Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis
Corresponding Author: Xiaolei Fan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 114
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Highlights:
1 Critical review of the polymers of intrinsic microporosity (PIM)-1-based membranes for applications in selective CO2 separation.
2 State-of-the-art modification strategies for PIM-1 are thoroughly compared via meta-analysis.
3 Key perspectives for progressing PIM-1 thin film membranes towards practical applications are suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.B. McKeown, P.M. Budd, B. Ghanem, K. Msayib, Microporous polymer material. International patent PCT WO 2005/012397 (2005).
- P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib et al., Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. (2004). https://doi.org/10.1039/B311764B
- L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015). https://doi.org/10.1021/acsmacrolett.5b00512
- B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose et al., Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 12, 2733–2740 (2019). https://doi.org/10.1039/c9ee01384a
- Y. Liu, X. Chen, T. Han, C. Wang, H. Liu et al., Rational macromolecular design and strategies to tune the microporosity for high-performance O2/N2 separation membranes. Sep. Purif. Technol. 334, 125978 (2024). https://doi.org/10.1016/j.seppur.2023.125978
- X. Ma, K. Li, Z. Zhu, H. Dong, J. Lv et al., High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. J. Mater. Chem. A 9, 18313–18322 (2021). https://doi.org/10.1039/d1ta04099e
- W.F. Yong, F.Y. Li, T.-S. Chung, Y.W. Tong, Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J. Mater. Chem. A 1, 13914–13925 (2013). https://doi.org/10.1039/C3TA13308G
- S.V. Gutiérrez-Hernández, F. Pardo, A.B. Foster, P. Gorgojo, P.M. Budd et al., Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. J. Membr. Sci. 675, 121532 (2023). https://doi.org/10.1016/j.memsci.2023.121532
- P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds et al., Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005). https://doi.org/10.1016/j.memsci.2005.01.009
- L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
- B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage. Cambridge University Press (2005).
- J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review. J. Membr. Sci. 107, 1–21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
- P.M. Budd, Sieving gases with twisty polymers. Science 375, 1354–1355 (2022). https://doi.org/10.1126/science.abm5103
- N. Tien-Binh, D. Rodrigue, S. Kaliaguine, In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J. Membr. Sci. 548, 429–438 (2018). https://doi.org/10.1016/j.memsci.2017.11.054
- Y. Cheng, S.R. Tavares, C.M. Doherty, Y. Ying, E. Sarnello et al., Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture. ACS Appl. Mater. Interfaces 10, 43095–43103 (2018). https://doi.org/10.1021/acsami.8b16386
- F. Almansour, M. Alberto, R.S. Bhavsar, X. Fan, P.M. Budd et al., Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Front. Chem. Sci. Eng. 15, 872–881 (2021). https://doi.org/10.1007/s11705-020-2001-2
- M. Yu, A.B. Foster, C.A. Scholes, S.E. Kentish, P.M. Budd, Methanol vapor retards aging of PIM-1 thin film composite membranes in storage. ACS Macro Lett. 12, 113–117 (2023). https://doi.org/10.1021/acsmacrolett.2c00568
- P. Bernardo, F. Bazzarelli, F. Tasselli, G. Clarizia, C.R. Mason et al., Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer 113, 283–294 (2017). https://doi.org/10.1016/j.polymer.2016.10.040
- R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48, 6553–6561 (2015). https://doi.org/10.1021/acs.macromol.5b01581
- W.H. Lee, J.G. Seong, X. Hu, Y.M. Lee, Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines. J. Polym. Sci. 58, 2450–2466 (2020). https://doi.org/10.1002/pol.20200110
- Y. Wang, B.S. Ghanem, Z. Ali, K. Hazazi, Y. Han et al., Recent progress on polymers of intrinsic microporosity and thermally modified analogue materials for membrane-based fluid separations. Small Struct. 2, 2100049 (2021). https://doi.org/10.1002/sstr.202100049
- N.B. McKeown, Polymers of intrinsic microporosity (PIMs). Polymer 202, 122736 (2020). https://doi.org/10.1016/j.polymer.2020.122736
- S. He, B. Zhu, S. Li, Y. Zhang, X. Jiang et al., Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design. Sep. Purif. Technol. 284, 120277 (2022). https://doi.org/10.1016/j.seppur.2021.120277
- P.M. Budd, A.B. Foster, Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr. Opin. Chem. Eng. 36, 100792 (2022). https://doi.org/10.1016/j.coche.2022.100792
- C. Astorino, E. De Nardo, S. Lettieri, G. Ferraro, C.F. Pirri et al., Advancements in gas separation for energy applications: exploring the potential of polymer membranes with intrinsic microporosity (PIM). Membranes 13, 903 (2023). https://doi.org/10.3390/membranes13120903
- M.L. Jue, R.P. Lively, PIM hybrids and derivatives: how to make a good thing better. Curr. Opin. Chem. Eng. 35, 100750 (2022). https://doi.org/10.1016/j.coche.2021.100750
- Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau et al., Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018). https://doi.org/10.1016/j.mtnano.2018.11.003
- R. Swaidan, B.S. Ghanem, E. Litwiller, I. Pinnau, Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. J. Membr. Sci. 457, 95–102 (2014). https://doi.org/10.1016/j.memsci.2014.01.055
- N. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser et al., Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011). https://doi.org/10.1038/nmat2989
- F.Y. Li, Y. Xiao, T.S. Chung, (Neal) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Procedia Eng. 44, 498–500 (2012). https://doi.org/10.1016/j.proeng.2012.08.464
- Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb et al., Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4813 (2014). https://doi.org/10.1038/ncomms5813
- effect on molecular packing and gas separation performance, K. Mizrahi Rodriguez, A.X. Wu, Q. Qian, G. Han, S. Lin et al., Facile and time-efficient carboxylic acid functionalization of PIM-1. Macromolecules 53, 6220–6234 (2020). https://doi.org/10.1021/acs.macromol.0c00933
- M. Hu, J. Liu, J. Kong, P. Jia, N. Qi et al., Free volume and gas transport properties of hydrolyzed polymer of intrinsic microporosity (PIM-1) membrane studied by positron annihilation spectroscopy. Microporous Mesoporous Mater. 335, 111770 (2022). https://doi.org/10.1016/j.micromeso.2022.111770
- N. Du, G.P. Robertson, J. Song, I. Pinnau, M.D. Guiver, High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 42, 6038–6043 (2009). https://doi.org/10.1021/ma9009017
- J.W. Jeon, D.-G. Kim, E.-H. Sohn, Y. Yoo, Y.S. Kim et al., Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes. Macromolecules 50, 8019–8027 (2017). https://doi.org/10.1021/acs.macromol.7b01332
- C.R. Mason, L. Maynard-Atem, N.M. Al-Harbi, P.M. Budd, P. Bernardo et al., Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties. Macromolecules 44, 6471–6479 (2011). https://doi.org/10.1021/ma200918h
- K. Mizrahi Rodriguez, F.M. Benedetti, N. Roy, A.X. Wu, Z.P. Smith, Sorption-enhanced mixed-gas transport in amine functionalized polymers of intrinsic microporosity (PIMs). J. Mater. Chem. A 9, 23631–23642 (2021). https://doi.org/10.1039/d1ta06530k
- N. Du, G.P. Robertson, M.M. Dal-Cin, L. Scoles, M.D. Guiver, Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer 53, 4367–4372 (2012). https://doi.org/10.1016/j.polymer.2012.07.055
- Z. Wang, Q. Shen, J. Liang, Y. Zhang, J. Jin, Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Sep. Purif. Technol. 233, 116008 (2020). https://doi.org/10.1016/j.seppur.2019.116008
- S. Kang, G. Huo, Z. Zhang, T. Guo, Z. Dai et al., Polymers of intrinisic porosity with bulky side groups on the spirobisindane moieties for gas separation. ACS Appl. Polym. Mater. 5, 8660–8669 (2023). https://doi.org/10.1021/acsapm.3c01762
- K. Halder, S. Neumann, G. Bengtson, M.M. Khan, V. Filiz et al., Polymers of intrinsic microporosity postmodified by vinyl groups for membrane applications. Macromolecules 51, 7309–7319 (2018). https://doi.org/10.1021/acs.macromol.8b01252
- J. Zhang, H. Kang, J. Martin, S. Zhang, S. Thomas et al., The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chem. Commun. 52, 6553–6556 (2016). https://doi.org/10.1039/c6cc02308h
- M. Liu, X. Lu, M.D. Nothling, C.M. Doherty, L. Zu et al., Physical aging investigations of a spirobisindane-locked polymer of intrinsic microporosity. ACS Mater. Lett. 2, 993–998 (2020). https://doi.org/10.1021/acsmaterialslett.0c00184
- A.B. Foster, M. Tamaddondar, J.M. Luque-Alled, W.J. Harrison, Z. Li et al., Understanding the topology of the polymer of intrinsic microporosity PIM-1: cyclics, tadpoles, and network structures and their impact on membrane performance. Macromolecules 53, 569–583 (2020). https://doi.org/10.1021/acs.macromol.9b02185
- A.B. Foster, J.L. Beal, M. Tamaddondar, J.M. Luque-Alled, B. Robertson et al., Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. J. Mater. Chem. A 9, 21807–21823 (2021). https://doi.org/10.1039/D1TA03712A
- K. Mizrahi Rodriguez, S. Lin, A.X. Wu, G. Han, J.J. Teesdale et al., Leveraging free volume manipulation to improve the membrane separation performance of amine-functionalized PIM-1. Angew. Chem. Int. Ed. 60, 6593–6599 (2021). https://doi.org/10.1002/anie.202012441
- H. Dong, Z. Zhu, K. Li, Q. Li, W. Ji et al., Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. J. Membr. Sci. 635, 119440 (2021). https://doi.org/10.1016/j.memsci.2021.119440
- L. Chen, P. Su, J. Liu, S. Chen, J. Huang et al., Post-synthesis amination of polymer of intrinsic microporosity membranes for CO2 separation. AICHE J. 69, e18050 (2023). https://doi.org/10.1002/aic.18050
- J. Guan, X. Wang, J. Du, Q. Liang, W. He et al., Surface-engineered PIM-1 membranes for facile CO2 capture. Chem. Eng. J. 477, 147017 (2023). https://doi.org/10.1016/j.cej.2023.147017
- N. Du, M.M. Cin, I. Pinnau, A. Nicalek, G.P. Robertson et al., Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol. Rapid Commun. 32, 631–636 (2011). https://doi.org/10.1002/marc.201000775
- S. Zhou, Y. Sun, B. Xue, S. Li, J. Zheng et al., Controlled superacid-catalyzed self-cross-linked polymer of intrinsic microporosity for high-performance CO2 separation. Macromolecules 53, 7988–7996 (2020). https://doi.org/10.1021/acs.macromol.0c01590
- N. Du, M.M. Dal-Cin, G.P. Robertson, M.D. Guiver, Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation. Macromolecules 45, 5134–5139 (2012). https://doi.org/10.1021/ma300751s
- Y. Sun, J. Zhang, H. Li, F. Fan, Q. Zhao et al., Ester-crosslinked polymers of intrinsic microporosity membranes with enhanced plasticization resistance for CO2 separation. Sep. Purif. Technol. 314, 123623 (2023). https://doi.org/10.1016/j.seppur.2023.123623
- X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu et al., Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes. ACS Appl. Polym. Mater. 2, 987–995 (2020). https://doi.org/10.1021/acsapm.9b01193
- H. Zhao, Q. Xie, X. Ding, J. Chen, M. Hua et al., High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation. J. Membr. Sci. 514, 305–312 (2016). https://doi.org/10.1016/j.memsci.2016.05.013
- K.-S. Liao, J.-Y. Lai, T.-S. Chung, Metal ion modified PIM-1 and its application for propylene/propane separation. J. Membr. Sci. 515, 36–44 (2016). https://doi.org/10.1016/j.memsci.2016.05.032
- Y. Sun, X. Wang, X. Li, W. Xiao, Y. Dai et al., Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chem. Eng. 4, 1–16 (2023). https://doi.org/10.1016/j.gce.2022.09.001
- O. Salinas, X. Ma, E. Litwiller, I. Pinnau, Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016). https://doi.org/10.1016/j.memsci.2015.12.052
- M.L. Jue, Y. Ma, R.P. Lively, Streamlined fabrication of asymmetric carbon molecular sieve hollow fiber membranes. ACS Appl. Polym. Mater. 1, 1960–1964 (2019). https://doi.org/10.1021/acsapm.9b00567
- K.-S. Liao, S. Japip, J.-Y. Lai, T.-S. Chung, Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. J. Membr. Sci. 534, 92–99 (2017). https://doi.org/10.1016/j.memsci.2017.04.017
- J. Liu, Y. Xiao, T.-S. Chung, Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. J. Mater. Chem. A 5, 4583–4595 (2017). https://doi.org/10.1039/C6TA09751K
- Y. Ma, F. Zhang, S. Yang, R.P. Lively, Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. J. Membr. Sci. 564, 404–414 (2018). https://doi.org/10.1016/j.memsci.2018.07.040
- Y. Ma, M.L. Jue, F. Zhang, R. ias, H.Y. Jang et al., Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. Int. Ed. 58, 13259–13265 (2019). https://doi.org/10.1002/anie.201903105
- S. He, X. Jiang, S. Li, F. Ran, J. Long et al., Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AICHE J. 66, e16543 (2020). https://doi.org/10.1002/aic.16543
- Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li et al., Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat. Commun. 4, 1918 (2013). https://doi.org/10.1038/ncomms2942
- F.Y. Li, Y. Xiao, Y.K. Ong, T.-S. Chung, UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production. Adv. Energy Mater. 2, 1456–1466 (2012). https://doi.org/10.1002/aenm.201200296
- R. Hou, S.J.D. Smith, K. Konstas, C.M. Doherty, C.D. Easton et al., Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation. J. Mater. Chem. A 10, 10107–10119 (2022). https://doi.org/10.1039/D2TA00138A
- W. Ji, H. Geng, Z. Chen, H. Dong, H. Matsuyama et al., Facile tailoring molecular sieving effect of PIM-1 by in situ O3 treatment for high performance hydrogen separation. J. Membr. Sci. 662, 120971 (2022). https://doi.org/10.1016/j.memsci.2022.120971
- X. Niu, G. Dong, D. Li, Y. Zhang, Y. Zhang, Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: a comparative study on the microstructure-performance relationships. J. Membr. Sci. 664, 121103 (2022). https://doi.org/10.1016/j.memsci.2022.121103
- X. Chen, L. Wu, H. Yang, Y. Qin, X. Ma et al., Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition. Angew. Chem. Int. Ed. 60, 17875–17880 (2021). https://doi.org/10.1002/anie.202016901
- Z. Gao, Y. Wang, H. Wu, Y. Ren, Z. Guo et al., Surface functionalization of Polymers of Intrinsic Microporosity (PIMs) membrane by polyphenol for efficient CO2 separation. Green Chem. Eng. 2, 70–76 (2021). https://doi.org/10.1016/j.gce.2020.12.003
- J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du et al., Gas transport behavior of mixed-matrix membranes composed of silica nanops in a polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 346, 280–287 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
- G. Dong, J. Zhang, Z. Wang, J. Wang, P. Zhao et al., Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance. ACS Appl. Mater. Interfaces 11, 19613–19622 (2019). https://doi.org/10.1021/acsami.9b02281
- S. Mohsenpour, Z. Guo, F. Almansour, S.M. Holmes, P.M. Budd et al., Porous silica nanosheets in PIM-1 membranes for CO2 separation. J. Membr. Sci. 661, 120889 (2022). https://doi.org/10.1016/j.memsci.2022.120889
- N. Sakaguchi, M. Tanaka, M. Yamato, H. Kawakami, Superhigh CO2-permeable mixed matrix membranes composed of a polymer of intrinsic microporosity (PIM-1) and surface-modified silica nanops. ACS Appl. Polym. Mater. 1, 2516–2524 (2019). https://doi.org/10.1021/acsapm.9b00624
- J.M. Luque-Alled, M. Tamaddondar, A.B. Foster, P.M. Budd, P. Gorgojo, PIM-1/holey graphene oxide mixed matrix membranes for gas separation: unveiling the role of holes. ACS Appl. Mater. Interfaces 13, 55517–55533 (2021). https://doi.org/10.1021/acsami.1c15640
- M. Alberto, R. Bhavsar, J.M. Luque-Alled, A. Vijayaraghavan, P.M. Budd et al., Impeded physical aging in PIM-1 membranes containing graphene-like fillers. J. Membr. Sci. 563, 513–520 (2018). https://doi.org/10.1016/j.memsci.2018.06.026
- F. Almansour, M. Alberto, A.B. Foster, S. Mohsenpour, P.M. Budd et al., Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation. J. Mater. Chem. A 10, 23341–23351 (2022). https://doi.org/10.1039/D2TA06339E
- S. Mohsenpour, A.W. Ameen, S. Leaper, C. Skuse, F. Almansour et al., PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep. Purif. Technol. 298, 121447 (2022). https://doi.org/10.1016/j.seppur.2022.121447
- J.M. Luque-Alled, A.W. Ameen, M. Alberto, M. Tamaddondar, A.B. Foster et al., Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J. Membr. Sci. 623, 118902 (2021). https://doi.org/10.1016/j.memsci.2020.118902
- Z. Tian, S. Wang, Y. Wang, X. Ma, K. Cao et al., Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. J. Membr. Sci. 514, 15–24 (2016). https://doi.org/10.1016/j.memsci.2016.04.019
- B.K. Voon, H. Shen Lau, C.Z. Liang, W.F. Yong, Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation. Sep. Purif. Technol. 296, 121354 (2022). https://doi.org/10.1016/j.seppur.2022.121354
- Z. Tian, D. Li, W. Zheng, Q. Chang, Y. Sang et al., Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO2 separation. Mater. Horiz. 10, 3660–3667 (2023). https://doi.org/10.1039/d3mh00463e
- K. Wang, D. Chen, J. Tang, Z. Hong, Z. Zhu et al., PIM-1-based membranes mediated with CO2-philic MXene nanosheets for superior CO2/N2 separation. Chem. Eng. J. 483, 149305 (2024). https://doi.org/10.1016/j.cej.2024.149305
- W. Han, C. Zhang, M. Zhao, F. Yang, Y. Yang et al., Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J. Membr. Sci. 636, 119544 (2021). https://doi.org/10.1016/j.memsci.2021.119544
- C. Wang, F. Guo, H. Li, J. Xu, J. Hu et al., Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain. J. Membr. Sci. 564, 115–122 (2018). https://doi.org/10.1016/j.memsci.2018.07.018
- A.K. Sekizkardes, V.A. Kusuma, G. Dahe, E.A. Roth, L.J. Hill et al., Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. Chem. Commun. 52, 11768–11771 (2016). https://doi.org/10.1039/C6CC04811K
- G. Yu, Y. Li, Z. Wang, T.X. Liu, G. Zhu et al., Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. J. Membr. Sci. 591, 117343 (2019). https://doi.org/10.1016/j.memsci.2019.117343
- C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas et al., Ending aging in super glassy polymer membranes. Angew. Chem. Int. Ed. 53, 5322–5326 (2014). https://doi.org/10.1002/anie.201402234
- C.H. Lau, K. Konstas, A.W. Thornton, A.C. Liu, S. Mudie et al., Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew. Chem. Int. Ed. 54, 2669–2673 (2015). https://doi.org/10.1002/anie.201410684
- A.F. Bushell, P.M. Budd, M.P. Attfield, J.T.A. Jones, T. Hasell et al., Nanoporous organic polymer/cage composite membranes. Angew. Chem. Int. Ed. 52, 1253–1256 (2013). https://doi.org/10.1002/anie.201206339
- J. Liu, Y. Xiao, K.-S. Liao, T.-S. Chung, Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J. Membr. Sci. 523, 92–102 (2017). https://doi.org/10.1016/j.memsci.2016.10.001
- T. Mitra, R.S. Bhavsar, D.J. Adams, P.M. Budd, A.I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanop fillers. Chem. Commun. 52, 5581–5584 (2016). https://doi.org/10.1039/c6cc00261g
- R. Hou, S.J.D. Smith, C.D. Wood, R.J. Mulder, C.H. Lau et al., Solvation effects on the permeation and aging performance of PIM-1-based MMMs for gas separation. ACS Appl. Mater. Interfaces 11, 6502–6511 (2019). https://doi.org/10.1021/acsami.8b19207
- M.M. Khan, S. Shishatskiy, V. Filiz, Mixed matrix membranes of boron icosahedron and polymers of intrinsic microporosity (PIM-1) for gas separation. Membranes 8, 1 (2018). https://doi.org/10.3390/membranes8010001
- W.F. Yong, K.H.A. Kwek, K.-S. Liao, T.-S. Chung, Suppression of aging and plasticization in highly permeable polymers. Polymer 77, 377–386 (2015). https://doi.org/10.1016/j.polymer.2015.09.075
- L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu et al., Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. J. Membr. Sci. 543, 69–78 (2017). https://doi.org/10.1016/j.memsci.2017.08.050
- N. Konnertz, Y. Ding, W.J. Harrison, P.M. Budd, A. Schönhals et al., Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). J. Membr. Sci. 529, 274–285 (2017). https://doi.org/10.1016/j.memsci.2017.02.007
- Y. Kinoshita, K. Wakimoto, A.H. Gibbons, A.P. Isfahani, H. Kusuda et al., Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci. 539, 178–186 (2017). https://doi.org/10.1016/j.memsci.2017.05.072
- M. Tamaddondar, A.B. Foster, J.M. Luque-Alled, K.J. Msayib, M. Carta et al., Intrinsically microporous polymer nanosheets for high-performance gas separation membranes. Macromol. Rapid Commun. 41, e1900572 (2020). https://doi.org/10.1002/marc.201900572
- M. Tamaddondar, A.B. Foster, M. Carta, P. Gorgojo, N.B. McKeown et al., Mitigation of physical aging with mixed matrix membranes based on cross-linked PIM-1 fillers and PIM-1. ACS Appl. Mater. Interfaces 12, 46756–46766 (2020). https://doi.org/10.1021/acsami.0c13838
- an applicable-conceptual approach, M. Mohsenpour Tehrani, E. Chehrazi, Metal-organic-frameworks based mixed-matrix membranes for CO2 separation. ACS Appl. Mater. Interfaces 16, 32906–32929 (2024). https://doi.org/10.1021/acsami.4c06914
- A. Santaniello, G. Golemme, Non-covalent cross-linking does the job: why PIM-1/silicalite-1 mixed matrix membranes perform well notwithstanding silicalite-1. Macromol. Rapid Commun. 43, e2200226 (2022). https://doi.org/10.1002/marc.202200226
- A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii et al., Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48–62 (2013). https://doi.org/10.1016/j.memsci.2012.09.035
- J. Sánchez-Laínez, A. Pardillos-Ruiz, M. Carta, R. Malpass-Evans, N.B. McKeown et al., Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. Sep. Purif. Technol. 224, 456–462 (2019). https://doi.org/10.1016/j.seppur.2019.05.035
- M. Yahia, Q.N. Le Phan, N. Ismail, M. Essalhi, O. Sundman et al., Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous Mesoporous Mater. 312, 110761 (2021). https://doi.org/10.1016/j.micromeso.2020.110761
- B. Zhu, S. He, Y. Yang, S. Li, C.H. Lau et al., Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nat. Commun. 14, 1697 (2023). https://doi.org/10.1038/s41467-023-37479-9
- K. Zhang, X. Luo, S. Li, X. Tian, Q. Wang et al., ZIF-8 Gel/PIM-1 mixed matrix membranes for enhanced H2/CH4 separations. Chem. Eng. J. 484, 149489 (2024). https://doi.org/10.1016/j.cej.2024.149489
- L. Hao, K.-S. Liao, T.-S. Chung, Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. J. Mater. Chem. A 3, 17273–17281 (2015). https://doi.org/10.1039/C5TA03776J
- S.J. Smith, B.P. Ladewig, A.J. Hill, C.H. Lau, M.R. Hill, Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Sci. Rep. 5, 7823 (2015). https://doi.org/10.1038/srep07823
- Z. Wang, H. Ren, S. Zhang, F. Zhang, J. Jin, Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J. Mater. Chem. A 5, 10968–10977 (2017). https://doi.org/10.1039/C7TA01773A
- B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. Isfahani et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanops. Nat. Energy 2, 17086 (2017). https://doi.org/10.1038/nenergy.2017.86
- M.R. Khdhayyer, E. Esposito, A. Fuoco, M. Monteleone, L. Giorno et al., Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 173, 304–313 (2017). https://doi.org/10.1016/j.seppur.2016.09.036
- N. Prasetya, B.P. Ladewig, An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. J. Mater. Chem. A 7, 15164–15172 (2019). https://doi.org/10.1039/C9TA02096A
- I.D. Carja, S.R. Tavares, O. Shekhah, A. Ozcan, R. Semino et al., Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization. ACS Appl. Mater. Interfaces 13, 29041–29047 (2021). https://doi.org/10.1021/acsami.1c03859
- C. Geng, Y. Sun, Z. Zhang, Z. Qiao, C. Zhong, Mitigated aging in a defective metal–organic framework pillared polymer of an intrinsic porosity hybrid membrane for efficient gas separation. ACS Sustain. Chem. Eng. 10, 3643–3650 (2022). https://doi.org/10.1021/acssuschemeng.1c08485
- Y. Sun, F. Fan, L. Bai, T. Li, J. Guan et al., Hydrogen-bonded hybrid membranes based on hydroxylated metal-organic frameworks and PIM-1 for ultrafast hydrogen separation. Results Eng. 20, 101398 (2023). https://doi.org/10.1016/j.rineng.2023.101398
- Z. Lin, Z. Yuan, K. Wang, X. He, Synergistic tuning mixed matrix membranes by Ag+-doping in UiO-66-NH2/polymers of intrinsic microporosity for remarkable CO2/N2 separation. J. Membr. Sci. 681, 121775 (2023). https://doi.org/10.1016/j.memsci.2023.121775
- C. Geng, Y. Sun, Z. Zhang, Z. Qiao, C. Zhong, Mixed matrix metal–organic framework membranes for efficient CO2/N2 separation under humid conditions. AICHE J. 69, e18025 (2023). https://doi.org/10.1002/aic.18025
- W.N. Wu, K. Mizrahi Rodriguez, N. Roy, J.J. Teesdale, G. Han et al., Engineering the polymer-MOF interface in microporous composites to address complex mixture separations. ACS Appl. Mater. Interfaces 15, 52893–52907 (2023). https://doi.org/10.1021/acsami.3c11300
- Z. Zhou, X. Cao, D. Lv, F. Cheng, Hydrophobic metal–organic framework UiO-66-(CF3)2/PIM-1 mixed-matrix membranes for stable CO2/N2 separation under high humidity. Sep. Purif. Technol. 339, 126666 (2024). https://doi.org/10.1016/j.seppur.2024.126666
- F. Wang, Z. Wang, J. Yu, S. Han, X. Li et al., Mixed matrix membranes with intrinsic microporous/UiO-66 post-synthesis modifications with no defects for efficient CO2/N2 separation. Sep. Purif. Technol. 333, 125892 (2024). https://doi.org/10.1016/j.seppur.2023.125892
- N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue, S. Kaliaguine, Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. J. Membr. Sci. 520, 941–950 (2016). https://doi.org/10.1016/j.memsci.2016.08.045
- M. Khdhayyer, A.F. Bushell, P.M. Budd, M.P. Attfield, D. Jiang et al., Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 212, 545–554 (2019). https://doi.org/10.1016/j.seppur.2018.11.055
- J. Ma, Y. Ying, X. Guo, H. Huang, D. Liu et al., Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation. J. Mater. Chem. A 4, 7281–7288 (2016). https://doi.org/10.1039/C6TA02611G
- C.G. Morris, N.M. Jacques, H.G.W. Godfrey, T. Mitra, D. Fritsch et al., Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chem. Sci. 8, 3239–3248 (2017). https://doi.org/10.1039/C6SC04343G
- D. Wang, Y. Ying, Y. Zheng, Y. Pu, Z. Yang et al., Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation. J. Membr. Sci. Lett. 2, 100017 (2022). https://doi.org/10.1016/j.memlet.2022.100017
- D. Fan, A. Ozcan, N.A. Ramsahye, G. Maurin, R. Semino, Putting forward NUS-8-CO2H/PIM-1 as a mixed matrix membrane for CO2 capture. ACS Appl. Mater. Interfaces 14, 16820–16829 (2022). https://doi.org/10.1021/acsami.2c00090
- Y. Pu, Z. Yang, V. Wee, Z. Wu, Z. Jiang et al., Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. J. Membr. Sci. 641, 119912 (2022). https://doi.org/10.1016/j.memsci.2021.119912
- N. Prasetya, B.P. Ladewig, New azo-DMOF-1 MOF as a photoresponsive low-energy CO2 adsorbent and its exceptional CO2/N2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces 10, 34291–34301 (2018). https://doi.org/10.1021/acsami.8b12261
- X. Wu, W. Liu, H. Wu, X. Zong, L. Yang et al., Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci. 548, 309–318 (2018). https://doi.org/10.1016/j.memsci.2017.11.038
- W. Chen, Z. Zhang, L. Hou, C. Yang, H. Shen et al., Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance. Sep. Purif. Technol. 250, 117198 (2020). https://doi.org/10.1016/j.seppur.2020.117198
- H. Yin, A. Alkaş, Y. Zhang, Y. Zhang, S.G. Telfer, Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation. J. Membr. Sci. 609, 118245 (2020). https://doi.org/10.1016/j.memsci.2020.118245
- Y. Wang, Y. Ren, H. Wu, X. Wu, H. Yang et al., Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading. J. Membr. Sci. 602, 117970 (2020). https://doi.org/10.1016/j.memsci.2020.117970
- J. Han, L. Bai, H. Jiang, S. Zeng, B. Yang et al., Task-specific ionic liquids tuning ZIF-67/PIM-1 mixed matrix membranes for efficient CO2 separation. Ind. Eng. Chem. Res. 60, 593–603 (2021). https://doi.org/10.1021/acs.iecr.0c04830
- J. Han, H. Jiang, S. Zeng, Y. Bai, X. Zhang et al., CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J. Mol. Liq. 359, 119375 (2022). https://doi.org/10.1016/j.molliq.2022.119375
- Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He et al., Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture. J. Membr. Sci. 650, 120399 (2022). https://doi.org/10.1016/j.memsci.2022.120399
- Q. Shen, S. Cong, J. Zhu, Y. Zhang, R. He et al., Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J. Membr. Sci. 664, 121107 (2022). https://doi.org/10.1016/j.memsci.2022.121107
- K. Chen, L. Ni, H. Zhang, C. Xiao, L. Li et al., Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance. J. Membr. Sci. 661, 120848 (2022). https://doi.org/10.1016/j.memsci.2022.120848
- Y. Sun, C. Geng, Z. Zhang, Z. Qiao, C. Zhong, Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J. Membr. Sci. 661, 120928 (2022). https://doi.org/10.1016/j.memsci.2022.120928
- Y. Feng, W. Yan, Z. Kang, X. Zou, W. Fan et al., Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chem. Eng. J. 465, 142873 (2023). https://doi.org/10.1016/j.cej.2023.142873
- J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017). https://doi.org/10.1002/anie.201701109
- D. Peng, X. Feng, G. Yang, X. Niu, Z. Liu et al., In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. J. Membr. Sci. 668, 121267 (2023). https://doi.org/10.1016/j.memsci.2022.121267
- B. Qiu, M. Yu, J.M. Luque-Alled, S. Ding, A.B. Foster et al., High gas permeability in aged superglassy membranes with nanosized UiO-66-NH2/cPIM-1 network fillers. Angew. Chem. Int. Ed. 63, e202316356 (2024). https://doi.org/10.1002/anie.202316356
- G. Yu, X. Zou, L. Sun, B. Liu, Z. Wang et al., Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity. Adv. Mater. 31, e1806853 (2019). https://doi.org/10.1002/adma.201806853
- C. Ye, X. Wu, H. Wu, L. Yang, Y. Ren et al., Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chem. Eng. Sci. 216, 115497 (2020). https://doi.org/10.1016/j.ces.2020.115497
- X. Wu, Z. Tian, S. Wang, D. Peng, L. Yang et al., Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 528, 273–283 (2017). https://doi.org/10.1016/j.memsci.2017.01.042
- Q. Chang, H. Guo, Z. Shang, C. Zhang, Y. Zhang et al., PIM-based mixed matrix membranes containing covalent organic frameworks/ionic liquid composite materials for effective CO2/N2 separation. Sep. Purif. Technol. 330, 125518 (2024). https://doi.org/10.1016/j.seppur.2023.125518
- H. Jiang, J. Zhang, T. Huang, J. Xue, Y. Ren et al., Mixed-matrix membranes with covalent triazine framework fillers in polymers of intrinsic microporosity for CO2 separations. Ind. Eng. Chem. Res. 59, 5296–5306 (2020). https://doi.org/10.1021/acs.iecr.9b04632
- G. Dai, Q. Zhang, S. Xiong, L. Deng, Z. Gao et al., Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation. J. Membr. Sci. 676, 121561 (2023). https://doi.org/10.1016/j.memsci.2023.121561
- W.F. Yong, F.Y. Li, Y.C. Xiao, P. Li, K.P. Pramoda et al., Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 407, 47–57 (2012). https://doi.org/10.1016/j.memsci.2012.03.038
- W.F. Yong, T.-S. Chung, Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. Polymer 59, 290–297 (2015). https://doi.org/10.1016/j.polymer.2015.01.013
- W.F. Yong, F.Y. Li, T.S. Chung, Y.W. Tong, Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. J. Membr. Sci. 462, 119–130 (2014). https://doi.org/10.1016/j.memsci.2014.03.046
- X. Wu, Q. Zhang, P. Lin, Y. Qu, A. Zhu et al., Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J. Membr. Sci. 493, 147–155 (2015). https://doi.org/10.1016/j.memsci.2015.05.077
- G. Bengtson, S. Neumann, V. Filiz, Membranes of polymers of intrinsic microporosity (PIM-1) modified by Poly(ethylene glycol). Membranes 7, 28 (2017). https://doi.org/10.3390/membranes7020028
- W.F. Yong, Z.K. Lee, T.S. Chung, M. Weber, C. Staudt et al., Blends of a polymer of intrinsic microporosity and partially sulfonated polyphenylenesulfone for gas separation. Chemsuschem 9, 1953–1962 (2016). https://doi.org/10.1002/cssc.201600354
- A.K. Sekizkardes, V.A. Kusuma, J.S. McNally, D. Gidley, K. Resnik et al., Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO2 separation performance. J. Mater. Chem. A 6, 22472–22477 (2018). https://doi.org/10.1039/C8TA07424K
- A.K. Sekizkardes, S. Budhathoki, L. Zhu, V. Kusuma, Z. Tong et al., Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation. J. Membr. Sci. 640, 119764 (2021). https://doi.org/10.1016/j.memsci.2021.119764
- S. Zhao, J. Liao, D. Li, X. Wang, N. Li, Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger’s Base polymer for gas separation membranes. J. Membr. Sci. 566, 77–86 (2018). https://doi.org/10.1016/j.memsci.2018.08.010
- H. Amir, R. Tamime, Z. Shamair, A.L. Khan, H. AlMohamadi et al., Enhanced gas separation performance of PIM-1 blend membranes incorporating ionic liquid (3-(trimethoxysilyl) propan-1-aminium acetate ([APTMS][Ac])) as filler: investigation of morphology, compatibility and transport properties. Fuel 349, 128669 (2023). https://doi.org/10.1016/j.fuel.2023.128669
- K. Halder, M.M. Khan, J. Grünauer, S. Shishatskiy, C. Abetz et al., Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J. Membr. Sci. 539, 368–382 (2017). https://doi.org/10.1016/j.memsci.2017.06.022
- H. Zhao, T. Song, X. Ding, R. Cai, X. Tan et al., PIM-1 mixed matrix membranes incorporated with magnetic responsive cobalt-based ionic liquid for O2/N2 separation. J. Membr. Sci. 679, 121713 (2023). https://doi.org/10.1016/j.memsci.2023.121713
- B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci et al., Temperature and pressure dependence of gas permeation in amine-modified PIM-1. J. Membr. Sci. 555, 483–496 (2018). https://doi.org/10.1016/j.memsci.2018.03.039
- A.W. Ameen, J. Ji, M. Tamaddondar, S. Moshenpour, A.B. Foster et al., 2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. J. Membr. Sci. 636, 119527 (2021). https://doi.org/10.1016/j.memsci.2021.119527
- W. Chen, Z. Zhang, C. Yang, J. Liu, H. Shen et al., PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance. J. Membr. Sci. 636, 119581 (2021). https://doi.org/10.1016/j.memsci.2021.119581
- H. Jiang, Z. Guo, H. Wang, X. Liu, Y. Ren et al., Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. J. Membr. Sci. 640, 119803 (2021). https://doi.org/10.1016/j.memsci.2021.119803
- E. Chernova, D. Petukhov, O. Boytsova, A. Alentiev, P. Budd et al., Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Sci. Rep. 6, 31183 (2016). https://doi.org/10.1038/srep31183
- S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P.M. Budd et al., Aging and free volume in a polymer of intrinsic microporosity (PIM-1). J. Adhes. 88, 608–619 (2012). https://doi.org/10.1080/00218464.2012.682902
- W. Ogieglo, A. Furchner, B. Ghanem, X. Ma, I. Pinnau et al., Mixed-penetrant sorption in ultrathin films of polymer of intrinsic microporosity PIM-1. J. Phys. Chem. B 121, 10190–10197 (2017). https://doi.org/10.1021/acs.jpcb.7b10061
- P. Gorgojo, S. Karan, H.C. Wong, M.F. Jimenez-Solomon, J.T. Cabral et al., Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24, 4729–4737 (2014). https://doi.org/10.1002/adfm.201400400
- D. Fritsch, P. Merten, K. Heinrich, M. Lazar, M. Priske, High performance organic solvent nanofiltration membranes: development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J. Membr. Sci. 401, 222–231 (2012). https://doi.org/10.1016/j.memsci.2012.02.008
- C.A. Scholes, S.E. Kentish, G.W. Stevens, J. Jin, D. DeMontigny, Thin-film composite membrane contactors for desorption of CO2 from Monoethanolamine at elevated temperatures. Sep. Purif. Technol. 156, 841–847 (2015). https://doi.org/10.1016/j.seppur.2015.11.010
- C.A. Scholes, S.E. Kentish, G.W. Stevens, D. DeMontigny, Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. Int. J. Greenh. Gas Contr. 42, 66–74 (2015). https://doi.org/10.1016/j.ijggc.2015.07.032
- M. Cook, P.R.J. Gaffney, L.G. Peeva, A.G. Livingston, Roll-to-roll dip coating of three different PIMs for organic solvent nanofiltration. J. Membr. Sci. 558, 52–63 (2018). https://doi.org/10.1016/j.memsci.2018.04.046
- T.H. Lee, B.K. Lee, S.Y. Yoo, H. Lee, W.N. Wu et al., PolyMOF nanops constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation. Nat. Commun. 14, 8330 (2023). https://doi.org/10.1038/s41467-023-44027-y
- S.K. Elsaidi, M. Ostwal, L. Zhu, A. Sekizkardes, M.H. Mohamed et al., 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv. 11, 25658–25663 (2021). https://doi.org/10.1039/d1ra03124d
- M.L. Jue, V. Breedveld, R.P. Lively, Defect-free PIM-1 hollow fiber membranes. J. Membr. Sci. 530, 33–41 (2017). https://doi.org/10.1016/j.memsci.2017.02.012
- M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M. Rahman et al., Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett. 7, 504 (2012). https://doi.org/10.1186/1556-276X-7-504
- Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017). https://doi.org/10.1016/j.memsci.2017.06.011
- H. Zhao, L. Feng, X. Ding, X. Tan, Y. Zhang, Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chin. J. Chem. Eng. 26, 2477–2486 (2018). https://doi.org/10.1016/j.cjche.2018.03.009
- R.S. Bhavsar, T. Mitra, D.J. Adams, A.I. Cooper, P.M. Budd, Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. J. Membr. Sci. 564, 878–886 (2018). https://doi.org/10.1016/j.memsci.2018.07.089
- I. Borisov, D. Bakhtin, J. Luque-Alled, A. Rybakova, V. Makarova et al., Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. J. Mater. Chem. A 7, 6417–6430 (2019). https://doi.org/10.1039/c8ta10691f
- M. Liu, M.D. Nothling, P.A. Webley, J. Jin, Q. Fu et al., High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chem. Eng. J. 396, 125328 (2020). https://doi.org/10.1016/j.cej.2020.125328
- G. He, S. Huang, L.F. Villalobos, M.T. Vahdat, M.D. Guiver et al., Synergistic CO2-sieving from polymer with intrinsic microporosity masking nanoporous single-layer graphene. Adv. Funct. Mater. 30, 2003979 (2020). https://doi.org/10.1002/adfm.202003979
- E. Aliyev, J. Warfsmann, B. Tokay, S. Shishatskiy, Y.-J. Lee et al., Gas transport properties of the metal–organic framework (MOF)-assisted polymer of intrinsic microporosity (PIM-1) thin-film composite membranes. ACS Sustain. Chem. Eng. 9, 684–694 (2021). https://doi.org/10.1021/acssuschemeng.0c06297
- M. Yu, A.B. Foster, M. Alshurafa, J.M. Luque-Alled, P. Gorgojo et al., CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1. J. Membr. Sci. 679, 121697 (2023). https://doi.org/10.1016/j.memsci.2023.121697
- J. Contreras-Martínez, S. Mohsenpour, A.W. Ameen, P.M. Budd, C. García-Payo et al., High-flux thin film composite PIM-1 membranes for butanol recovery: experimental study and process simulations. ACS Appl. Mater. Interfaces 13, 42635–42649 (2021). https://doi.org/10.1021/acsami.1c09112
- B. Qiu, M. Alberto, S. Mohsenpour, A.B. Foster, S. Ding et al., Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep. Purif. Technol. 299, 121693 (2022). https://doi.org/10.1016/j.seppur.2022.121693
References
N.B. McKeown, P.M. Budd, B. Ghanem, K. Msayib, Microporous polymer material. International patent PCT WO 2005/012397 (2005).
P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib et al., Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. (2004). https://doi.org/10.1039/B311764B
L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015). https://doi.org/10.1021/acsmacrolett.5b00512
B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose et al., Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 12, 2733–2740 (2019). https://doi.org/10.1039/c9ee01384a
Y. Liu, X. Chen, T. Han, C. Wang, H. Liu et al., Rational macromolecular design and strategies to tune the microporosity for high-performance O2/N2 separation membranes. Sep. Purif. Technol. 334, 125978 (2024). https://doi.org/10.1016/j.seppur.2023.125978
X. Ma, K. Li, Z. Zhu, H. Dong, J. Lv et al., High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. J. Mater. Chem. A 9, 18313–18322 (2021). https://doi.org/10.1039/d1ta04099e
W.F. Yong, F.Y. Li, T.-S. Chung, Y.W. Tong, Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. J. Mater. Chem. A 1, 13914–13925 (2013). https://doi.org/10.1039/C3TA13308G
S.V. Gutiérrez-Hernández, F. Pardo, A.B. Foster, P. Gorgojo, P.M. Budd et al., Outstanding performance of PIM-1 membranes towards the separation of fluorinated refrigerant gases. J. Membr. Sci. 675, 121532 (2023). https://doi.org/10.1016/j.memsci.2023.121532
P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds et al., Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 251, 263–269 (2005). https://doi.org/10.1016/j.memsci.2005.01.009
L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
B. Metz, O. Davidson, H. De Coninck, M. Loos, L. Meyer, IPCC special report on carbon dioxide capture and storage. Cambridge University Press (2005).
J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review. J. Membr. Sci. 107, 1–21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
P.M. Budd, Sieving gases with twisty polymers. Science 375, 1354–1355 (2022). https://doi.org/10.1126/science.abm5103
N. Tien-Binh, D. Rodrigue, S. Kaliaguine, In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J. Membr. Sci. 548, 429–438 (2018). https://doi.org/10.1016/j.memsci.2017.11.054
Y. Cheng, S.R. Tavares, C.M. Doherty, Y. Ying, E. Sarnello et al., Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture. ACS Appl. Mater. Interfaces 10, 43095–43103 (2018). https://doi.org/10.1021/acsami.8b16386
F. Almansour, M. Alberto, R.S. Bhavsar, X. Fan, P.M. Budd et al., Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Front. Chem. Sci. Eng. 15, 872–881 (2021). https://doi.org/10.1007/s11705-020-2001-2
M. Yu, A.B. Foster, C.A. Scholes, S.E. Kentish, P.M. Budd, Methanol vapor retards aging of PIM-1 thin film composite membranes in storage. ACS Macro Lett. 12, 113–117 (2023). https://doi.org/10.1021/acsmacrolett.2c00568
P. Bernardo, F. Bazzarelli, F. Tasselli, G. Clarizia, C.R. Mason et al., Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer 113, 283–294 (2017). https://doi.org/10.1016/j.polymer.2016.10.040
R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48, 6553–6561 (2015). https://doi.org/10.1021/acs.macromol.5b01581
W.H. Lee, J.G. Seong, X. Hu, Y.M. Lee, Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines. J. Polym. Sci. 58, 2450–2466 (2020). https://doi.org/10.1002/pol.20200110
Y. Wang, B.S. Ghanem, Z. Ali, K. Hazazi, Y. Han et al., Recent progress on polymers of intrinsic microporosity and thermally modified analogue materials for membrane-based fluid separations. Small Struct. 2, 2100049 (2021). https://doi.org/10.1002/sstr.202100049
N.B. McKeown, Polymers of intrinsic microporosity (PIMs). Polymer 202, 122736 (2020). https://doi.org/10.1016/j.polymer.2020.122736
S. He, B. Zhu, S. Li, Y. Zhang, X. Jiang et al., Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design. Sep. Purif. Technol. 284, 120277 (2022). https://doi.org/10.1016/j.seppur.2021.120277
P.M. Budd, A.B. Foster, Seeking synergy in membranes: blends and mixtures with polymers of intrinsic microporosity. Curr. Opin. Chem. Eng. 36, 100792 (2022). https://doi.org/10.1016/j.coche.2022.100792
C. Astorino, E. De Nardo, S. Lettieri, G. Ferraro, C.F. Pirri et al., Advancements in gas separation for energy applications: exploring the potential of polymer membranes with intrinsic microporosity (PIM). Membranes 13, 903 (2023). https://doi.org/10.3390/membranes13120903
M.L. Jue, R.P. Lively, PIM hybrids and derivatives: how to make a good thing better. Curr. Opin. Chem. Eng. 35, 100750 (2022). https://doi.org/10.1016/j.coche.2021.100750
Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau et al., Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018). https://doi.org/10.1016/j.mtnano.2018.11.003
R. Swaidan, B.S. Ghanem, E. Litwiller, I. Pinnau, Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. J. Membr. Sci. 457, 95–102 (2014). https://doi.org/10.1016/j.memsci.2014.01.055
N. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser et al., Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011). https://doi.org/10.1038/nmat2989
F.Y. Li, Y. Xiao, T.S. Chung, (Neal) High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Procedia Eng. 44, 498–500 (2012). https://doi.org/10.1016/j.proeng.2012.08.464
Q. Song, S. Cao, R.H. Pritchard, B. Ghalei, S.A. Al-Muhtaseb et al., Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 5, 4813 (2014). https://doi.org/10.1038/ncomms5813
effect on molecular packing and gas separation performance, K. Mizrahi Rodriguez, A.X. Wu, Q. Qian, G. Han, S. Lin et al., Facile and time-efficient carboxylic acid functionalization of PIM-1. Macromolecules 53, 6220–6234 (2020). https://doi.org/10.1021/acs.macromol.0c00933
M. Hu, J. Liu, J. Kong, P. Jia, N. Qi et al., Free volume and gas transport properties of hydrolyzed polymer of intrinsic microporosity (PIM-1) membrane studied by positron annihilation spectroscopy. Microporous Mesoporous Mater. 335, 111770 (2022). https://doi.org/10.1016/j.micromeso.2022.111770
N. Du, G.P. Robertson, J. Song, I. Pinnau, M.D. Guiver, High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 42, 6038–6043 (2009). https://doi.org/10.1021/ma9009017
J.W. Jeon, D.-G. Kim, E.-H. Sohn, Y. Yoo, Y.S. Kim et al., Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes. Macromolecules 50, 8019–8027 (2017). https://doi.org/10.1021/acs.macromol.7b01332
C.R. Mason, L. Maynard-Atem, N.M. Al-Harbi, P.M. Budd, P. Bernardo et al., Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties. Macromolecules 44, 6471–6479 (2011). https://doi.org/10.1021/ma200918h
K. Mizrahi Rodriguez, F.M. Benedetti, N. Roy, A.X. Wu, Z.P. Smith, Sorption-enhanced mixed-gas transport in amine functionalized polymers of intrinsic microporosity (PIMs). J. Mater. Chem. A 9, 23631–23642 (2021). https://doi.org/10.1039/d1ta06530k
N. Du, G.P. Robertson, M.M. Dal-Cin, L. Scoles, M.D. Guiver, Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole. Polymer 53, 4367–4372 (2012). https://doi.org/10.1016/j.polymer.2012.07.055
Z. Wang, Q. Shen, J. Liang, Y. Zhang, J. Jin, Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Sep. Purif. Technol. 233, 116008 (2020). https://doi.org/10.1016/j.seppur.2019.116008
S. Kang, G. Huo, Z. Zhang, T. Guo, Z. Dai et al., Polymers of intrinisic porosity with bulky side groups on the spirobisindane moieties for gas separation. ACS Appl. Polym. Mater. 5, 8660–8669 (2023). https://doi.org/10.1021/acsapm.3c01762
K. Halder, S. Neumann, G. Bengtson, M.M. Khan, V. Filiz et al., Polymers of intrinsic microporosity postmodified by vinyl groups for membrane applications. Macromolecules 51, 7309–7319 (2018). https://doi.org/10.1021/acs.macromol.8b01252
J. Zhang, H. Kang, J. Martin, S. Zhang, S. Thomas et al., The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chem. Commun. 52, 6553–6556 (2016). https://doi.org/10.1039/c6cc02308h
M. Liu, X. Lu, M.D. Nothling, C.M. Doherty, L. Zu et al., Physical aging investigations of a spirobisindane-locked polymer of intrinsic microporosity. ACS Mater. Lett. 2, 993–998 (2020). https://doi.org/10.1021/acsmaterialslett.0c00184
A.B. Foster, M. Tamaddondar, J.M. Luque-Alled, W.J. Harrison, Z. Li et al., Understanding the topology of the polymer of intrinsic microporosity PIM-1: cyclics, tadpoles, and network structures and their impact on membrane performance. Macromolecules 53, 569–583 (2020). https://doi.org/10.1021/acs.macromol.9b02185
A.B. Foster, J.L. Beal, M. Tamaddondar, J.M. Luque-Alled, B. Robertson et al., Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. J. Mater. Chem. A 9, 21807–21823 (2021). https://doi.org/10.1039/D1TA03712A
K. Mizrahi Rodriguez, S. Lin, A.X. Wu, G. Han, J.J. Teesdale et al., Leveraging free volume manipulation to improve the membrane separation performance of amine-functionalized PIM-1. Angew. Chem. Int. Ed. 60, 6593–6599 (2021). https://doi.org/10.1002/anie.202012441
H. Dong, Z. Zhu, K. Li, Q. Li, W. Ji et al., Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. J. Membr. Sci. 635, 119440 (2021). https://doi.org/10.1016/j.memsci.2021.119440
L. Chen, P. Su, J. Liu, S. Chen, J. Huang et al., Post-synthesis amination of polymer of intrinsic microporosity membranes for CO2 separation. AICHE J. 69, e18050 (2023). https://doi.org/10.1002/aic.18050
J. Guan, X. Wang, J. Du, Q. Liang, W. He et al., Surface-engineered PIM-1 membranes for facile CO2 capture. Chem. Eng. J. 477, 147017 (2023). https://doi.org/10.1016/j.cej.2023.147017
N. Du, M.M. Cin, I. Pinnau, A. Nicalek, G.P. Robertson et al., Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. Macromol. Rapid Commun. 32, 631–636 (2011). https://doi.org/10.1002/marc.201000775
S. Zhou, Y. Sun, B. Xue, S. Li, J. Zheng et al., Controlled superacid-catalyzed self-cross-linked polymer of intrinsic microporosity for high-performance CO2 separation. Macromolecules 53, 7988–7996 (2020). https://doi.org/10.1021/acs.macromol.0c01590
N. Du, M.M. Dal-Cin, G.P. Robertson, M.D. Guiver, Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation. Macromolecules 45, 5134–5139 (2012). https://doi.org/10.1021/ma300751s
Y. Sun, J. Zhang, H. Li, F. Fan, Q. Zhao et al., Ester-crosslinked polymers of intrinsic microporosity membranes with enhanced plasticization resistance for CO2 separation. Sep. Purif. Technol. 314, 123623 (2023). https://doi.org/10.1016/j.seppur.2023.123623
X. Chen, Z. Zhang, L. Wu, X. Liu, S. Xu et al., Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes. ACS Appl. Polym. Mater. 2, 987–995 (2020). https://doi.org/10.1021/acsapm.9b01193
H. Zhao, Q. Xie, X. Ding, J. Chen, M. Hua et al., High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation. J. Membr. Sci. 514, 305–312 (2016). https://doi.org/10.1016/j.memsci.2016.05.013
K.-S. Liao, J.-Y. Lai, T.-S. Chung, Metal ion modified PIM-1 and its application for propylene/propane separation. J. Membr. Sci. 515, 36–44 (2016). https://doi.org/10.1016/j.memsci.2016.05.032
Y. Sun, X. Wang, X. Li, W. Xiao, Y. Dai et al., Recent developments of anti-plasticized membranes for aggressive CO2 separation. Green Chem. Eng. 4, 1–16 (2023). https://doi.org/10.1016/j.gce.2022.09.001
O. Salinas, X. Ma, E. Litwiller, I. Pinnau, Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016). https://doi.org/10.1016/j.memsci.2015.12.052
M.L. Jue, Y. Ma, R.P. Lively, Streamlined fabrication of asymmetric carbon molecular sieve hollow fiber membranes. ACS Appl. Polym. Mater. 1, 1960–1964 (2019). https://doi.org/10.1021/acsapm.9b00567
K.-S. Liao, S. Japip, J.-Y. Lai, T.-S. Chung, Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. J. Membr. Sci. 534, 92–99 (2017). https://doi.org/10.1016/j.memsci.2017.04.017
J. Liu, Y. Xiao, T.-S. Chung, Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation. J. Mater. Chem. A 5, 4583–4595 (2017). https://doi.org/10.1039/C6TA09751K
Y. Ma, F. Zhang, S. Yang, R.P. Lively, Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. J. Membr. Sci. 564, 404–414 (2018). https://doi.org/10.1016/j.memsci.2018.07.040
Y. Ma, M.L. Jue, F. Zhang, R. ias, H.Y. Jang et al., Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. Int. Ed. 58, 13259–13265 (2019). https://doi.org/10.1002/anie.201903105
S. He, X. Jiang, S. Li, F. Ran, J. Long et al., Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AICHE J. 66, e16543 (2020). https://doi.org/10.1002/aic.16543
Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li et al., Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat. Commun. 4, 1918 (2013). https://doi.org/10.1038/ncomms2942
F.Y. Li, Y. Xiao, Y.K. Ong, T.-S. Chung, UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production. Adv. Energy Mater. 2, 1456–1466 (2012). https://doi.org/10.1002/aenm.201200296
R. Hou, S.J.D. Smith, K. Konstas, C.M. Doherty, C.D. Easton et al., Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation. J. Mater. Chem. A 10, 10107–10119 (2022). https://doi.org/10.1039/D2TA00138A
W. Ji, H. Geng, Z. Chen, H. Dong, H. Matsuyama et al., Facile tailoring molecular sieving effect of PIM-1 by in situ O3 treatment for high performance hydrogen separation. J. Membr. Sci. 662, 120971 (2022). https://doi.org/10.1016/j.memsci.2022.120971
X. Niu, G. Dong, D. Li, Y. Zhang, Y. Zhang, Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: a comparative study on the microstructure-performance relationships. J. Membr. Sci. 664, 121103 (2022). https://doi.org/10.1016/j.memsci.2022.121103
X. Chen, L. Wu, H. Yang, Y. Qin, X. Ma et al., Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition. Angew. Chem. Int. Ed. 60, 17875–17880 (2021). https://doi.org/10.1002/anie.202016901
Z. Gao, Y. Wang, H. Wu, Y. Ren, Z. Guo et al., Surface functionalization of Polymers of Intrinsic Microporosity (PIMs) membrane by polyphenol for efficient CO2 separation. Green Chem. Eng. 2, 70–76 (2021). https://doi.org/10.1016/j.gce.2020.12.003
J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du et al., Gas transport behavior of mixed-matrix membranes composed of silica nanops in a polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 346, 280–287 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
G. Dong, J. Zhang, Z. Wang, J. Wang, P. Zhao et al., Interfacial property modulation of PIM-1 through polydopamine-derived submicrospheres for enhanced CO2/N2 separation performance. ACS Appl. Mater. Interfaces 11, 19613–19622 (2019). https://doi.org/10.1021/acsami.9b02281
S. Mohsenpour, Z. Guo, F. Almansour, S.M. Holmes, P.M. Budd et al., Porous silica nanosheets in PIM-1 membranes for CO2 separation. J. Membr. Sci. 661, 120889 (2022). https://doi.org/10.1016/j.memsci.2022.120889
N. Sakaguchi, M. Tanaka, M. Yamato, H. Kawakami, Superhigh CO2-permeable mixed matrix membranes composed of a polymer of intrinsic microporosity (PIM-1) and surface-modified silica nanops. ACS Appl. Polym. Mater. 1, 2516–2524 (2019). https://doi.org/10.1021/acsapm.9b00624
J.M. Luque-Alled, M. Tamaddondar, A.B. Foster, P.M. Budd, P. Gorgojo, PIM-1/holey graphene oxide mixed matrix membranes for gas separation: unveiling the role of holes. ACS Appl. Mater. Interfaces 13, 55517–55533 (2021). https://doi.org/10.1021/acsami.1c15640
M. Alberto, R. Bhavsar, J.M. Luque-Alled, A. Vijayaraghavan, P.M. Budd et al., Impeded physical aging in PIM-1 membranes containing graphene-like fillers. J. Membr. Sci. 563, 513–520 (2018). https://doi.org/10.1016/j.memsci.2018.06.026
F. Almansour, M. Alberto, A.B. Foster, S. Mohsenpour, P.M. Budd et al., Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation. J. Mater. Chem. A 10, 23341–23351 (2022). https://doi.org/10.1039/D2TA06339E
S. Mohsenpour, A.W. Ameen, S. Leaper, C. Skuse, F. Almansour et al., PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep. Purif. Technol. 298, 121447 (2022). https://doi.org/10.1016/j.seppur.2022.121447
J.M. Luque-Alled, A.W. Ameen, M. Alberto, M. Tamaddondar, A.B. Foster et al., Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J. Membr. Sci. 623, 118902 (2021). https://doi.org/10.1016/j.memsci.2020.118902
Z. Tian, S. Wang, Y. Wang, X. Ma, K. Cao et al., Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. J. Membr. Sci. 514, 15–24 (2016). https://doi.org/10.1016/j.memsci.2016.04.019
B.K. Voon, H. Shen Lau, C.Z. Liang, W.F. Yong, Functionalized two-dimensional g-C3N4 nanosheets in PIM-1 mixed matrix membranes for gas separation. Sep. Purif. Technol. 296, 121354 (2022). https://doi.org/10.1016/j.seppur.2022.121354
Z. Tian, D. Li, W. Zheng, Q. Chang, Y. Sang et al., Heteroatom-doped noble carbon-tailored mixed matrix membranes with ultrapermeability for efficient CO2 separation. Mater. Horiz. 10, 3660–3667 (2023). https://doi.org/10.1039/d3mh00463e
K. Wang, D. Chen, J. Tang, Z. Hong, Z. Zhu et al., PIM-1-based membranes mediated with CO2-philic MXene nanosheets for superior CO2/N2 separation. Chem. Eng. J. 483, 149305 (2024). https://doi.org/10.1016/j.cej.2024.149305
W. Han, C. Zhang, M. Zhao, F. Yang, Y. Yang et al., Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance. J. Membr. Sci. 636, 119544 (2021). https://doi.org/10.1016/j.memsci.2021.119544
C. Wang, F. Guo, H. Li, J. Xu, J. Hu et al., Porous organic polymer as fillers for fabrication of defect-free PIM-1 based mixed matrix membranes with facilitating CO2-transfer chain. J. Membr. Sci. 564, 115–122 (2018). https://doi.org/10.1016/j.memsci.2018.07.018
A.K. Sekizkardes, V.A. Kusuma, G. Dahe, E.A. Roth, L.J. Hill et al., Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents. Chem. Commun. 52, 11768–11771 (2016). https://doi.org/10.1039/C6CC04811K
G. Yu, Y. Li, Z. Wang, T.X. Liu, G. Zhu et al., Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. J. Membr. Sci. 591, 117343 (2019). https://doi.org/10.1016/j.memsci.2019.117343
C.H. Lau, P.T. Nguyen, M.R. Hill, A.W. Thornton, K. Konstas et al., Ending aging in super glassy polymer membranes. Angew. Chem. Int. Ed. 53, 5322–5326 (2014). https://doi.org/10.1002/anie.201402234
C.H. Lau, K. Konstas, A.W. Thornton, A.C. Liu, S. Mudie et al., Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew. Chem. Int. Ed. 54, 2669–2673 (2015). https://doi.org/10.1002/anie.201410684
A.F. Bushell, P.M. Budd, M.P. Attfield, J.T.A. Jones, T. Hasell et al., Nanoporous organic polymer/cage composite membranes. Angew. Chem. Int. Ed. 52, 1253–1256 (2013). https://doi.org/10.1002/anie.201206339
J. Liu, Y. Xiao, K.-S. Liao, T.-S. Chung, Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J. Membr. Sci. 523, 92–102 (2017). https://doi.org/10.1016/j.memsci.2016.10.001
T. Mitra, R.S. Bhavsar, D.J. Adams, P.M. Budd, A.I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanop fillers. Chem. Commun. 52, 5581–5584 (2016). https://doi.org/10.1039/c6cc00261g
R. Hou, S.J.D. Smith, C.D. Wood, R.J. Mulder, C.H. Lau et al., Solvation effects on the permeation and aging performance of PIM-1-based MMMs for gas separation. ACS Appl. Mater. Interfaces 11, 6502–6511 (2019). https://doi.org/10.1021/acsami.8b19207
M.M. Khan, S. Shishatskiy, V. Filiz, Mixed matrix membranes of boron icosahedron and polymers of intrinsic microporosity (PIM-1) for gas separation. Membranes 8, 1 (2018). https://doi.org/10.3390/membranes8010001
W.F. Yong, K.H.A. Kwek, K.-S. Liao, T.-S. Chung, Suppression of aging and plasticization in highly permeable polymers. Polymer 77, 377–386 (2015). https://doi.org/10.1016/j.polymer.2015.09.075
L. Yang, Z. Tian, X. Zhang, X. Wu, Y. Wu et al., Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane. J. Membr. Sci. 543, 69–78 (2017). https://doi.org/10.1016/j.memsci.2017.08.050
N. Konnertz, Y. Ding, W.J. Harrison, P.M. Budd, A. Schönhals et al., Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS). J. Membr. Sci. 529, 274–285 (2017). https://doi.org/10.1016/j.memsci.2017.02.007
Y. Kinoshita, K. Wakimoto, A.H. Gibbons, A.P. Isfahani, H. Kusuda et al., Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci. 539, 178–186 (2017). https://doi.org/10.1016/j.memsci.2017.05.072
M. Tamaddondar, A.B. Foster, J.M. Luque-Alled, K.J. Msayib, M. Carta et al., Intrinsically microporous polymer nanosheets for high-performance gas separation membranes. Macromol. Rapid Commun. 41, e1900572 (2020). https://doi.org/10.1002/marc.201900572
M. Tamaddondar, A.B. Foster, M. Carta, P. Gorgojo, N.B. McKeown et al., Mitigation of physical aging with mixed matrix membranes based on cross-linked PIM-1 fillers and PIM-1. ACS Appl. Mater. Interfaces 12, 46756–46766 (2020). https://doi.org/10.1021/acsami.0c13838
an applicable-conceptual approach, M. Mohsenpour Tehrani, E. Chehrazi, Metal-organic-frameworks based mixed-matrix membranes for CO2 separation. ACS Appl. Mater. Interfaces 16, 32906–32929 (2024). https://doi.org/10.1021/acsami.4c06914
A. Santaniello, G. Golemme, Non-covalent cross-linking does the job: why PIM-1/silicalite-1 mixed matrix membranes perform well notwithstanding silicalite-1. Macromol. Rapid Commun. 43, e2200226 (2022). https://doi.org/10.1002/marc.202200226
A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii et al., Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48–62 (2013). https://doi.org/10.1016/j.memsci.2012.09.035
J. Sánchez-Laínez, A. Pardillos-Ruiz, M. Carta, R. Malpass-Evans, N.B. McKeown et al., Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. Sep. Purif. Technol. 224, 456–462 (2019). https://doi.org/10.1016/j.seppur.2019.05.035
M. Yahia, Q.N. Le Phan, N. Ismail, M. Essalhi, O. Sundman et al., Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous Mesoporous Mater. 312, 110761 (2021). https://doi.org/10.1016/j.micromeso.2020.110761
B. Zhu, S. He, Y. Yang, S. Li, C.H. Lau et al., Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nat. Commun. 14, 1697 (2023). https://doi.org/10.1038/s41467-023-37479-9
K. Zhang, X. Luo, S. Li, X. Tian, Q. Wang et al., ZIF-8 Gel/PIM-1 mixed matrix membranes for enhanced H2/CH4 separations. Chem. Eng. J. 484, 149489 (2024). https://doi.org/10.1016/j.cej.2024.149489
L. Hao, K.-S. Liao, T.-S. Chung, Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. J. Mater. Chem. A 3, 17273–17281 (2015). https://doi.org/10.1039/C5TA03776J
S.J. Smith, B.P. Ladewig, A.J. Hill, C.H. Lau, M.R. Hill, Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Sci. Rep. 5, 7823 (2015). https://doi.org/10.1038/srep07823
Z. Wang, H. Ren, S. Zhang, F. Zhang, J. Jin, Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J. Mater. Chem. A 5, 10968–10977 (2017). https://doi.org/10.1039/C7TA01773A
B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. Isfahani et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanops. Nat. Energy 2, 17086 (2017). https://doi.org/10.1038/nenergy.2017.86
M.R. Khdhayyer, E. Esposito, A. Fuoco, M. Monteleone, L. Giorno et al., Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 173, 304–313 (2017). https://doi.org/10.1016/j.seppur.2016.09.036
N. Prasetya, B.P. Ladewig, An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. J. Mater. Chem. A 7, 15164–15172 (2019). https://doi.org/10.1039/C9TA02096A
I.D. Carja, S.R. Tavares, O. Shekhah, A. Ozcan, R. Semino et al., Insights into the enhancement of MOF/polymer adhesion in mixed-matrix membranes via polymer functionalization. ACS Appl. Mater. Interfaces 13, 29041–29047 (2021). https://doi.org/10.1021/acsami.1c03859
C. Geng, Y. Sun, Z. Zhang, Z. Qiao, C. Zhong, Mitigated aging in a defective metal–organic framework pillared polymer of an intrinsic porosity hybrid membrane for efficient gas separation. ACS Sustain. Chem. Eng. 10, 3643–3650 (2022). https://doi.org/10.1021/acssuschemeng.1c08485
Y. Sun, F. Fan, L. Bai, T. Li, J. Guan et al., Hydrogen-bonded hybrid membranes based on hydroxylated metal-organic frameworks and PIM-1 for ultrafast hydrogen separation. Results Eng. 20, 101398 (2023). https://doi.org/10.1016/j.rineng.2023.101398
Z. Lin, Z. Yuan, K. Wang, X. He, Synergistic tuning mixed matrix membranes by Ag+-doping in UiO-66-NH2/polymers of intrinsic microporosity for remarkable CO2/N2 separation. J. Membr. Sci. 681, 121775 (2023). https://doi.org/10.1016/j.memsci.2023.121775
C. Geng, Y. Sun, Z. Zhang, Z. Qiao, C. Zhong, Mixed matrix metal–organic framework membranes for efficient CO2/N2 separation under humid conditions. AICHE J. 69, e18025 (2023). https://doi.org/10.1002/aic.18025
W.N. Wu, K. Mizrahi Rodriguez, N. Roy, J.J. Teesdale, G. Han et al., Engineering the polymer-MOF interface in microporous composites to address complex mixture separations. ACS Appl. Mater. Interfaces 15, 52893–52907 (2023). https://doi.org/10.1021/acsami.3c11300
Z. Zhou, X. Cao, D. Lv, F. Cheng, Hydrophobic metal–organic framework UiO-66-(CF3)2/PIM-1 mixed-matrix membranes for stable CO2/N2 separation under high humidity. Sep. Purif. Technol. 339, 126666 (2024). https://doi.org/10.1016/j.seppur.2024.126666
F. Wang, Z. Wang, J. Yu, S. Han, X. Li et al., Mixed matrix membranes with intrinsic microporous/UiO-66 post-synthesis modifications with no defects for efficient CO2/N2 separation. Sep. Purif. Technol. 333, 125892 (2024). https://doi.org/10.1016/j.seppur.2023.125892
N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue, S. Kaliaguine, Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. J. Membr. Sci. 520, 941–950 (2016). https://doi.org/10.1016/j.memsci.2016.08.045
M. Khdhayyer, A.F. Bushell, P.M. Budd, M.P. Attfield, D. Jiang et al., Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Sep. Purif. Technol. 212, 545–554 (2019). https://doi.org/10.1016/j.seppur.2018.11.055
J. Ma, Y. Ying, X. Guo, H. Huang, D. Liu et al., Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation. J. Mater. Chem. A 4, 7281–7288 (2016). https://doi.org/10.1039/C6TA02611G
C.G. Morris, N.M. Jacques, H.G.W. Godfrey, T. Mitra, D. Fritsch et al., Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host. Chem. Sci. 8, 3239–3248 (2017). https://doi.org/10.1039/C6SC04343G
D. Wang, Y. Ying, Y. Zheng, Y. Pu, Z. Yang et al., Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation. J. Membr. Sci. Lett. 2, 100017 (2022). https://doi.org/10.1016/j.memlet.2022.100017
D. Fan, A. Ozcan, N.A. Ramsahye, G. Maurin, R. Semino, Putting forward NUS-8-CO2H/PIM-1 as a mixed matrix membrane for CO2 capture. ACS Appl. Mater. Interfaces 14, 16820–16829 (2022). https://doi.org/10.1021/acsami.2c00090
Y. Pu, Z. Yang, V. Wee, Z. Wu, Z. Jiang et al., Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations. J. Membr. Sci. 641, 119912 (2022). https://doi.org/10.1016/j.memsci.2021.119912
N. Prasetya, B.P. Ladewig, New azo-DMOF-1 MOF as a photoresponsive low-energy CO2 adsorbent and its exceptional CO2/N2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces 10, 34291–34301 (2018). https://doi.org/10.1021/acsami.8b12261
X. Wu, W. Liu, H. Wu, X. Zong, L. Yang et al., Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci. 548, 309–318 (2018). https://doi.org/10.1016/j.memsci.2017.11.038
W. Chen, Z. Zhang, L. Hou, C. Yang, H. Shen et al., Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance. Sep. Purif. Technol. 250, 117198 (2020). https://doi.org/10.1016/j.seppur.2020.117198
H. Yin, A. Alkaş, Y. Zhang, Y. Zhang, S.G. Telfer, Mixed matrix membranes (MMMs) using an emerging metal-organic framework (MUF-15) for CO2 separation. J. Membr. Sci. 609, 118245 (2020). https://doi.org/10.1016/j.memsci.2020.118245
Y. Wang, Y. Ren, H. Wu, X. Wu, H. Yang et al., Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading. J. Membr. Sci. 602, 117970 (2020). https://doi.org/10.1016/j.memsci.2020.117970
J. Han, L. Bai, H. Jiang, S. Zeng, B. Yang et al., Task-specific ionic liquids tuning ZIF-67/PIM-1 mixed matrix membranes for efficient CO2 separation. Ind. Eng. Chem. Res. 60, 593–603 (2021). https://doi.org/10.1021/acs.iecr.0c04830
J. Han, H. Jiang, S. Zeng, Y. Bai, X. Zhang et al., CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. J. Mol. Liq. 359, 119375 (2022). https://doi.org/10.1016/j.molliq.2022.119375
Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He et al., Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture. J. Membr. Sci. 650, 120399 (2022). https://doi.org/10.1016/j.memsci.2022.120399
Q. Shen, S. Cong, J. Zhu, Y. Zhang, R. He et al., Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. J. Membr. Sci. 664, 121107 (2022). https://doi.org/10.1016/j.memsci.2022.121107
K. Chen, L. Ni, H. Zhang, C. Xiao, L. Li et al., Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance. J. Membr. Sci. 661, 120848 (2022). https://doi.org/10.1016/j.memsci.2022.120848
Y. Sun, C. Geng, Z. Zhang, Z. Qiao, C. Zhong, Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation. J. Membr. Sci. 661, 120928 (2022). https://doi.org/10.1016/j.memsci.2022.120928
Y. Feng, W. Yan, Z. Kang, X. Zou, W. Fan et al., Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chem. Eng. J. 465, 142873 (2023). https://doi.org/10.1016/j.cej.2023.142873
J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017). https://doi.org/10.1002/anie.201701109
D. Peng, X. Feng, G. Yang, X. Niu, Z. Liu et al., In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. J. Membr. Sci. 668, 121267 (2023). https://doi.org/10.1016/j.memsci.2022.121267
B. Qiu, M. Yu, J.M. Luque-Alled, S. Ding, A.B. Foster et al., High gas permeability in aged superglassy membranes with nanosized UiO-66-NH2/cPIM-1 network fillers. Angew. Chem. Int. Ed. 63, e202316356 (2024). https://doi.org/10.1002/anie.202316356
G. Yu, X. Zou, L. Sun, B. Liu, Z. Wang et al., Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity. Adv. Mater. 31, e1806853 (2019). https://doi.org/10.1002/adma.201806853
C. Ye, X. Wu, H. Wu, L. Yang, Y. Ren et al., Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chem. Eng. Sci. 216, 115497 (2020). https://doi.org/10.1016/j.ces.2020.115497
X. Wu, Z. Tian, S. Wang, D. Peng, L. Yang et al., Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 528, 273–283 (2017). https://doi.org/10.1016/j.memsci.2017.01.042
Q. Chang, H. Guo, Z. Shang, C. Zhang, Y. Zhang et al., PIM-based mixed matrix membranes containing covalent organic frameworks/ionic liquid composite materials for effective CO2/N2 separation. Sep. Purif. Technol. 330, 125518 (2024). https://doi.org/10.1016/j.seppur.2023.125518
H. Jiang, J. Zhang, T. Huang, J. Xue, Y. Ren et al., Mixed-matrix membranes with covalent triazine framework fillers in polymers of intrinsic microporosity for CO2 separations. Ind. Eng. Chem. Res. 59, 5296–5306 (2020). https://doi.org/10.1021/acs.iecr.9b04632
G. Dai, Q. Zhang, S. Xiong, L. Deng, Z. Gao et al., Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation. J. Membr. Sci. 676, 121561 (2023). https://doi.org/10.1016/j.memsci.2023.121561
W.F. Yong, F.Y. Li, Y.C. Xiao, P. Li, K.P. Pramoda et al., Molecular engineering of PIM-1/Matrimid blend membranes for gas separation. J. Membr. Sci. 407, 47–57 (2012). https://doi.org/10.1016/j.memsci.2012.03.038
W.F. Yong, T.-S. Chung, Miscible blends of carboxylated polymers of intrinsic microporosity (cPIM-1) and Matrimid. Polymer 59, 290–297 (2015). https://doi.org/10.1016/j.polymer.2015.01.013
W.F. Yong, F.Y. Li, T.S. Chung, Y.W. Tong, Molecular interaction, gas transport properties and plasticization behavior of cPIM-1/Torlon blend membranes. J. Membr. Sci. 462, 119–130 (2014). https://doi.org/10.1016/j.memsci.2014.03.046
X. Wu, Q. Zhang, P. Lin, Y. Qu, A. Zhu et al., Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J. Membr. Sci. 493, 147–155 (2015). https://doi.org/10.1016/j.memsci.2015.05.077
G. Bengtson, S. Neumann, V. Filiz, Membranes of polymers of intrinsic microporosity (PIM-1) modified by Poly(ethylene glycol). Membranes 7, 28 (2017). https://doi.org/10.3390/membranes7020028
W.F. Yong, Z.K. Lee, T.S. Chung, M. Weber, C. Staudt et al., Blends of a polymer of intrinsic microporosity and partially sulfonated polyphenylenesulfone for gas separation. Chemsuschem 9, 1953–1962 (2016). https://doi.org/10.1002/cssc.201600354
A.K. Sekizkardes, V.A. Kusuma, J.S. McNally, D. Gidley, K. Resnik et al., Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO2 separation performance. J. Mater. Chem. A 6, 22472–22477 (2018). https://doi.org/10.1039/C8TA07424K
A.K. Sekizkardes, S. Budhathoki, L. Zhu, V. Kusuma, Z. Tong et al., Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation. J. Membr. Sci. 640, 119764 (2021). https://doi.org/10.1016/j.memsci.2021.119764
S. Zhao, J. Liao, D. Li, X. Wang, N. Li, Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger’s Base polymer for gas separation membranes. J. Membr. Sci. 566, 77–86 (2018). https://doi.org/10.1016/j.memsci.2018.08.010
H. Amir, R. Tamime, Z. Shamair, A.L. Khan, H. AlMohamadi et al., Enhanced gas separation performance of PIM-1 blend membranes incorporating ionic liquid (3-(trimethoxysilyl) propan-1-aminium acetate ([APTMS][Ac])) as filler: investigation of morphology, compatibility and transport properties. Fuel 349, 128669 (2023). https://doi.org/10.1016/j.fuel.2023.128669
K. Halder, M.M. Khan, J. Grünauer, S. Shishatskiy, C. Abetz et al., Blend membranes of ionic liquid and polymers of intrinsic microporosity with improved gas separation characteristics. J. Membr. Sci. 539, 368–382 (2017). https://doi.org/10.1016/j.memsci.2017.06.022
H. Zhao, T. Song, X. Ding, R. Cai, X. Tan et al., PIM-1 mixed matrix membranes incorporated with magnetic responsive cobalt-based ionic liquid for O2/N2 separation. J. Membr. Sci. 679, 121713 (2023). https://doi.org/10.1016/j.memsci.2023.121713
B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci et al., Temperature and pressure dependence of gas permeation in amine-modified PIM-1. J. Membr. Sci. 555, 483–496 (2018). https://doi.org/10.1016/j.memsci.2018.03.039
A.W. Ameen, J. Ji, M. Tamaddondar, S. Moshenpour, A.B. Foster et al., 2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. J. Membr. Sci. 636, 119527 (2021). https://doi.org/10.1016/j.memsci.2021.119527
W. Chen, Z. Zhang, C. Yang, J. Liu, H. Shen et al., PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance. J. Membr. Sci. 636, 119581 (2021). https://doi.org/10.1016/j.memsci.2021.119581
H. Jiang, Z. Guo, H. Wang, X. Liu, Y. Ren et al., Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. J. Membr. Sci. 640, 119803 (2021). https://doi.org/10.1016/j.memsci.2021.119803
E. Chernova, D. Petukhov, O. Boytsova, A. Alentiev, P. Budd et al., Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Sci. Rep. 6, 31183 (2016). https://doi.org/10.1038/srep31183
S. Harms, K. Rätzke, F. Faupel, N. Chaukura, P.M. Budd et al., Aging and free volume in a polymer of intrinsic microporosity (PIM-1). J. Adhes. 88, 608–619 (2012). https://doi.org/10.1080/00218464.2012.682902
W. Ogieglo, A. Furchner, B. Ghanem, X. Ma, I. Pinnau et al., Mixed-penetrant sorption in ultrathin films of polymer of intrinsic microporosity PIM-1. J. Phys. Chem. B 121, 10190–10197 (2017). https://doi.org/10.1021/acs.jpcb.7b10061
P. Gorgojo, S. Karan, H.C. Wong, M.F. Jimenez-Solomon, J.T. Cabral et al., Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24, 4729–4737 (2014). https://doi.org/10.1002/adfm.201400400
D. Fritsch, P. Merten, K. Heinrich, M. Lazar, M. Priske, High performance organic solvent nanofiltration membranes: development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J. Membr. Sci. 401, 222–231 (2012). https://doi.org/10.1016/j.memsci.2012.02.008
C.A. Scholes, S.E. Kentish, G.W. Stevens, J. Jin, D. DeMontigny, Thin-film composite membrane contactors for desorption of CO2 from Monoethanolamine at elevated temperatures. Sep. Purif. Technol. 156, 841–847 (2015). https://doi.org/10.1016/j.seppur.2015.11.010
C.A. Scholes, S.E. Kentish, G.W. Stevens, D. DeMontigny, Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine. Int. J. Greenh. Gas Contr. 42, 66–74 (2015). https://doi.org/10.1016/j.ijggc.2015.07.032
M. Cook, P.R.J. Gaffney, L.G. Peeva, A.G. Livingston, Roll-to-roll dip coating of three different PIMs for organic solvent nanofiltration. J. Membr. Sci. 558, 52–63 (2018). https://doi.org/10.1016/j.memsci.2018.04.046
T.H. Lee, B.K. Lee, S.Y. Yoo, H. Lee, W.N. Wu et al., PolyMOF nanops constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation. Nat. Commun. 14, 8330 (2023). https://doi.org/10.1038/s41467-023-44027-y
S.K. Elsaidi, M. Ostwal, L. Zhu, A. Sekizkardes, M.H. Mohamed et al., 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv. 11, 25658–25663 (2021). https://doi.org/10.1039/d1ra03124d
M.L. Jue, V. Breedveld, R.P. Lively, Defect-free PIM-1 hollow fiber membranes. J. Membr. Sci. 530, 33–41 (2017). https://doi.org/10.1016/j.memsci.2017.02.012
M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M. Rahman et al., Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res. Lett. 7, 504 (2012). https://doi.org/10.1186/1556-276X-7-504
Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017). https://doi.org/10.1016/j.memsci.2017.06.011
H. Zhao, L. Feng, X. Ding, X. Tan, Y. Zhang, Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chin. J. Chem. Eng. 26, 2477–2486 (2018). https://doi.org/10.1016/j.cjche.2018.03.009
R.S. Bhavsar, T. Mitra, D.J. Adams, A.I. Cooper, P.M. Budd, Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. J. Membr. Sci. 564, 878–886 (2018). https://doi.org/10.1016/j.memsci.2018.07.089
I. Borisov, D. Bakhtin, J. Luque-Alled, A. Rybakova, V. Makarova et al., Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. J. Mater. Chem. A 7, 6417–6430 (2019). https://doi.org/10.1039/c8ta10691f
M. Liu, M.D. Nothling, P.A. Webley, J. Jin, Q. Fu et al., High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chem. Eng. J. 396, 125328 (2020). https://doi.org/10.1016/j.cej.2020.125328
G. He, S. Huang, L.F. Villalobos, M.T. Vahdat, M.D. Guiver et al., Synergistic CO2-sieving from polymer with intrinsic microporosity masking nanoporous single-layer graphene. Adv. Funct. Mater. 30, 2003979 (2020). https://doi.org/10.1002/adfm.202003979
E. Aliyev, J. Warfsmann, B. Tokay, S. Shishatskiy, Y.-J. Lee et al., Gas transport properties of the metal–organic framework (MOF)-assisted polymer of intrinsic microporosity (PIM-1) thin-film composite membranes. ACS Sustain. Chem. Eng. 9, 684–694 (2021). https://doi.org/10.1021/acssuschemeng.0c06297
M. Yu, A.B. Foster, M. Alshurafa, J.M. Luque-Alled, P. Gorgojo et al., CO2 separation using thin film composite membranes of acid-hydrolyzed PIM-1. J. Membr. Sci. 679, 121697 (2023). https://doi.org/10.1016/j.memsci.2023.121697
J. Contreras-Martínez, S. Mohsenpour, A.W. Ameen, P.M. Budd, C. García-Payo et al., High-flux thin film composite PIM-1 membranes for butanol recovery: experimental study and process simulations. ACS Appl. Mater. Interfaces 13, 42635–42649 (2021). https://doi.org/10.1021/acsami.1c09112
B. Qiu, M. Alberto, S. Mohsenpour, A.B. Foster, S. Ding et al., Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Sep. Purif. Technol. 299, 121693 (2022). https://doi.org/10.1016/j.seppur.2022.121693