Layered Double Hydroxide Nanosheets Incorporated Hierarchical Hydrogen Bonding Polymer Networks for Transparent and Fire-Proof Ceramizable Coatings
Corresponding Author: Lizong Dai
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 116
Abstract
In recent decades, annual urban fire incidents, including those involving ancient wooden buildings burned, transportation, and solar panels, have increased, leading to significant loss of human life and property. Addressing this issue without altering the surface morphology or interfering with optical behavior of flammable materials poses a substantial challenge. Herein, we present a transparent, low thickness, ceramifiable nanosystem coating composed of a highly adhesive base (poly(SSS1-co-HEMA1)), nanoscale layered double hydroxide sheets as ceramic precursors, and supramolecular melamine di-borate as an accelerator. We demonstrate that this hybrid coating can transform into a porous, fire-resistant protective layer with a highly thermostable vitreous phase upon exposure to flame/heat source. A nanosystem coating of just ~ 100 μm thickness can significantly increase the limiting oxygen index of wood (Pine) to 37.3%, dramatically reduce total heat release by 78.6%, and maintain low smoke toxicity (CITG = 0.016). Detailed molecular force analysis, combined with a comprehensive examination of the underlying flame-retardant mechanisms, underscores the effectiveness of this coating. This work offers a strategy for creating efficient, environmentally friendly coatings with fire safety applications across various industries.
Highlights:
1 A transparent and ceramizable coating was developed by incorporating nano-layered double hydroxide nanosheets into hierarchical hydrogen bonding polymer networks.
2 The resulting coating composites demonstrated excellent high-temperature stability and fire resistance, effectively withstanding the direct exposure to a butane flame (~ 1100 °C) in air atmosphere.
3 The mechanisms behind the flame-retardant behavior and ceramicization behaviors were thoroughly investigated and explained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.M.J.S. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
- H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning e-textile based on p–n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820023-01200-8
- I. Džolev, M. Laban, S. Draganić, Survey based fire load assessment and impact analysis of fire load increment on fire development in contemporary dwellings. Saf. Sci. 135, 105094 (2021). https://doi.org/10.1016/j.ssci.2020.105094
- Y. Gao, C. Huang, Y. Chen, X. Chen, Y. Shen et al., Sustainable production of in-situ CO2 capture and mineralization of multifunctional nanowood with excellent anisotropic, flame retardant, and durability for building construction. Ind. Crops Prod. 221, 119353 (2024). https://doi.org/10.1016/j.indcrop.2024.119353
- Y. Praticò, J. Ochsendorf, S. Holzer, R.J. Flatt, Post-fire restoration of historic buildings and implications for Notre-Dame de Paris. Nat. Mater. 19(8), 817–820 (2020). https://doi.org/10.1038/s41563-020-0748-y
- M. Aram, X. Zhang, D. Qi, Y. Ko, Scaling study of smoke spread from building integrated photovoltaic (BIPV) double skin façade fire for achieving sustainable buildings and cities. Sustain. Cities Soc. 97, 104648 (2023). https://doi.org/10.1016/j.scs.2023.104648
- N.A.F.M.N. Ong, M.A. Sadiq, M.S.M. Said, G. Jomaas, M.Z.M. Tohir et al., Fault tree analysis of fires on rooftops with photovoltaic systems. J. Build. Eng. 46, 103752 (2022). https://doi.org/10.1016/j.jobe.2021.103752
- M. Aram, X. Zhang, D. Qi, Y. Ko, A state-of-the-art review of fire safety of photovoltaic systems in buildings. J. Clean. Prod. 308, 127239 (2021). https://doi.org/10.1016/j.jclepro.2021.127239
- Y. Gao, J. Wu, Q. Wang, C.A. Wilkie, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2(29), 10996–11016 (2014). https://doi.org/10.1039/C4TA01030B
- Y. Xue, X. Zuo, L. Wang, Y. Zhou, Y. Pan et al., Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate. Compos. B Eng. 196, 108124 (2020). https://doi.org/10.1016/j.compositesb.2020.108124
- M. Kim, J. Kim, Enhancement of the flame retardant properties of PPS-based composites via the addition of melamine-coated CaAl-LDH fire-retardant filler. Eur. Polym. J. 201, 112584 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112584
- S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
- A.N. Zhang, H.B. Zhao, J.B. Cheng, M.E. Li, S.L. Li et al., Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chem. Eng. J. 410(15), 128361 (2021). https://doi.org/10.1016/j.cej.2020.128361
- D. Rodriguez-Melendez, N.A. Vest, T.J. Kolibaba, Y. Quan, Z. Zhang et al., Boron-based polyelectrolyte complex nanocoating for fire protection of engineered wood. Cellulose 31(5), 3083–3094 (2024). https://doi.org/10.1007/s10570-024-05773-4
- H.-Y. Chen, Z.-Y. Chen, M. Mao, Y.-Y. Wu, F. Yang et al., Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Adv. Funct. Mater. 33(48), 2304927 (2023). https://doi.org/10.1002/adfm.202304927
- X. Wang, Z. Lei, X. Ma, G. He, T. Xu et al., A lightweight MXene-Coated nonwoven fabric with excellent flame retardancy, EMI Shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
- Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
- Y. Wang, Y. Cheng, C. Yin, J. Zhang, X. Zhang et al., Seashell-inspired switchable waterborne coatings with complete biodegradability, intrinsic flame-retardance, and high transparency. ACS Nano 17(13), 12433–12444 (2023). https://doi.org/10.1021/acsnano.3c01866
- L. Pezzato, S. Akbarzadeh, A.G. Settimi, E. Moschin, I. Moro et al., Corrosion and antifouling properties of copper-containing PEO coatings produced on steels. Surf. Coat. Technol. 482, 130631 (2024). https://doi.org/10.1016/j.surfcoat.2024.130631
- H. Zhang, X. Bu, W. Li, M. Cui, X. Ji et al., A skin-inspired design integrating mechano–chemical–thermal robustness into superhydrophobic coatings. Adv. Mater. 34(31), 2203792 (2022). https://doi.org/10.1002/adma.202203792
- B. Lin, A.C.Y. Yuen, S. Oliver, J. Liu, B. Yu et al., Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal ps. Compos. B Eng. 244, 110147 (2022). https://doi.org/10.1016/j.compositesb.2022.110147
- Z.W. Ma, J.Z. Zhang, C. Maluk, Y.M. Yu, S.M. Seraji et al., A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 5(3), 911–932 (2022). https://doi.org/10.1016/j.matt.2021.12.009
- Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
- L. Wang, P.V. Kelly, N. Ozveren, X. Zhang, M. Korey et al., Multifunctional polymer composite coatings and adhesives by incorporating cellulose nanomaterials. Matter 6(2), 344–372 (2023). https://doi.org/10.1016/j.matt.2022.11.024
- W. Cai, N. Hong, X. Feng, W. Zeng, Y. Shi et al., A facile strategy to simultaneously exfoliate and functionalize boron nitride nanosheets via Lewis acid-base interaction. Chem. Eng. J. 330, 309–321 (2017). https://doi.org/10.1016/j.cej.2017.07.162
- C.F. Cao, B. Yu, J. Huang, X.L. Feng, L.Y. Lv et al., Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano 16(12), 20865–20876 (2022). https://doi.org/10.1021/acsnano.2c08368
- X. Zhou, Q. Fu, Z. Zhang, Y. Fang, Y. Wang et al., Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly. J. Clean. Prod. 321, 128949 (2021). https://doi.org/10.1016/j.jclepro.2021.128949
- H. Liu, W. Xu, H. Ren, D. Li, J. He et al., Integrated comprehensive protection coating achieved by ligand engineering modulated MXene@LDH heterojunction with anti-corrosion, electromagnetic wave absorption and fire safety. Chem. Eng. J. 486, 150444 (2024). https://doi.org/10.1016/j.cej.2024.150444
- G. Camino, A. Maffezzoli, M. Braglia, M. De Lazzaro, M. Zammarano, Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 74(3), 457–464 (2001). https://doi.org/10.1016/S0141-3910(01)00167-7
- C.M. Becker, A.D. Gabbardo, F. Wypych, S.C. Amico, Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites. Compos. Part A Appl. Sci. Manuf. 42(2), 196–202 (2011). https://doi.org/10.1016/j.compositesa.2010.11.005
- A. Roy, A. Choudhury, C.N.R. Rao, Supramolecular hydrogen-bonded structure of a 1:2 adduct of melamine with boric acid. J. Mol. Struct. 613(1), 61–66 (2002). https://doi.org/10.1016/S0022-2860(02)00128-X
- A.S. Kazachenko, N. Issaoui, M. Medimagh, OYu. Fetisova, Y.D. Berezhnaya et al., Experimental and theoretical study of the sulfamic acid-urea deep eutectic solvent. J. Mol. Liq. 363, 119859 (2022). https://doi.org/10.1016/j.molliq.2022.119859
- J. Schott, J. Kretzschmar, M. Acker, S. Eidner, M.U. Kumke et al., Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution. Dalton Trans. 43(30), 11516–11528 (2014). https://doi.org/10.1039/C4DT00843J
- L. Jun, X. Shuping, G. Shiyang, FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(4), 519–532 (1995). https://doi.org/10.1016/0584-8539(94)00183-C
- Z. Lixia, Y. Tao, W. Jiang, G. Shiyang, FT-IR and Raman spectroscopic study of hydrated rubidium (cesium) borates and alkali double borates. Russ. J. Inorg. Chem. 52(11), 1786–1792 (2007). https://doi.org/10.1134/S0036023607110241
- C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 140161 (2022). https://doi.org/10.1016/j.cej.2022.140161
- W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12(1), 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
- Y. Wang, S. Sun, P. Wu, Adaptive ionogel paint from room-temperature autonomous polymerization of α-thioctic acid for stretchable and healable electronics. Adv. Funct. Mater. 31(24), 2101494 (2021). https://doi.org/10.1002/adfm.202101494
- R. Fritzsch, S. Hume, L. Minnes, M.J. Baker, G.A. Burley et al., Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 145(6), 2014–2024 (2020). https://doi.org/10.1039/C9AN02035G
- Z. Fang, H. Mu, Z. Sun, K. Zhang, A. Zhang et al., 3D printable elastomers with exceptional strength and toughness. Nature 631, 783–788 (2024). https://doi.org/10.1038/s41586-024-07588-6
- L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
- A. Sommer, D. White, M.J. Linevsky, D.E. Mann, Infrared absorption spectra of B2O3, B2O2, and BO2 in solid argon matrices. J. Chem. Phys. 38(1), 87–98 (1963). https://doi.org/10.1063/1.1733501
- J. Cui, Y. Yang, X. Li, W. Yuan, Y. Pei, Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water. ACS Appl. Mater. Interfaces 10(4), 4183–4197 (2018). https://doi.org/10.1021/acsami.7b15507
- S. Guan, M. Qi, C. Wang, S. Wang, W. Wang, Enhanced cytocompatibility of Ti6Al4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating. Appl. Surf. Sci. 541, 148547 (2021). https://doi.org/10.1016/j.apsusc.2020.148547
- B.J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New J. Chem. 41(17), 9497–9504 (2017). https://doi.org/10.1039/C7NJ01886J
- Y.B. Huang, S.H. Jiang, R.C. Liang, P. Sun, Y. Hai et al., Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621 (2020). https://doi.org/10.1016/j.cej.2019.123621
- N. Maiti, S. Thomas, A. Debnath, S. Kapoor, Raman and XPS study on the interaction of taurine with silver nanops. RSC Adv. 6(61), 56406–56411 (2016). https://doi.org/10.1039/C6RA09569K
- K. Demirelli, M. Coşkun, E. Kaya, A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym. Degrad. Stab. 72(1), 75–80 (2001). https://doi.org/10.1016/S0141-3910(00)00204-4
- D.D. Jiang, Q. Yao, M.A. McKinney, C.A. Wilkie, TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stab. 63(3), 423–434 (1999). https://doi.org/10.1016/S0141-3910(98)00123-2
- C. Peniche-Covas, W. Argüelles-Monal, J.S. Román, A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polym. Degrad. Stab. 39(1), 21–28 (1993). https://doi.org/10.1016/0141-3910(93)90120-8
- W. Luo, M.-J. Chen, T. Wang, J.-F. Feng, Z.-C. Fu et al., Catalytic polymer self-cleavage for CO2 generation before combustion empowers materials with fire safety. Nat. Commun. 15(1), 2726 (2024). https://doi.org/10.1038/s41467-024-46756-0
- J. Li, C. Zhu, Z. Zhao, P. Khalili, M. Clement et al., Fire properties of carbon fiber reinforced polymer improved by coating nonwoven flame retardant mat for aerospace application. J. Appl. Polym. Sci. 136(30), 47801 (2019). https://doi.org/10.1002/app.47801
- E. Kandare, P. Luangtriratana, B.K. Kandola, Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos. B Eng. 56, 602–610 (2014). https://doi.org/10.1016/j.compositesb.2013.08.090
- –2 railway applications, Fire protection on railway vehicles-part 2: Requirements for fire behaviour of materials and components. EN 45545–2. 2016. https://pmpgroup.org/wp-content/uploads/2021/10/PMP-EN-45545-2-Railway-Standrad.pdf
- –2, plastics--smoke generation-part 2: determination of optical density by a single-chamber test. ISO 5659–2:2017. 2006. https://www.iso.org/standard/65243.html
- C. Zhu, S. Li, J. Li, M. Clement, C. Rudd et al., Fire performance of sandwich composites with intumescent mat protection: evolving thermal insulation, post-fire performance and rail industry testing. Fire Saf. J. 116, 103205 (2020). https://doi.org/10.1016/j.firesaf.2020.103205
- C. Deng, Y. Liu, H. Jian, Y. Liang, M. Wen et al., Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr. Build. Mater. 374, 130939 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130939
- T. Zhang, J. Xi, S. Qiu, B. Zhang, Z. Luo et al., Facilely produced highly adhered, low thermal conductivity and non-combustible coatings for fire safety. J. Colloid Interface Sci. 604, 378–389 (2021). https://doi.org/10.1016/j.jcis.2021.06.135
- L. Ma, T. Zhang, Y. Zhao, T. Yuan, X. Wang et al., Preparation of multifunctional flame-retardant and superhydrophobic composite wood by iron ions doped phytic acid-based nanosheets. Constr. Build. Mater. 422, 135854 (2024). https://doi.org/10.1016/j.conbuildmat.2024.135854
- Q. Liu, H. Luo, Z. Gao, Y. Huang, J. Liang et al., Preparation of waterborne intumescent flame-retardant coatings using adenosine-based phosphonates for wood surfaces. Prog. Org. Coat. 187, 108061 (2024). https://doi.org/10.1016/j.porgcoat.2023.108061
- F. Song, T. Liu, Q. Fan, D. Li, R. Ou et al., Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Prog. Org. Coat. 162, 106597 (2022). https://doi.org/10.1016/j.porgcoat.2021.106597
- D. Jiao, H. Sima, X. Shi, C. Zhang, B. Liu, Mussel-inspired flame retardant coating on polyurethane foam. Chem. Eng. J. 474, 145588 (2023). https://doi.org/10.1016/j.cej.2023.145588
- H. Kim, D.W. Kim, V. Vasagar, H. Ha, S. Nazarenko et al., Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 28(39), 1803172 (2018). https://doi.org/10.1002/adfm.201803172
- J. Xu, Y. Niu, Z. Xie, F. Liang, F. Guo et al., Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem. Eng. J. 451, 138566 (2023). https://doi.org/10.1016/j.cej.2022.138566
References
D.M.J.S. Bowman, J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson et al., Fire in the earth system. Science 324(5926), 481–484 (2009). https://doi.org/10.1126/science.1163886
H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang et al., Temperature-arousing self-powered fire warning e-textile based on p–n segment coaxial aerogel fibers for active fire protection in firefighting clothing. Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820023-01200-8
I. Džolev, M. Laban, S. Draganić, Survey based fire load assessment and impact analysis of fire load increment on fire development in contemporary dwellings. Saf. Sci. 135, 105094 (2021). https://doi.org/10.1016/j.ssci.2020.105094
Y. Gao, C. Huang, Y. Chen, X. Chen, Y. Shen et al., Sustainable production of in-situ CO2 capture and mineralization of multifunctional nanowood with excellent anisotropic, flame retardant, and durability for building construction. Ind. Crops Prod. 221, 119353 (2024). https://doi.org/10.1016/j.indcrop.2024.119353
Y. Praticò, J. Ochsendorf, S. Holzer, R.J. Flatt, Post-fire restoration of historic buildings and implications for Notre-Dame de Paris. Nat. Mater. 19(8), 817–820 (2020). https://doi.org/10.1038/s41563-020-0748-y
M. Aram, X. Zhang, D. Qi, Y. Ko, Scaling study of smoke spread from building integrated photovoltaic (BIPV) double skin façade fire for achieving sustainable buildings and cities. Sustain. Cities Soc. 97, 104648 (2023). https://doi.org/10.1016/j.scs.2023.104648
N.A.F.M.N. Ong, M.A. Sadiq, M.S.M. Said, G. Jomaas, M.Z.M. Tohir et al., Fault tree analysis of fires on rooftops with photovoltaic systems. J. Build. Eng. 46, 103752 (2022). https://doi.org/10.1016/j.jobe.2021.103752
M. Aram, X. Zhang, D. Qi, Y. Ko, A state-of-the-art review of fire safety of photovoltaic systems in buildings. J. Clean. Prod. 308, 127239 (2021). https://doi.org/10.1016/j.jclepro.2021.127239
Y. Gao, J. Wu, Q. Wang, C.A. Wilkie, D. O’Hare, Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2(29), 10996–11016 (2014). https://doi.org/10.1039/C4TA01030B
Y. Xue, X. Zuo, L. Wang, Y. Zhou, Y. Pan et al., Enhanced flame retardancy of poly(lactic acid) with ultra-low loading of ammonium polyphosphate. Compos. B Eng. 196, 108124 (2020). https://doi.org/10.1016/j.compositesb.2020.108124
M. Kim, J. Kim, Enhancement of the flame retardant properties of PPS-based composites via the addition of melamine-coated CaAl-LDH fire-retardant filler. Eur. Polym. J. 201, 112584 (2023). https://doi.org/10.1016/j.eurpolymj.2023.112584
S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Flame-retardant surface treatments. Nat. Rev. Mater. 5(4), 259–275 (2020). https://doi.org/10.1038/s41578-019-0164-6
A.N. Zhang, H.B. Zhao, J.B. Cheng, M.E. Li, S.L. Li et al., Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chem. Eng. J. 410(15), 128361 (2021). https://doi.org/10.1016/j.cej.2020.128361
D. Rodriguez-Melendez, N.A. Vest, T.J. Kolibaba, Y. Quan, Z. Zhang et al., Boron-based polyelectrolyte complex nanocoating for fire protection of engineered wood. Cellulose 31(5), 3083–3094 (2024). https://doi.org/10.1007/s10570-024-05773-4
H.-Y. Chen, Z.-Y. Chen, M. Mao, Y.-Y. Wu, F. Yang et al., Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities. Adv. Funct. Mater. 33(48), 2304927 (2023). https://doi.org/10.1002/adfm.202304927
X. Wang, Z. Lei, X. Ma, G. He, T. Xu et al., A lightweight MXene-Coated nonwoven fabric with excellent flame retardancy, EMI Shielding, and electrothermal/photothermal conversion for wearable heater. Chem. Eng. J. 430, 132605 (2022). https://doi.org/10.1016/j.cej.2021.132605
Y. Zhang, Y. Huang, M.-C. Li, S. Zhang, W. Zhou et al., Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chem. Eng. J. 452, 139360 (2023). https://doi.org/10.1016/j.cej.2022.139360
Y. Wang, Y. Cheng, C. Yin, J. Zhang, X. Zhang et al., Seashell-inspired switchable waterborne coatings with complete biodegradability, intrinsic flame-retardance, and high transparency. ACS Nano 17(13), 12433–12444 (2023). https://doi.org/10.1021/acsnano.3c01866
L. Pezzato, S. Akbarzadeh, A.G. Settimi, E. Moschin, I. Moro et al., Corrosion and antifouling properties of copper-containing PEO coatings produced on steels. Surf. Coat. Technol. 482, 130631 (2024). https://doi.org/10.1016/j.surfcoat.2024.130631
H. Zhang, X. Bu, W. Li, M. Cui, X. Ji et al., A skin-inspired design integrating mechano–chemical–thermal robustness into superhydrophobic coatings. Adv. Mater. 34(31), 2203792 (2022). https://doi.org/10.1002/adma.202203792
B. Lin, A.C.Y. Yuen, S. Oliver, J. Liu, B. Yu et al., Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal ps. Compos. B Eng. 244, 110147 (2022). https://doi.org/10.1016/j.compositesb.2022.110147
Z.W. Ma, J.Z. Zhang, C. Maluk, Y.M. Yu, S.M. Seraji et al., A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 5(3), 911–932 (2022). https://doi.org/10.1016/j.matt.2021.12.009
Z. Ma, X. Liu, X. Xu, L. Liu, B. Yu et al., Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15(7), 11667–11680 (2021). https://doi.org/10.1021/acsnano.1c02254
L. Wang, P.V. Kelly, N. Ozveren, X. Zhang, M. Korey et al., Multifunctional polymer composite coatings and adhesives by incorporating cellulose nanomaterials. Matter 6(2), 344–372 (2023). https://doi.org/10.1016/j.matt.2022.11.024
W. Cai, N. Hong, X. Feng, W. Zeng, Y. Shi et al., A facile strategy to simultaneously exfoliate and functionalize boron nitride nanosheets via Lewis acid-base interaction. Chem. Eng. J. 330, 309–321 (2017). https://doi.org/10.1016/j.cej.2017.07.162
C.F. Cao, B. Yu, J. Huang, X.L. Feng, L.Y. Lv et al., Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano 16(12), 20865–20876 (2022). https://doi.org/10.1021/acsnano.2c08368
X. Zhou, Q. Fu, Z. Zhang, Y. Fang, Y. Wang et al., Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly. J. Clean. Prod. 321, 128949 (2021). https://doi.org/10.1016/j.jclepro.2021.128949
H. Liu, W. Xu, H. Ren, D. Li, J. He et al., Integrated comprehensive protection coating achieved by ligand engineering modulated MXene@LDH heterojunction with anti-corrosion, electromagnetic wave absorption and fire safety. Chem. Eng. J. 486, 150444 (2024). https://doi.org/10.1016/j.cej.2024.150444
G. Camino, A. Maffezzoli, M. Braglia, M. De Lazzaro, M. Zammarano, Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 74(3), 457–464 (2001). https://doi.org/10.1016/S0141-3910(01)00167-7
C.M. Becker, A.D. Gabbardo, F. Wypych, S.C. Amico, Mechanical and flame-retardant properties of epoxy/Mg–Al LDH composites. Compos. Part A Appl. Sci. Manuf. 42(2), 196–202 (2011). https://doi.org/10.1016/j.compositesa.2010.11.005
A. Roy, A. Choudhury, C.N.R. Rao, Supramolecular hydrogen-bonded structure of a 1:2 adduct of melamine with boric acid. J. Mol. Struct. 613(1), 61–66 (2002). https://doi.org/10.1016/S0022-2860(02)00128-X
A.S. Kazachenko, N. Issaoui, M. Medimagh, OYu. Fetisova, Y.D. Berezhnaya et al., Experimental and theoretical study of the sulfamic acid-urea deep eutectic solvent. J. Mol. Liq. 363, 119859 (2022). https://doi.org/10.1016/j.molliq.2022.119859
J. Schott, J. Kretzschmar, M. Acker, S. Eidner, M.U. Kumke et al., Formation of a Eu(III) borate solid species from a weak Eu(III) borate complex in aqueous solution. Dalton Trans. 43(30), 11516–11528 (2014). https://doi.org/10.1039/C4DT00843J
L. Jun, X. Shuping, G. Shiyang, FT-IR and Raman spectroscopic study of hydrated borates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51(4), 519–532 (1995). https://doi.org/10.1016/0584-8539(94)00183-C
Z. Lixia, Y. Tao, W. Jiang, G. Shiyang, FT-IR and Raman spectroscopic study of hydrated rubidium (cesium) borates and alkali double borates. Russ. J. Inorg. Chem. 52(11), 1786–1792 (2007). https://doi.org/10.1134/S0036023607110241
C.F. Cao, B. Yu, B.F. Guo, W.J. Hu, F.N. Sun et al., Bio-inspired, sustainable and mechanically robust graphene oxide-based hybrid networks for efficient fire protection and warning. Chem. Eng. J. 439, 140161 (2022). https://doi.org/10.1016/j.cej.2022.140161
W. Zhang, B. Wu, S. Sun, P. Wu, Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 12(1), 4082 (2021). https://doi.org/10.1038/s41467-021-24382-4
Y. Wang, S. Sun, P. Wu, Adaptive ionogel paint from room-temperature autonomous polymerization of α-thioctic acid for stretchable and healable electronics. Adv. Funct. Mater. 31(24), 2101494 (2021). https://doi.org/10.1002/adfm.202101494
R. Fritzsch, S. Hume, L. Minnes, M.J. Baker, G.A. Burley et al., Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 145(6), 2014–2024 (2020). https://doi.org/10.1039/C9AN02035G
Z. Fang, H. Mu, Z. Sun, K. Zhang, A. Zhang et al., 3D printable elastomers with exceptional strength and toughness. Nature 631, 783–788 (2024). https://doi.org/10.1038/s41586-024-07588-6
L. Jin, W. Cao, P. Wang, N. Song, P. Ding, Interconnected MXene/graphene network constructed by soft template for multi-performance improvement of polymer composites. Nano-Micro Lett. 14, 133 (2022). https://doi.org/10.1007/s40820-022-00877-7
A. Sommer, D. White, M.J. Linevsky, D.E. Mann, Infrared absorption spectra of B2O3, B2O2, and BO2 in solid argon matrices. J. Chem. Phys. 38(1), 87–98 (1963). https://doi.org/10.1063/1.1733501
J. Cui, Y. Yang, X. Li, W. Yuan, Y. Pei, Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water. ACS Appl. Mater. Interfaces 10(4), 4183–4197 (2018). https://doi.org/10.1021/acsami.7b15507
S. Guan, M. Qi, C. Wang, S. Wang, W. Wang, Enhanced cytocompatibility of Ti6Al4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating. Appl. Surf. Sci. 541, 148547 (2021). https://doi.org/10.1016/j.apsusc.2020.148547
B.J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New J. Chem. 41(17), 9497–9504 (2017). https://doi.org/10.1039/C7NJ01886J
Y.B. Huang, S.H. Jiang, R.C. Liang, P. Sun, Y. Hai et al., Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem. Eng. J. 391, 123621 (2020). https://doi.org/10.1016/j.cej.2019.123621
N. Maiti, S. Thomas, A. Debnath, S. Kapoor, Raman and XPS study on the interaction of taurine with silver nanops. RSC Adv. 6(61), 56406–56411 (2016). https://doi.org/10.1039/C6RA09569K
K. Demirelli, M. Coşkun, E. Kaya, A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym. Degrad. Stab. 72(1), 75–80 (2001). https://doi.org/10.1016/S0141-3910(00)00204-4
D.D. Jiang, Q. Yao, M.A. McKinney, C.A. Wilkie, TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stab. 63(3), 423–434 (1999). https://doi.org/10.1016/S0141-3910(98)00123-2
C. Peniche-Covas, W. Argüelles-Monal, J.S. Román, A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polym. Degrad. Stab. 39(1), 21–28 (1993). https://doi.org/10.1016/0141-3910(93)90120-8
W. Luo, M.-J. Chen, T. Wang, J.-F. Feng, Z.-C. Fu et al., Catalytic polymer self-cleavage for CO2 generation before combustion empowers materials with fire safety. Nat. Commun. 15(1), 2726 (2024). https://doi.org/10.1038/s41467-024-46756-0
J. Li, C. Zhu, Z. Zhao, P. Khalili, M. Clement et al., Fire properties of carbon fiber reinforced polymer improved by coating nonwoven flame retardant mat for aerospace application. J. Appl. Polym. Sci. 136(30), 47801 (2019). https://doi.org/10.1002/app.47801
E. Kandare, P. Luangtriratana, B.K. Kandola, Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos. B Eng. 56, 602–610 (2014). https://doi.org/10.1016/j.compositesb.2013.08.090
–2 railway applications, Fire protection on railway vehicles-part 2: Requirements for fire behaviour of materials and components. EN 45545–2. 2016. https://pmpgroup.org/wp-content/uploads/2021/10/PMP-EN-45545-2-Railway-Standrad.pdf
–2, plastics--smoke generation-part 2: determination of optical density by a single-chamber test. ISO 5659–2:2017. 2006. https://www.iso.org/standard/65243.html
C. Zhu, S. Li, J. Li, M. Clement, C. Rudd et al., Fire performance of sandwich composites with intumescent mat protection: evolving thermal insulation, post-fire performance and rail industry testing. Fire Saf. J. 116, 103205 (2020). https://doi.org/10.1016/j.firesaf.2020.103205
C. Deng, Y. Liu, H. Jian, Y. Liang, M. Wen et al., Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr. Build. Mater. 374, 130939 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130939
T. Zhang, J. Xi, S. Qiu, B. Zhang, Z. Luo et al., Facilely produced highly adhered, low thermal conductivity and non-combustible coatings for fire safety. J. Colloid Interface Sci. 604, 378–389 (2021). https://doi.org/10.1016/j.jcis.2021.06.135
L. Ma, T. Zhang, Y. Zhao, T. Yuan, X. Wang et al., Preparation of multifunctional flame-retardant and superhydrophobic composite wood by iron ions doped phytic acid-based nanosheets. Constr. Build. Mater. 422, 135854 (2024). https://doi.org/10.1016/j.conbuildmat.2024.135854
Q. Liu, H. Luo, Z. Gao, Y. Huang, J. Liang et al., Preparation of waterborne intumescent flame-retardant coatings using adenosine-based phosphonates for wood surfaces. Prog. Org. Coat. 187, 108061 (2024). https://doi.org/10.1016/j.porgcoat.2023.108061
F. Song, T. Liu, Q. Fan, D. Li, R. Ou et al., Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Prog. Org. Coat. 162, 106597 (2022). https://doi.org/10.1016/j.porgcoat.2021.106597
D. Jiao, H. Sima, X. Shi, C. Zhang, B. Liu, Mussel-inspired flame retardant coating on polyurethane foam. Chem. Eng. J. 474, 145588 (2023). https://doi.org/10.1016/j.cej.2023.145588
H. Kim, D.W. Kim, V. Vasagar, H. Ha, S. Nazarenko et al., Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater. 28(39), 1803172 (2018). https://doi.org/10.1002/adfm.201803172
J. Xu, Y. Niu, Z. Xie, F. Liang, F. Guo et al., Synergistic flame retardant effect of carbon nanohorns and ammonium polyphosphate as a novel flame retardant system for cotton fabrics. Chem. Eng. J. 451, 138566 (2023). https://doi.org/10.1016/j.cej.2022.138566