. Mater. Interfaces 9, 20330–20339 (2017). https://doi.org/10.1021/acsami.6b14650
J. Yu, J.T. Del Mundo, G. Freychet, M. Zhernenkov, E. Schaible et al., Dynamic structural change of plant epidermal cell walls under strain. Small 20, e2311832 (2024). https://doi.org/10.1002/smll.202311832
Y. Nishiyama, P. Langan, H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002). https://doi.org/10.1021/ja0257319
Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan, Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003). https://doi.org/10.1021/ja037055w
P. Langan, Y. Nishiyama, H. Chanzy, A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121, 9940–9946 (1999). https://doi.org/10.1021/ja9916254
M. Martínez-Sanz, M.J. Gidley, E.P. Gilbert, Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering. Soft Matter 12, 1534–1549 (2016). https://doi.org/10.1039/c5sm02085a
S.-Q. Chen, D. Mikkelsen, P. Lopez-Sanchez, D. Wang, M. Martinez-Sanz et al., Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24, 1211–1226 (2017). https://doi.org/10.1007/s10570-017-1203-3
D.J. Cosgrove, Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121–130 (1989). https://doi.org/10.1007/BF00392162
M.C. Piontek, W.H. Roos, Atomic force microscopy: an introduction. Methods Mol. Biol. 1665, 243–258 (2018). https://doi.org/10.1007/978-1-4939-7271-5_13
S.-V. Kontomaris, The hertz model in AFM nanoindentation experiments: applications in biological samples and biomaterials. Micro Nanosyst. 10, 11–22 (2018). https://doi.org/10.2174/1876402910666180426114700
S. Bhagia, J. Ďurkovič, R. Lagaňa, M. Kardošová, F. Kačík et al., Nanoscale FTIR and mechanical mapping of plant cell walls for understanding biomass deconstruction. ACS Sustai. Chem. Eng. 10, 3016–3026 (2022). https://doi.org/10.1021/acssuschemeng.1c08163
S.V. Kontomaris, A. Malamou, A. Stylianou, The hertzian theory in AFM nanoindentation experiments regarding biological samples: overcoming limitations in data processing. Micron 155, 103228 (2022). https://doi.org/10.1016/j.micron.2022.103228
X. Xi, S.H. Kim, B. Tittmann, Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J. Appl. Phys. 117, 024703 (2015). https://doi.org/10.1063/1.4906094
Y.M. Efremov, D.V. Bagrov, M.P. Kirpichnikov, K.V. Shaitan, Application of the Johnson-Kendall-Roberts model in AFM-based mechanical measurements on cells and gel. Colloids Surf. B Biointerfaces 134, 131–139 (2015). https://doi.org/10.1016/j.colsurfb.2015.06.044
M. Makarem, C.M. Lee, K. Kafle, S. Huang, I. Chae et al., Probing cellulose structures with vibrational spectroscopy. Cellulose 26, 35–79 (2019). https://doi.org/10.1007/s10570-018-2199-z
S.H. Kim, C.M. Lee, K. Kafle, Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30, 2127–2141 (2013). https://doi.org/10.1007/s11814-013-0162-0
M. Obersriebnig, J. Konnerth, W. Gindl-Altmutter, Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation. Int. J. Adhes. Adhes. 40, 129–134 (2013). https://doi.org/10.1016/j.ijadhadh.2012.08.011
W. Gindl, H.S. Gupta, T. Schöberl, H.C. Lichtenegger, P. Fratzl, Mechanical properties of spruce wood cell walls by nanoindentation. Appl. Phys. A 79, 2069–2073 (2004). https://doi.org/10.1007/s00339-004-2864-y
Y. Wu, S. Wang, D. Zhou, C. Xing, Y. Zhang et al., Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresour. Technol. 101, 2867–2871 (2010). https://doi.org/10.1016/j.biortech.2009.10.074
G. Mosca, A. Sapala, S. Strauss, A.-L. Routier-Kierzkowska, R.S. Smith, On the micro-indentation of plant cells in a tissue context. Phys. Biol. 14, 015003 (2017). https://doi.org/10.1088/1478-3975/aa5698
T.J. Bootten, P.J. Harris, L.D. Melton, R.H. Newman, Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromol 10, 2961–2967 (2009). https://doi.org/10.1021/bm900762m
T. Wang, P. Phyo, M. Hong, Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl. Magn. Reson. 78, 56–63 (2016). https://doi.org/10.1016/j.ssnmr.2016.08.001
C. Lee, K. Dazen, K. Kafle, A. Moore, D.K. Johnson et al., Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, and SFG methods. Adv. Polym. Sci. (2015). https://doi.org/10.1007/12_2015_320
S.J. Hill, R.A. Franich, P.T. Callaghan, R.H. Newman, Nature’s nanocomposites: a new look at molecular architecture in wood cell walls. New Zealand J. Forestry Sci. 39, 251–257 (2009)
M. Mili, S.A.R. Hashmi, M. Ather, V. Hada, N. Markandeya et al., Novel lignin as natural-biodegradable binder for various sectors—a review. J. Appl. Polym. Sci. 139, 51951 (2022). https://doi.org/10.1002/app.51951
P.B. White, T. Wang, Y.B. Park, D.J. Cosgrove, M. Hong, Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014). https://doi.org/10.1021/ja504108h
C. Ye, S.T. Malak, K. Hu, W. Wu, V.V. Tsukruk, Cellulose nanocrystal microcapsules as tunable cages for nano- and microps. ACS Nano 9, 10887–10895 (2015). https://doi.org/10.1021/acsnano.5b03905
M.C. McCann, M. Hammouri, R. Wilson, P. Belton, K. Roberts, Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol. 100, 1940–1947 (1992). https://doi.org/10.1104/pp.100.4.1940
K. Kafle, Y.B. Park, C.M. Lee, J.J. Stapleton, S.N. Kiemle et al., Effects of mechanical stretching on average orientation of cellulose and pectin in onion epidermis cell wall: a polarized FT-IR study. Cellulose 24, 3145–3154 (2017). https://doi.org/10.1007/s10570-017-1337-3
R.H. Wilson, A.C. Smith, M. Kacuráková, P.K. Saunders, N. Wellner et al., The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 124, 397–405 (2000). https://doi.org/10.1104/pp.124.1.397
F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann et al., Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012). https://doi.org/10.1021/nl301159v
L. Mester, A.A. Govyadinov, S. Chen, M. Goikoetxea, R. Hillenbrand, Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020). https://doi.org/10.1038/s41467-020-17034-6
H. Hora, Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). https://doi.org/10.1017/S0263034600001889
A.L. Barnette, L.C. Bradley, B.D. Veres, E.P. Schreiner, Y.B. Park et al., Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12, 2434–2439 (2011). https://doi.org/10.1021/bm200518n
C.M. Lee, K. Kafle, Y.B. Park, S.H. Kim, Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys. Chem. Chem. Phys. 16, 10844–10853 (2014). https://doi.org/10.1039/c4cp00515e
M. Makarem, Y. Nishiyama, X. Xin, D.M. Durachko, Y. Gu et al., Distinguishing mesoscale polar order (unidirectional vs bidirectional) of cellulose microfibrils in plant cell walls using sum frequency generation spectroscopy. J. Phys. Chem. B 124, 8071–8081 (2020). https://doi.org/10.1021/acs.jpcb.0c07076
Y.B. Park, C.M. Lee, B.W. Koo, S. Park, D.J. Cosgrove et al., Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Plant Physiol. 163, 907–913 (2013). https://doi.org/10.1104/pp.113.225235
Y.B. Park, C.M. Lee, K. Kafle, S. Park, D.J. Cosgrove et al., Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromol 15, 2718–2724 (2014). https://doi.org/10.1021/bm500567v
B. Hammouda, Probing nanoscale structures – the SANS toolbox, National Institute of Standards and Research, Center for Neutron Gaithersburg, MD 20899–6102, Gaithersburg, 2008.
J. Choi, J. Lee, M. Makarem, S. Huang, S.H. Kim, Numerical simulation of vibrational sum frequency generation intensity for non-centrosymmetric domains interspersed in an amorphous matrix: a case study for cellulose in plant cell wall. J. Phys. Chem. B 126, 6629–6641 (2022). https://doi.org/10.1021/acs.jpcb.2c03897
A.P.C. Almeida, J.P. Canejo, S.N. Fernandes, C. Echeverria, P.L. Almeida et al., Cellulose-based biomimetics and their applications. Adv. Mater. 30, e1703655 (2018). https://doi.org/10.1002/adma.201703655
R. Saberi-Riseh, M. Hassanisaadi, M. Vatankhah, R.S. Varma, V.K. Thakur, Nano/micro-structural supramolecular biopolymers: innovative networks with the boundless potential in sustainable agriculture. Nano-Micro Lett. 16, 147 (2024). https://doi.org/10.1007/s40820-024-01348-x
V. Guillard, S. Gaucel, C. Fornaciari, H. Angellier-Coussy, P. Buche et al., The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front. Nutr. 5, 121 (2018). https://doi.org/10.3389/fnut.2018.00121
S.S. Ahankari, A.R. Subhedar, S.S. Bhadauria, A. Dufresne, Nanocellulose in food packaging: a review. Carbohydr. Polym. 255, 117479 (2021). https://doi.org/10.1016/j.carbpol.2020.117479
P.J.P. Espitia, W.-X. Du, R. de Jesús-Avena-Bustillos, N. de Fátima-Ferreira-Soares, T.H. McHugh, Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 35, 287–296 (2014). https://doi.org/10.1016/j.foodhyd.2013.06.005
M. Chaichi, M. Hashemi, F. Badii, A. Mohammadi, Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr. Polym. 157, 167–175 (2017). https://doi.org/10.1016/j.carbpol.2016.09.062
A. Trajkovska-Petkoska, D. Daniloski, N.M. Dcunha, N. Naumovski, A.T. Broach, Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 140, 109981 (2021). https://doi.org/10.1016/j.foodres.2020.109981
J.A. Sirviö, M.Y. Ismail, K. Zhang, M.V. Tejesvi, A. Ämmälä, Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. J. Mater. Chem. A 8, 7935–7946 (2020). https://doi.org/10.1039/C9TA13182E
J. Trifol, R. Moriana, Barrier packaging solutions from residual biomass: synergetic properties of CNF and LCNF in films. Ind. Crops Prod. 177, 114493 (2022). https://doi.org/10.1016/j.indcrop.2021.114493
V. Mohanta, G. Madras, S. Patil, Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl. Mater. Interfaces 6, 20093–20101 (2014). https://doi.org/10.1021/am505681e
L. Yang, Y. Liu, L. Sun, C. Zhao, G. Chen et al., Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 14, 4 (2021). https://doi.org/10.1007/s40820-021-00747-8
D.L. Sanchez, J.H. Nelson, J. Johnston, A. Mileva, D.M. Kammen, Biomass enables the transition to a carbon-negative power system across western NorthAmerica. Nat. Clim. Change 5, 230–234 (2015). https://doi.org/10.1038/nclimate2488
B. Vanholme, T. Desmet, F. Ronsse, K. Rabaey, F. Van Breusegem et al., Towards a carbon-negative sustainable bio-based economy. Front. Plant Sci. 4, 174 (2013). https://doi.org/10.3389/fpls.2013.00174
R.J. Brienen, P.A. Zuidema, Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front. Ecol. Environ. 5, 302–306 (2007). https://doi.org/10.1890/1540-9295
O.G. Gaoue, J. Jiang, W. Ding, F.B. Agusto, S. Lenhart, Optimal harvesting strategies for timber and non-timber forest products in tropical ecosystems. Theor. Ecol. 9, 287–297 (2016). https://doi.org/10.1007/s12080-015-0286-4
A.J. Svagan, M.A. Samir, L.A. Berglund, Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromol 8, 2556–2563 (2007). https://doi.org/10.1021/bm0703160
W. Gindl, J. Keckes, Drawing of self-reinforced cellulose films. J. Appl. Polym. Sci. 103, 2703–2708 (2007). https://doi.org/10.1002/app.25434
Y. Cai, L. Geng, S. Chen, S. Shi, B.S. Hsiao et al., Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness. ACS Appl. Mater. Interfaces 12, 32090–32098 (2020). https://doi.org/10.1021/acsami.0c04504
E. Niinivaara, E.D. Cranston, Bottom-up assembly of nanocellulose structures. Carbohydr. Polym. 247, 116664 (2020). https://doi.org/10.1016/j.carbpol.2020.116664
J.S. Srndovic, Interactions between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites. RISE Research Institutes of Sweden, Thesis for: The Degree of Doctor of Philosophy, (2011).
J.S. Stevanic, L. Salmén, Interactions among components in the primary cell wall of Norway spruce (Picea Abies (L) Karst); Effect of a low sulphonation pretreatment. J. Pulp Paper Sci. 34, 107–112 (2008)
X. Du, G. Gellerstedt, J. Li, Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74, 328–338 (2013). https://doi.org/10.1111/tpj.12124
N.C. Carpita, M.C. McCann, Redesigning plant cell walls for the biomass-based bioeconomy. J. Biol. Chem. 295, 15144–15157 (2020). https://doi.org/10.1074/jbc.REV120.014561
P.L.N. Khui, M.R. Rahman, M.K.B. Bakri, A review on the extraction of cellulose and nanocellulose as a filler through solid waste management. J. Thermoplast. Compos. Mater. 36, 1306–1327 (2023). https://doi.org/10.1177/08927057211020800
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
L. Deiana, A.A. Rafi, V.R. Naidu, C.-W. Tai, J.-E. Bäckvall et al., Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media. Chem. Commun. 57, 8814–8817 (2021). https://doi.org/10.1039/d1cc02878b