NH4+-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors
Corresponding Author: Mingxian Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 117
Abstract
Compared with Zn2+, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH4+ is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH4+-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn2+/NH4+ co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CF3SO3)2–NH4CF3SO3 electrolyte, high-reactive Zn2+ and small-hydrate-sized NH4(H2O)4+ induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement. Furthermore, cathodic interfacial adsorbed hydrated NH4+ ions afford high-kinetics and ultrastable C‧‧‧H (NH4+) charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H2O)62+ (5.81 vs. 14.90 eV). Consequently, physical uptake and multielectron redox of Zn2+/NH4+ in carbon cathode enable the zinc capacitor to deliver high capacity (240 mAh g−1 at 0.5 A g−1), large-current tolerance (130 mAh g−1 at 50 A g−1) and ultralong lifespan (400,000 cycles). This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.
Highlights:
1 Hierarchical Zn2+/NH4+ solvation structure induces cathodic interfacial Helmholtz plane reconfiguration to enhance spatial charge density and capacity storage.
2 Hydrated NH4+ ions afford high-kinetics and ultrastable C‧‧‧H charge storage due to a much lower desolvation energy barrier compared with large-sized Zn(H2O)62+ (5.81 vs. 14.90 eV).
3 Interfacial Zn2+/NH4+ co-storage endow the hybrid capacitor with high capacity (240 mAh g−1), large-current tolerance (50 A g−1) and ultralong lifespan (400,000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Cui, J. Zhu, R. Zhang, S. Yang, C. Li et al., Regulating protons to tailor the enol conversion of quinone for high-performance aqueous zinc batteries. J. Am. Chem. Soc. 146, 15393–15402 (2024). https://doi.org/10.1021/jacs.4c03223
- Y. Dai, C. Zhang, J. Li, X. Gao, P. Hu et al., Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv. Mater. 36, 2310645 (2024). https://doi.org/10.1002/adma.202310645
- Z. Chen, Y. Hou, Y. Wang, Z. Wei, A. Chen et al., Selenium-anchored chlorine redox chemistry in aqueous zinc dual-ion batteries. Adv. Mater. 36, 2309330 (2023). https://doi.org/10.1002/adma.202309330
- M. Gu, A. Rao, J. Zhou, B. Lu, Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem. Sci. 15, 2323–2350 (2024). https://doi.org/10.1039/d3sc05768b
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53, 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
- H. Li, M. Rongwei, C. Ye, A. Tadich, W. Hua et al., Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19, 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
- Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8, eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
- M. Huang, X. Wang, J. Wang, J. Meng, X. Liu et al., Proton/Mg co-insertion chemistry in aqueous Mg-ion batteries: from the interface to the inner. Angew. Chem. Int. Ed. 62, e202308961 (2023). https://doi.org/10.1002/anie.202308961
- L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principle in interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095–4106 (2021). https://doi.org/10.1039/D1EE01158H
- C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
- Y. Liu, C. Lu, Y. Yang, W. Chen, F. Ye et al., Multiple cations nanoconfinement in ultrathin V2O5 nanosheets enables ultrafast ion diffusion kinetics toward high-performance zinc ion battery. Adv. Mater. 36, 2312982 (2024). https://doi.org/10.1002/adma.202312982
- X. Shi, J. Xie, F. Yang, F. Wang, D. Zheng et al., Compacting electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Angew. Chem. Int. Ed. 61, e202214773 (2022). https://doi.org/10.1002/anie.202214773
- G. Chen, F. Han, H. Ma, P. Li, Z. Zhou et al., High density 3d carbon tube nanoarray electrode boosting the capacitance of filter capacitor. Nano-Micro Lett. 16, 235 (2024). https://doi.org/10.1007/s40820-024-01458-6
- A. Morag, X. Chu, M. Marczewski, J. Kunigkeit, C. Neumann et al., Unlocking four-electron conversion in tellurium cathodes for advanced magnesium-based dual-ion batteries. Angew. Chem. Int. Ed. 63, e202401818 (2024). https://doi.org/10.1002/anie.202401818
- M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62, e202302701 (2023). https://doi.org/10.1002/anie.202302701
- X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17, 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, 2307003 (2023). https://doi.org/10.1002/adma.202307003
- J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36, e2310623 (2023). https://doi.org/10.1002/adma.202310623
- Y. Su, G. Yuan, J. Hu, G. Zhang, Y. Tang et al., Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni-Zn batteries. Adv. Mater. 36, e2406094 (2024). https://doi.org/10.1002/adma.202406094
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: The pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60, 990–997 (2020). https://doi.org/10.1002/ange.202012030
- J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
- J.-B. Le, Q.-Y. Fan, J.-Q. Li, J. Cheng, Molecular origin of negative component of helmholtz capacitance at electrified Pt(111)/water interface. Sci. Adv. 6, eabb1219 (2020). https://doi.org/10.1126/sciadv.abb1219
- P. Wang, X. Xie, Z. Xing, X. Chen, F. Guozhao et al., Mechanistic insights of mg-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11, 2101158 (2021). https://doi.org/10.1002/aenm.202101158
- K. Xiao, X. Jiang, S. Zeng, J. Chen, T. Hu et al., Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors. Adv. Funct. Mater. 3, 2405830 (2024). https://doi.org/10.1002/adfm.202405830
- W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
- Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Self-assembled carbon superstructures achieving ultra-stable and fast proton-coupled charge storage kinetics. Adv. Mater. 33, 2104148 (2021). https://doi.org/10.1002/adma.202104148
- J. Du, Q. Han, Y. Chen, M. Peng, L. Xie et al., Micro/meso-porous double-shell hollow carbon spheres through spatially confined pyrolysis for supercapacitors and zinc-ion capacitor. Angew. Chem. Int. Ed. 63, e202411066 (2024). https://doi.org/10.1002/anie.202411066
- R. Mohanty, G. Swain, K. Parida, K. Parida, Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 919, 165753 (2022). https://doi.org/10.1016/j.jallcom.2022.165753
- T. Lv, X. Yang, Y. Zhang, X. Wang, J. Qiu, Fabrication of soft-hard heterostructure porous carbon with enhanced performance for high mass-loading aqueous supercapacitors. Small 20, 2310645 (2024). https://doi.org/10.1002/smll.202310645
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11, 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
- C. Zhu, L. Xu, Y. Liu, J. Liu, J. Wang et al., Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Nat. Commun. 15, 4213 (2024). https://doi.org/10.1038/s41467-024-48613-6
- Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- X. Li, C. Cai, P. Hu, B. Zhang, P. Wu et al., Gradient pores enhance charge storage density of carbonaceous cathodes for Zn-ion capacitor. Adv. Mater. 36, 2400184 (2024). https://doi.org/10.1002/adma.202400184
- Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
- R. Mohanty, K. Parida, K. Parida, Redox mediator-enhanced charge storage in dimensionally tailored nanostructures towards flexible hybrid solid-state supercapacitors. Nanoscale Adv. 5, 4521–4535 (2023). https://doi.org/10.1039/D3NA00279A
- Z. Tian, V.S. Kale, Y. Wang, S. Kandambeth, J. Czaban-Jóźwiak et al., High-capacity NH4+ charge storage in covalent organic frameworks. J. Am. Chem. Soc. 143, 19178–19186 (2021). https://doi.org/10.1021/jacs.1c09290
- R. Mohanty, U.A. Mohanty, K. Parida, A comprehensive review of ammonium ion hybrid supercapacitors: exploring recent breakthroughs and future horizons. Energy Fuels 38, 13585–13611 (2024). https://doi.org/10.1021/acs.energyfuels.4c02044
- Q. Liu, D. Zhang, Y. Yang, Y. Gu, Z. Liang et al., Encapsulation of prussian blue analogues with conductive polymers for high-performance ammonium-ion storage. Adv. Energy Mater. 14, 2402863 (2024). https://doi.org/10.1002/aenm.202402863
- Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
- C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- Z. Song, L. Miao, Y. Lv, L. Gan, M. Liu, NH4+ charge carrier coordinated H-bonded organic small molecule for fast and superstable rechargeable zinc batteries. Angew. Chem. Int. Ed. 62, e202309446 (2023). https://doi.org/10.1002/anie.202309446
- Z. Song, L. Miao, Y. Lv, L. Gan, M. Liu, Non-metal ion storage in zinc-organic batteries. Adv. Sci. 11, 2310319 (2024). https://doi.org/10.1002/advs.202310319
- Z. Bao, C. Lu, Q. Liu, F. Ye, W. Li et al., An acetate electrolyte for enhanced pseudocapacitve capacity in aqueous ammonium ion batteries. Nat. Commun. 15, 1934 (2024). https://doi.org/10.1038/s41467-024-46317-5
- F. Ye, R. Pang, C. Lu, Q. Liu, Y. Wu et al., Reversible ammonium ion intercalation/de-intercalation with crystal water promotion effect in layered VOPO4·2H2O. Angew. Chem. Int. Ed. 62, e202303480 (2023). https://doi.org/10.1002/anie.202303480
- Y. Zhang, Z. Song, L. Miao, Y. Lv, L. Gan et al., Duodecuple H-bonded NH4+ storage in multi-redox-site N-heterocyclic cathode for six-electron zinc-organic batteries. Adv. Funct. Mater. 34, 2405710 (2024). https://doi.org/10.1002/adfm.202405710
- L. Du, S. Bi, M. Yang, Z. Tie, M. Zhang et al., Coupling dual metal active sites and low-solvation architecture toward high-performance aqueous ammonium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 119, e2214545119 (2022). https://doi.org/10.1073/pnas.2214545119
- J. Wang, X. Zhang, Z. Liu, J. Yu, H.-G. Wang et al., Tuning electron delocalization of redox-active porous aromatic framework for low-temperature aqueous Zn-K hybrid batteries with air self-chargeability. Angew. Chem. Int. Ed. 63, e202401559 (2024). https://doi.org/10.1002/anie.202401559
- E. Yang, X. Shi, L. Wu, H. Zhang, H. Lin et al., A low-cost moderate-concentration hybrid electrolyte of introducing CaCl2 and ethylene glycerol enables low-temperature and high-voltage micro-supercapacitors. Adv. Funct. Mater. 34, 2313395 (2024). https://doi.org/10.1002/adfm.202313395
- R. Wang, M. Yao, M. Yang, J. Zhu, J. Chen et al., Synergetic modulation on ionic association and solvation structure by electron-withdrawing effect for aqueous zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 120, e2221980120 (2023). https://doi.org/10.1073/pnas.2221980120
- Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16, 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
- X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
- Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen et al., Triple-function hydrated eutectic electrolyte for enhanced aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202310577 (2023). https://doi.org/10.1002/anie.202310577
- K. Zhou, G. Liu, X. Yu, Z. Li, Y. Wang, Carbonate ester-based electrolyte enabling rechargeable Zn battery to achieve high voltage and high Zn utilization. J. Am. Chem. Soc. 146, 9455–9464 (2024). https://doi.org/10.1021/jacs.4c02150
- D. Zhang, Z. Song, L. Miao, Y. Lv, L. Gan et al., In-situ nafion-nanofilm oriented (002) Zn electrodeposition for long-term zinc-ion batteries. Chem. Sci. 15, 4322–4330 (2024). https://doi.org/10.1039/D3SC06935D
- S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
- A. Awati, R. Yang, T. Shi, S. Zhou, X. Zhang et al., Interfacial super-assembly of vacancy engineered ultrathin-nanosheets toward nanochannels for smart ion transport and salinity gradient power conversion. Angew. Chem. Int. Ed. 63, e202407491 (2024). https://doi.org/10.1002/anie.202407491
- J. Yang, R. Zhao, Z. Hu, Y. Wang, K. Zhang et al., Blocking the passivation reaction via localized acidification and cation selective interface towards highly stable zinc anode. Energy Storage Mater. 70, 103449 (2024). https://doi.org/10.1016/j.ensm.2024.103449
- H. Liang, S. Tang, Y. Zhou, W. Jiang, Q. Kang et al., Non-faraday electrolyte additives for capacitance boosting by compression of dielectric layer thickness: organic ferroelectric salts. Adv. Funct. Mater. 34, 2308872 (2024). https://doi.org/10.1002/adfm.202308872
- X. Yi, F. Hongwei, A. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7, 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
- P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
- L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
- T. Wu, C. Hu, Q. Zhang, Z. Yang, G. Jin et al., Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries. Adv. Funct. Mater. 34, 2315716 (2024). https://doi.org/10.1002/adfm.202315716
- J. Chou, Y. Zhao, X.-T. Li, W.-P. Wang, S.-J. Tan et al., Hydrogen isotope effects on aqueous electrolyte for electrochemical lithium-ion storage. Angew. Chem. Int. Ed. 61, e202203137 (2022). https://doi.org/10.1002/anie.202203137
- Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang et al., Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31, 2106816 (2021). https://doi.org/10.1002/adfm.202106816
- R. Mohanty, K. Parida, Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors. Electrochim. Acta 491, 144327 (2024). https://doi.org/10.1016/j.electacta.2024.144327
- R. Zheng, Y. Li, H. Yu, X. Zhang, Y. Ding et al., Ammonium ion batteries: material, electrochemistry and strategy. Angew. Chem. Int. Ed. 62, e202301629 (2023). https://doi.org/10.1002/anie.202301629
- Y.-S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky et al., From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661–3667 (2013). https://doi.org/10.1002/adfm.201203732
- Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32, 2208049 (2022). https://doi.org/10.1002/adfm.202208049
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419 (2021). https://doi.org/10.1002/aenm.202003419
References
H. Cui, J. Zhu, R. Zhang, S. Yang, C. Li et al., Regulating protons to tailor the enol conversion of quinone for high-performance aqueous zinc batteries. J. Am. Chem. Soc. 146, 15393–15402 (2024). https://doi.org/10.1021/jacs.4c03223
Y. Dai, C. Zhang, J. Li, X. Gao, P. Hu et al., Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv. Mater. 36, 2310645 (2024). https://doi.org/10.1002/adma.202310645
Z. Chen, Y. Hou, Y. Wang, Z. Wei, A. Chen et al., Selenium-anchored chlorine redox chemistry in aqueous zinc dual-ion batteries. Adv. Mater. 36, 2309330 (2023). https://doi.org/10.1002/adma.202309330
M. Gu, A. Rao, J. Zhou, B. Lu, Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem. Sci. 15, 2323–2350 (2024). https://doi.org/10.1039/d3sc05768b
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53, 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
H. Li, M. Rongwei, C. Ye, A. Tadich, W. Hua et al., Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. 19, 792–799 (2024). https://doi.org/10.1038/s41565-024-01614-4
Z. Hou, T. Zhang, X. Liu, Z. Xu, J. Liu et al., A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 8, eabp8960 (2022). https://doi.org/10.1126/sciadv.abp8960
M. Huang, X. Wang, J. Wang, J. Meng, X. Liu et al., Proton/Mg co-insertion chemistry in aqueous Mg-ion batteries: from the interface to the inner. Angew. Chem. Int. Ed. 62, e202308961 (2023). https://doi.org/10.1002/anie.202308961
L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu et al., Principle in interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 14, 4095–4106 (2021). https://doi.org/10.1039/D1EE01158H
C. Lu, H. Jiang, X. Cheng, J. He, Y. Long et al., High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024). https://doi.org/10.1038/s41586-024-07343-x
Y. Liu, C. Lu, Y. Yang, W. Chen, F. Ye et al., Multiple cations nanoconfinement in ultrathin V2O5 nanosheets enables ultrafast ion diffusion kinetics toward high-performance zinc ion battery. Adv. Mater. 36, 2312982 (2024). https://doi.org/10.1002/adma.202312982
X. Shi, J. Xie, F. Yang, F. Wang, D. Zheng et al., Compacting electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Angew. Chem. Int. Ed. 61, e202214773 (2022). https://doi.org/10.1002/anie.202214773
G. Chen, F. Han, H. Ma, P. Li, Z. Zhou et al., High density 3d carbon tube nanoarray electrode boosting the capacitance of filter capacitor. Nano-Micro Lett. 16, 235 (2024). https://doi.org/10.1007/s40820-024-01458-6
A. Morag, X. Chu, M. Marczewski, J. Kunigkeit, C. Neumann et al., Unlocking four-electron conversion in tellurium cathodes for advanced magnesium-based dual-ion batteries. Angew. Chem. Int. Ed. 63, e202401818 (2024). https://doi.org/10.1002/anie.202401818
M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62, e202302701 (2023). https://doi.org/10.1002/anie.202302701
X. Shi, J. Xie, J. Wang, S. Xie, Z. Yang et al., A weakly solvating electrolyte towards practical rechargeable aqueous zinc-ion batteries. Nat. Commun. 15, 302 (2024). https://doi.org/10.1038/s41467-023-44615-y
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17, 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
Y. Su, J. Hu, G. Yuan, G. Zhang, W. Wei et al., Regulating intramolecular electron transfer of nickel-based coordinations through ligand engineering for aqueous batteries. Adv. Mater. 35, 2307003 (2023). https://doi.org/10.1002/adma.202307003
J. Wan, R. Wang, Z. Liu, S. Zhang, J. Hao et al., Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous Zn-ion batteries with 100 °C wide-temperature range. Adv. Mater. 36, e2310623 (2023). https://doi.org/10.1002/adma.202310623
Y. Su, G. Yuan, J. Hu, G. Zhang, Y. Tang et al., Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni-Zn batteries. Adv. Mater. 36, e2406094 (2024). https://doi.org/10.1002/adma.202406094
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: The pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60, 990–997 (2020). https://doi.org/10.1002/ange.202012030
J. Wu, Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022). https://doi.org/10.1021/acs.chemrev.2c00097
J.-B. Le, Q.-Y. Fan, J.-Q. Li, J. Cheng, Molecular origin of negative component of helmholtz capacitance at electrified Pt(111)/water interface. Sci. Adv. 6, eabb1219 (2020). https://doi.org/10.1126/sciadv.abb1219
P. Wang, X. Xie, Z. Xing, X. Chen, F. Guozhao et al., Mechanistic insights of mg-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11, 2101158 (2021). https://doi.org/10.1002/aenm.202101158
K. Xiao, X. Jiang, S. Zeng, J. Chen, T. Hu et al., Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors. Adv. Funct. Mater. 3, 2405830 (2024). https://doi.org/10.1002/adfm.202405830
W. Zhang, J. Yin, W. Jian, Y. Wu, L. Chen et al., Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy 103, 107827 (2022). https://doi.org/10.1016/j.nanoen.2022.107827
Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Self-assembled carbon superstructures achieving ultra-stable and fast proton-coupled charge storage kinetics. Adv. Mater. 33, 2104148 (2021). https://doi.org/10.1002/adma.202104148
J. Du, Q. Han, Y. Chen, M. Peng, L. Xie et al., Micro/meso-porous double-shell hollow carbon spheres through spatially confined pyrolysis for supercapacitors and zinc-ion capacitor. Angew. Chem. Int. Ed. 63, e202411066 (2024). https://doi.org/10.1002/anie.202411066
R. Mohanty, G. Swain, K. Parida, K. Parida, Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite. J. Alloys Compd. 919, 165753 (2022). https://doi.org/10.1016/j.jallcom.2022.165753
T. Lv, X. Yang, Y. Zhang, X. Wang, J. Qiu, Fabrication of soft-hard heterostructure porous carbon with enhanced performance for high mass-loading aqueous supercapacitors. Small 20, 2310645 (2024). https://doi.org/10.1002/smll.202310645
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11, 2003994 (2021). https://doi.org/10.1002/aenm.202003994
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
C. Zhu, L. Xu, Y. Liu, J. Liu, J. Wang et al., Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Nat. Commun. 15, 4213 (2024). https://doi.org/10.1038/s41467-024-48613-6
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
X. Li, C. Cai, P. Hu, B. Zhang, P. Wu et al., Gradient pores enhance charge storage density of carbonaceous cathodes for Zn-ion capacitor. Adv. Mater. 36, 2400184 (2024). https://doi.org/10.1002/adma.202400184
Y. Wang, Y. Zhang, G. Gao, Y. Fan, R. Wang et al., Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro Lett. 15, 219 (2023). https://doi.org/10.1007/s40820-023-01194-3
R. Mohanty, K. Parida, K. Parida, Redox mediator-enhanced charge storage in dimensionally tailored nanostructures towards flexible hybrid solid-state supercapacitors. Nanoscale Adv. 5, 4521–4535 (2023). https://doi.org/10.1039/D3NA00279A
Z. Tian, V.S. Kale, Y. Wang, S. Kandambeth, J. Czaban-Jóźwiak et al., High-capacity NH4+ charge storage in covalent organic frameworks. J. Am. Chem. Soc. 143, 19178–19186 (2021). https://doi.org/10.1021/jacs.1c09290
R. Mohanty, U.A. Mohanty, K. Parida, A comprehensive review of ammonium ion hybrid supercapacitors: exploring recent breakthroughs and future horizons. Energy Fuels 38, 13585–13611 (2024). https://doi.org/10.1021/acs.energyfuels.4c02044
Q. Liu, D. Zhang, Y. Yang, Y. Gu, Z. Liang et al., Encapsulation of prussian blue analogues with conductive polymers for high-performance ammonium-ion storage. Adv. Energy Mater. 14, 2402863 (2024). https://doi.org/10.1002/aenm.202402863
Q. Wu, M.T. McDowell, Y. Qi, Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023). https://doi.org/10.1021/jacs.2c11807
C.M. Efaw, Q. Wu, N. Gao, Y. Zhang, H. Zhu et al., Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023). https://doi.org/10.1038/s41563-023-01700-3
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
Z. Song, L. Miao, Y. Lv, L. Gan, M. Liu, NH4+ charge carrier coordinated H-bonded organic small molecule for fast and superstable rechargeable zinc batteries. Angew. Chem. Int. Ed. 62, e202309446 (2023). https://doi.org/10.1002/anie.202309446
Z. Song, L. Miao, Y. Lv, L. Gan, M. Liu, Non-metal ion storage in zinc-organic batteries. Adv. Sci. 11, 2310319 (2024). https://doi.org/10.1002/advs.202310319
Z. Bao, C. Lu, Q. Liu, F. Ye, W. Li et al., An acetate electrolyte for enhanced pseudocapacitve capacity in aqueous ammonium ion batteries. Nat. Commun. 15, 1934 (2024). https://doi.org/10.1038/s41467-024-46317-5
F. Ye, R. Pang, C. Lu, Q. Liu, Y. Wu et al., Reversible ammonium ion intercalation/de-intercalation with crystal water promotion effect in layered VOPO4·2H2O. Angew. Chem. Int. Ed. 62, e202303480 (2023). https://doi.org/10.1002/anie.202303480
Y. Zhang, Z. Song, L. Miao, Y. Lv, L. Gan et al., Duodecuple H-bonded NH4+ storage in multi-redox-site N-heterocyclic cathode for six-electron zinc-organic batteries. Adv. Funct. Mater. 34, 2405710 (2024). https://doi.org/10.1002/adfm.202405710
L. Du, S. Bi, M. Yang, Z. Tie, M. Zhang et al., Coupling dual metal active sites and low-solvation architecture toward high-performance aqueous ammonium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 119, e2214545119 (2022). https://doi.org/10.1073/pnas.2214545119
J. Wang, X. Zhang, Z. Liu, J. Yu, H.-G. Wang et al., Tuning electron delocalization of redox-active porous aromatic framework for low-temperature aqueous Zn-K hybrid batteries with air self-chargeability. Angew. Chem. Int. Ed. 63, e202401559 (2024). https://doi.org/10.1002/anie.202401559
E. Yang, X. Shi, L. Wu, H. Zhang, H. Lin et al., A low-cost moderate-concentration hybrid electrolyte of introducing CaCl2 and ethylene glycerol enables low-temperature and high-voltage micro-supercapacitors. Adv. Funct. Mater. 34, 2313395 (2024). https://doi.org/10.1002/adfm.202313395
R. Wang, M. Yao, M. Yang, J. Zhu, J. Chen et al., Synergetic modulation on ionic association and solvation structure by electron-withdrawing effect for aqueous zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 120, e2221980120 (2023). https://doi.org/10.1073/pnas.2221980120
Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16, 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
X. Zhang, J. Li, Y. Liu, B. Lu, S. Liang et al., Single [0001]-oriented zinc metal anode enables sustainable zinc batteries. Nat. Commun. 15, 2735 (2024). https://doi.org/10.1038/s41467-024-47101-1
Y. Zhong, X. Xie, Z. Zeng, B. Lu, G. Chen et al., Triple-function hydrated eutectic electrolyte for enhanced aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202310577 (2023). https://doi.org/10.1002/anie.202310577
K. Zhou, G. Liu, X. Yu, Z. Li, Y. Wang, Carbonate ester-based electrolyte enabling rechargeable Zn battery to achieve high voltage and high Zn utilization. J. Am. Chem. Soc. 146, 9455–9464 (2024). https://doi.org/10.1021/jacs.4c02150
D. Zhang, Z. Song, L. Miao, Y. Lv, L. Gan et al., In-situ nafion-nanofilm oriented (002) Zn electrodeposition for long-term zinc-ion batteries. Chem. Sci. 15, 4322–4330 (2024). https://doi.org/10.1039/D3SC06935D
S. Wu, Y. Yang, M. Sun, T. Zhang, S. Huang et al., Dilute aqueous-aprotic electrolyte towards robust Zn-ion hybrid supercapacitor with high operation voltage and long lifespan. Nano-Micro Lett. 16, 161 (2024). https://doi.org/10.1007/s40820-024-01372-x
A. Awati, R. Yang, T. Shi, S. Zhou, X. Zhang et al., Interfacial super-assembly of vacancy engineered ultrathin-nanosheets toward nanochannels for smart ion transport and salinity gradient power conversion. Angew. Chem. Int. Ed. 63, e202407491 (2024). https://doi.org/10.1002/anie.202407491
J. Yang, R. Zhao, Z. Hu, Y. Wang, K. Zhang et al., Blocking the passivation reaction via localized acidification and cation selective interface towards highly stable zinc anode. Energy Storage Mater. 70, 103449 (2024). https://doi.org/10.1016/j.ensm.2024.103449
H. Liang, S. Tang, Y. Zhou, W. Jiang, Q. Kang et al., Non-faraday electrolyte additives for capacitance boosting by compression of dielectric layer thickness: organic ferroelectric salts. Adv. Funct. Mater. 34, 2308872 (2024). https://doi.org/10.1002/adfm.202308872
X. Yi, F. Hongwei, A. Rao, Y. Zhang, J. Zhou et al., Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 7, 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0
P.Z. Moghadam, Y.G. Chung, R.Q. Snurr, Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nat. Energy 9, 121–133 (2024). https://doi.org/10.1038/s41560-023-01417-2
L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
T. Wu, C. Hu, Q. Zhang, Z. Yang, G. Jin et al., Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries. Adv. Funct. Mater. 34, 2315716 (2024). https://doi.org/10.1002/adfm.202315716
J. Chou, Y. Zhao, X.-T. Li, W.-P. Wang, S.-J. Tan et al., Hydrogen isotope effects on aqueous electrolyte for electrochemical lithium-ion storage. Angew. Chem. Int. Ed. 61, e202203137 (2022). https://doi.org/10.1002/anie.202203137
Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang et al., Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31, 2106816 (2021). https://doi.org/10.1002/adfm.202106816
R. Mohanty, K. Parida, Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors. Electrochim. Acta 491, 144327 (2024). https://doi.org/10.1016/j.electacta.2024.144327
R. Zheng, Y. Li, H. Yu, X. Zhang, Y. Ding et al., Ammonium ion batteries: material, electrochemistry and strategy. Angew. Chem. Int. Ed. 62, e202301629 (2023). https://doi.org/10.1002/anie.202301629
Y.-S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky et al., From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 23, 3661–3667 (2013). https://doi.org/10.1002/adfm.201203732
Z. Song, L. Miao, L. Ruhlmann, Y. Lv, D. Zhu et al., Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 32, 2208049 (2022). https://doi.org/10.1002/adfm.202208049
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419 (2021). https://doi.org/10.1002/aenm.202003419