Structural Mechanisms of Quasi-2D Perovskites for Next-Generation Photovoltaics
Corresponding Author: Jinhyun Kim
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 139
Abstract
Quasi-two-dimensional (2D) perovskite embodies characteristics of both three-dimensional (3D) and 2D perovskites, achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites. This effect is realized through critical structural modifications in device fabrication. Typically, perovskites have an octahedral structure, generally ABX3, where an organic ammonium cation (A') participates in forming the perovskite structure, with A'(n) (n = 1 or 2) sandwiched between A(n-1)B(n)X(3n+1) perovskite layers. Depending on whether A' is a monovalent or divalent cation, 2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite, each generating different structures. Although each structure achieves similar effects, they incorporate distinct mechanisms in their formation. And according to these different structures, various properties appear, and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites. In this review, scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated, and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
Highlights:
1 This review highlights the structural advantages and challenges of qausi-2D perovskite.
2 Beyond these structural adaptations, unique additive methods specific to quasi-2D perovskites are suggested, alongside future directions for further improvement.
3 Material and device analysis using Ruddlesden–Popper, Dion–Jacobson, and alternating cation phases are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
- J. Kim, A.J. Yun, B. Park, J. Kim, Minimizing the transport loss and degradation of perovskite optoelectronics via grain dimerization technique. EcoMat 5, e12314 (2023). https://doi.org/10.1002/eom2.12314
- A. Giuri, E. Saleh, A. Listorti, S. Colella, A. Rizzo et al., Rheological tunability of perovskite precursor solutions: from spin coating to inkjet printing process. Nanomaterials (Basel) 9, 582 (2019). https://doi.org/10.3390/nano9040582
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed: May 2024).
- T. Hwang, B. Lee, J. Kim, S. Lee, B. Gil et al., From nanostructural evolution to dynamic interplay of Constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018). https://doi.org/10.1002/adma.201704208
- C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
- A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
- B. Kim, B. Gil, S. Ryu, J. Kim, and B. Park, Double-side passivation of perovskite solar cells for high performance and stability. Adv. Funct. Mater. 33, 2307640 (2023). https://doi.org/10.1002/adfm.202307640
- S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron. 4, 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- T. Wang, D. Zheng, K. Vegso, N. Mrkyvkova, P. Siffalovic et al., High-resolution and stable ruddlesden–popper quasi-2D perovskite flexible photodetectors arrays for potential applications as optical image sensor. Adv. Funct. Mater. 33, 2304659 (2023). https://doi.org/10.1002/adfm.202304659
- D.-Y. Li, J.-H. Song, Y. Cheng, X.-M. Wu, Y. Wang et al., Ultra-sensitive, selective and repeatable fluorescence sensor for methanol based on a highly emissive 0D hybrid lead-free perovskite. Angew. Chem. Int. Ed. 134, e202206437 (2022). https://doi.org/10.1002/ange.202206437
- K. Wen, Y. Cao, L. Gu, S. Wang et al., Continuous-wave lasing in perovskite LEDs with an integrated distributed feedback resonator. Adv. Mater. 35, 2303144 (2023). https://doi.org/10.1002/adma.202303144
- Y. Sun, L. Ge, L. Dai, C. Cho et al., Bright and stable perovskite light-emitting diodes in the near-Infrared range Nature 615, 830–835 (2023). https://doi.org/10.1038/s41586-023-05792-4
- S. Xing, Y. Yuan, G. Zhang, S. Zhang et al., Energy-efficient perovskite LEDs with Rec. 2020 compliance. ACS Energy Lett. 9, 3643–3651 (2024). https://doi.org/10.1021/acsenergylett.4c01501
- A.J. Yun, J. Kim, T. Hwang, B. Park et al., Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 3554–3560 (2019). https://doi.org/10.1021/acsaem.9b00293
- K. Kim, M. Kim, H. Lee, D. Chung et al., Multi-functional PEDOT:PSS as the efficient perovskite solar cells. Small 20, 2402341 (2024). https://doi.org/10.1002/smll.202402341
- B.-C. Jeon, J. Kim, T. Moon, Effects of Br substitution on inorganic rudorffite AgBiI4 for stable, Pb-free solar cells. ChemistrySelect 9, e202400337 (2024). https://doi.org/10.1002/slct.202400337
- B. Gil, J. Kim, and B. Park, alloying strategy for efficient and durable formamidinium-based perovskite solar cells. Solar RRL 8, 2300881 (2024). https://doi.org/10.1002/solr.202300881
- G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717
- R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improvinginterface quality for1-Cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
- R. Lin, Y. Wang, Q. Lu, B. Tang, J. Li et al., All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023). https://doi.org/10.1038/s41586-023-06278-z
- E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
- J. Kim, H. Lee, Y. Lee, J. Kim, From wide-bandgap to narrow-bandgap perovskite: applications from single-junction to tandem optoelectronics. ChemSusChem (2024). https://doi.org/10.1002/cssc.202400945
- B. Gil, J. Kim, and B. Park, Phenyltrimethylammonium as an interlayer spacer for stable formamidinium-based quasi-2D perovskite solar cells. Electron. Mater. Lett. 20, 791–798 (2024). https://doi.org/10.1007/s13391-024-00497-w
- D. Li, J. Shi, Y. Xu, Y. Luo, H. Wu et al., Inorganic–organic halide perovskites for new photovoltaic technology. Natl. Sci. Rev. 5, 559–576 (2018). https://doi.org/10.1093/nsr/nwx100
- B. Yang, O. Dyck, W. Ming, M.-H. Du, S. Das et al., Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM. ACS Appl. Mater. Interfaces 8, 32333–32340 (2016). https://doi.org/10.1021/acsami.6b11341
- E.J. Juarez-Perez, L.K. Ono, I. Uriarte, E.J. Cocinero, Y. Qi, Degradation mechanism and relative stability of methylammonium halide based perovskites analyzed on the basis of acid–base theory. ACS Appl. Mater. Interfaces 11, 12586–12593 (2019). https://doi.org/10.1021/acsami.9b02374
- G. Xing, N. ews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). https://doi.org/10.1126/science.1243167
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982
- D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Solar Energy Mater. Solar Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025
- S. Ryu, B. Gil, B. Kim, J. Kim, and B. Park, Understanding the trap characteristics of perovskite solar cells via drive-level capacitance profiling. ACS Appl. Mater. Interfaces 15, 56909–56917 (2023). https://doi.org/10.1021/acsami.3c10126
- B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
- J.-C. Blancon, J. Even, C.C. Stoumpos, M.G. Kanatzidis, A.D. Mohite, Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020). https://doi.org/10.1038/s41565-020-00811-1
- K. Leng, W. Fu, Y. Liu, M. Chhowalla, K.P. Loh, From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020). https://doi.org/10.1038/s41578-020-0185-1
- T. Song, Q.-X. Ma, Q. Wang, H.-L. Zhang, Design of two-dimensional halide perovskite composites for optoelectronic applications and beyond. Mater. Adv. 3, 756–778 (2022). https://doi.org/10.1039/D1MA00944C
- C. Katan, N. Mercier, J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019). https://doi.org/10.1021/acs.chemrev.8b00417
- A. Morteza Najarian, F. Dinic, H. Chen, R. Sabatini, C. Zheng et al., Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023). https://doi.org/10.1038/s41586-023-06209-y
- B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33, 2103394 (2021). https://doi.org/10.1002/adma.202103394
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
- Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15, 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
- P. Fu, Y. Liu, S. Yu, H. Yin, B. Yang et al., Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells. Nano Energy 88, 106249 (2021). https://doi.org/10.1016/j.nanoen.2021.106249
- A. Dučinskas, M. Jung, Y.-R. Wang, J.V. Milić, D. Moia et al., Mixed ionic-electronic conduction in Ruddlesden-Popper and Dion-Jacobson layered hybrid perovskites with aromatic organic spacers. J. Mater. Chem. C 12, 7909–7915 (2024). https://doi.org/10.1039/d4tc01010h
- L.A. Muscarella, A. Dučinskas, M. Dankl, M. Andrzejewski, N.P.M. Casati et al., Reversible pressure-dependent mechanochromism of Dion–jacobson and Ruddlesden–Popper layered hybrid perovskites. Adv. Mater. 34, 2108720 (2022). https://doi.org/10.1002/adma.202108720
- D. Ghosh, D. Acharya, L. Pedesseau, C. Katan, J. Even et al., Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson versus Ruddlesden-Popper phases. J. Mater. Chem. A. (2020). https://doi.org/10.1039/d0ta07205b
- A.H. Proppe, R. Quintero-Bermudez, O. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
- S. Kang, Z. Wang, W. Chen, Z. Zhang et al., Boosting carrier transport in quasi-2D/3D Perovskite heterojunction for high-performance perovskite/organic tandems. Adv. Mater. (2024). https://doi.org/10.1002/adma.202411027
- J. Kim, T. Hwang, S. Lee, B. Lee, J. Kim et al., Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016). https://doi.org/10.1038/srep25648
- M. Kepenekian, B. Traore, J.-C. Blancon, L. Pedesseau, H. Tsai et al., Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett. 18, 5603–5609 (2018). https://doi.org/10.1021/acs.nanolett.8b02078
- G. Wu, R. Liang, Z. Zhang, M. Ge, G. Xing et al., 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small 17, 2103514 (2021). https://doi.org/10.1002/smll.202103514
- G. Li, J. Song, J. Wu, Z. Song, X. Wang et al., Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS Energy Lett. 6, 3614–3623 (2021). https://doi.org/10.1021/acsenergylett.1c01649
- Q.A. Akkerman, L. Manna, What defines a halide perovskite? ACS Energy Lett. 5, 604–610 (2020). https://doi.org/10.1021/acsenergylett.0c00039
- M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
- A.M. Leguy, J.M. Frost, A.P. McMahon, V.G. Sakai, W. Kochelmann et al., The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015). https://doi.org/10.1038/ncomms8124
- I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013). https://doi.org/10.1038/nature12622
- N.A. Benedek, Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg. Chem. 53, 3769–3777 (2014). https://doi.org/10.1021/ic500106a
- R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
- C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez et al., Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001). https://doi.org/10.1126/science.1061655
- E.J. Juarez-Perez, R.S. Sanchez, L. Badia, G. Garcia-Belmonte, Y.S. Kang et al., Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014). https://doi.org/10.1021/jz5011169
- J. Yang, Z. Yuan, X. Liu, S. Braun, Y. Li et al., Oxygen- and water-induced energetics degradation in organometal halide perovskites. ACS Appl. Mater. Interfaces 10, 16225–16230 (2018). https://doi.org/10.1021/acsami.8b04182
- T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, Y. Yang, W.F. Kau et al., Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 144, 5552–5561 (2022). https://doi.org/10.1021/jacs.2c00391
- N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 127, 8326–8330 (2015). https://doi.org/10.1002/ange.201503153
- N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017). https://doi.org/10.1038/ncomms15218
- G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker et al., The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9, 9380–9393 (2015). https://doi.org/10.1021/acsnano.5b03626
- M. Gartia, J. Eichorst, R. Clegg, G.L. Liu, Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl. Phys. Lett. 101, 023118 (2012). https://doi.org/10.1063/1.4736575
- A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M. Isabel Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
- E. Mosconi, J.M. Azpiroz, F. De Angelis, Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015). https://doi.org/10.1021/acs.chemmater.5b01991
- P. Raval, M.A.A. Kazemi, J. Ruellou, J. Trébosc, O. Lafon et al., Examining a year-long chemical degradation process and reaction kinetics in pristine and defect-passivated lead halide perovskites. Chem. Mater. 35, 2904–2917 (2023). https://doi.org/10.1021/acs.chemmater.2c03803
- J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015). https://doi.org/10.1021/nn506864k
- B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi et al., Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015). https://doi.org/10.1021/acs.chemmater.5b00348
- G. Niu, W. Li, F. Meng, L. Wang, H. Dong et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2013). https://doi.org/10.1039/C3TA13606J
- X. Yu, Y. Qin, Q. Peng, Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. J. Phys. Chem. A 121, 1169–1174 (2017). https://doi.org/10.1021/acs.jpca.6b12170
- P.V. Kamat, M. Kuno, Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54, 520–531 (2021). https://doi.org/10.1021/acs.accounts.0c00749
- A. Mehdizadeh, S.F. Akhtarianfar, S. Shojaei, Role of methylammonium rotation in hybrid halide MAPbX3 (X = I, Br, and Cl) perovskites by a density functional theory approach: optical and electronic properties. J. Phys. Chem. C 123, 6725–6734 (2019). https://doi.org/10.1021/acs.jpcc.8b11422
- S. Liu, J. Wang, Z. Hu, Z. Duan, H. Zhang et al., Role of organic cation orientation in formamidine based perovskite materials. Sci. Rep. 11, 20433 (2021). https://doi.org/10.1038/s41598-021-99621-1
- Y.-H. Seo, J.H. Kim, D.-H. Kim, H.-S. Chung, S.-I. Na, In situ TEM observation of the heat–induced degradation of single– and triple–cation planar perovskite solar cells. Nano Energy 77, 105164 (2020). https://doi.org/10.1016/j.nanoen.2020.105164
- T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong et al., Heterogeneous FASnI3 absorber with enhanced electric field for high-performance lead-free perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4
- D. Liu, D. Luo, A.N. Iqbal, K.W.P. Orr, T.A.S. Doherty et al., Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021). https://doi.org/10.1038/s41563-021-01097-x
- Y. Zhou, Z. Guo, S.M.H. Qaid, Z. Xu, Y. Zhou et al., Strain engineering toward high-performance formamidinium-based perovskite solar cells. Sol. RRL 7, 2300438 (2023). https://doi.org/10.1002/solr.202300438
- H. Liang, W. Yang, J. Xia, H. Gu, X. Meng et al., Strain effects on flexible perovskite solar cells. Adv. Sci. 10, 2304733 (2023). https://doi.org/10.1002/advs.202304733
- R. Wang, X. Li, J. Qi, C. Su, J. Yang et al., Lattice strain regulation enables high-performance formamidinium perovskite photovoltaics. Adv. Mater. 35, 2304149 (2023). https://doi.org/10.1002/adma.202304149
- T. Ishihara, J. Takahashi, T. Goto, Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989). https://doi.org/10.1016/0038-1098(89)90935-6
- Y. Han, S. Yue, B.-B. Cui, Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Adv. Sci. 8, 2004805 (2021). https://doi.org/10.1002/advs.202004805
- L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
- M. Kober-Czerny, S.G. Motti, P. Holzhey, B. Wenger, J. Lim et al., Excellent long-range charge-carrier mobility in 2D perovskites. Adv. Funct. Mater. 32, 2203064 (2022). https://doi.org/10.1002/adfm.202203064
- R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D Ruddlesden-Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7, 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
- S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu et al., Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019). https://doi.org/10.1016/j.joule.2018.11.026
- T.T. Akagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992). https://doi.org/10.1103/PhysRevB.46.15578
- L. Polavarapu, B. Nickel, J. Feldmann, A.S. Urban, Advances in quantum-confined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 7, 1700267 (2017). https://doi.org/10.1002/aenm.201700267
- J.L. Dye, Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009). https://doi.org/10.1021/ar9000857
- C. Otero-Martínez, D. García-Lojo, I. Pastoriza-Santos, J. Pérez-Juste, L. Polavarapu et al., Dimensionality control of inorganic and hybrid perovskite nanocrystals by reaction temperature: from no-confinement to 3D and 1D quantum confinement. Angew. Chem. Int. Ed. 133, 26881–26888 (2021). https://doi.org/10.1002/ange.202109308
- L. Mishra, R.K. Behera, A. Panigrahi, P. Dubey, S. Dutta et al., Deciphering the relevance of quantum confinement in the optoelectronics of CsPbBr3 perovskite nanostructures. J. Phys. Chem. Lett. 14, 2651–2659 (2023). https://doi.org/10.1021/acs.jpclett.3c00010
- S. Yuan, Z. Wang, L. Xiao, C. Zhang, S. Yang et al., Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31, 1904319 (2019). https://doi.org/10.1002/adma.201904319
- A. Caiazzo, R.A.J. Janssen, High efficiency quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 12, 2202830 (2022). https://doi.org/10.1002/aenm.202202830
- Q. Wang, X.-D. Liu, Y.-H. Qiu, K. Chen, L. Zhou et al., Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 8, 025108 (2018). https://doi.org/10.1063/1.5020836
- Y.-F. Ding, Q.-Q. Zhao, Z.-L. Yu, Y.-Q. Zhao, B. Liu et al., Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden-Popper structure. J. Mater. Chem. C 7, 7433–7441 (2019). https://doi.org/10.1039/c9tc02267h
- M.E. Kamminga, H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
- M. Dyksik, S. Wang, W. Paritmongkol, D.K. Maude, W.A. Tisdale et al., Tuning the excitonic properties of the 2D (PEA)2(MA)n−1PbnI3n+1 perovskite family via quantum confinement. J. Phys. Chem. Lett. 12, 1638–1643 (2021). https://doi.org/10.1021/acs.jpclett.0c03731
- R. Chakraborty, A. Nag, Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Phys. Chem. Chem. Phys. 23, 82–93 (2021). https://doi.org/10.1039/D0CP04682E
- D. Pariari, S. Mehta, S. Mandal, A. Mahata, T. Pramanik et al., Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system. J. Am. Chem. Soc. 145, 15896–15905 (2023). https://doi.org/10.1021/jacs.3c03300
- J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
- Y. Han, S. Park, C. Kim, M. Lee, I. Hwang, Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanop intercalation. Nanoscale 11, 3546–3556 (2019). https://doi.org/10.1039/c8nr07361a
- L.N. Quan, F.P. García de Arquer, R.P. Sabatini, E.H. Sargent, Perovskites for light emission. Adv. Mater. 30, 1801996 (2018). https://doi.org/10.1002/adma.201801996
- D.R. Kripalani, Y. Cai, J. Lou, K. Zhou, Strong edge stress in molecularly thin organic–inorganic hybrid Ruddlesden-Popper perovskites and modulations of their edge electronic properties. ACS Nano 16, 261–270 (2022). https://doi.org/10.1021/acsnano.1c06158
- S.B. Saadatmand, S. Shokouhi, V. Ahmadi, S.M. Hamidi, Metastructure engineering with Ruddlesden-Popper 2D perovskites: stability, flexibility, and quality factor trade-offs. ACS Omega 9, 24925–24932 (2024). https://doi.org/10.1021/acsomega.4c01827
- W. Paritmongkol, N.S. Dahod, A. Stollmann, N. Mao, C. Settens et al., Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater. 31, 5592–5607 (2019). https://doi.org/10.1021/acs.chemmater.9b01318
- S. Lim, D.H. Lee, H. Choi, Y. Choi, D.G. Lee et al., High-performance perovskite quantum dot solar cells enabled by incorporation with dimensionally engineered organic semiconductor. Nano-Micro Lett. 14, 204 (2022). https://doi.org/10.1007/s40820-022-00946-x
- K.T. Butler, The chemical forces underlying octahedral tilting in halide perovskites. J. Mater. Chem. C 6, 12045–12051 (2018). https://doi.org/10.1039/c8tc02976h
- K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
- X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: orbital coupling in 2D ruddlesden–popper perovskites enables efficient solar cells. Adv. Energy Mater. 13, 2301006 (2023). https://doi.org/10.1002/aenm.202301006
- D.B. Straus, C.R. Kagan, Photophysics of two-dimensional semiconducting organic-inorganic metal-halide perovskites. Ann. Rev. Phys. Chem. 73, 403–428 (2022). https://doi.org/10.1146/annurev-physchem-082820-015402
- M. Tremblay, J. Bacsa, B. Zhao, F. Pulvirenti, S. Barlow et al., Structures of (4-Y-C6H4CH2NH3)2PbI4 {Y = H, F, Cl, Br, I}: tuning of hybrid organic inorganic perovskite structures from Ruddlesden-Popper to Dion-Jacobson limits. Chem. Mater. 31, 6145–6153 (2019). https://doi.org/10.1021/acs.chemmater.9b01564
- D.B. Straus, N. Iotov, M.R. Gau, Q. Zhao, P.J. Carroll et al., Longer cations increase energetic disorder in excitonic 2D hybrid perovskites. J. Phys. Chem. Lett. 10, 1198–1205 (2019). https://doi.org/10.1021/acs.jpclett.9b00247
- D.B. Straus, S. Hurtado Parra, N. Iotov, Q. Zhao, M.R. Gau et al., Tailoring hot exciton dynamics in 2D hybrid perovskites through cation modification. ACS Nano 14, 3621–3629 (2020). https://doi.org/10.1021/acsnano.0c00037
- M.-H. Tremblay, J. Bacsa, S. Barlow, S.R. Marder, Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Mater. Chem. Front. 4, 2023–2028 (2020). https://doi.org/10.1039/D0QM00118J
- G.C. Papavassiliou, G.A. Mousdis, C.P. Raptopoulou, A. Terzis, Preparation and characterization of [C6H5CH2 NH3]2PbI4, [C6H5CH2CH2SC(NH2)2]3PbI5 and [C10H7CH2NH3]PbI3 organic-inorganic hybrid compounds. Zeitschrift für Naturforschung B 54, 1405–1409 (1999). https://doi.org/10.1515/znb-1999-1112
- J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
- D.G. Billing, A. Lemmerer, Synthesis, characterization and phase transitions in the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Cryst. B 63, 735–747 (2007). https://doi.org/10.1107/S0108768107031758
- A. Lemmerer, D.G. Billing, Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9 and 10. Dalton Trans. 41, 1146–1157 (2012). https://doi.org/10.1039/C0DT01805H
- J.L. Knutson, J.D. Martin, D.B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005). https://doi.org/10.1021/ic050244q
- R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
- Y. Fu, X. Jiang, X. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142, 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
- M. Liang, W. Lin, Z. Lan, J. Meng, Q. Zhao et al., Electronic structure and trap states of two-dimensional Ruddlesden-Popper perovskites with the relaxed goldschmidt tolerance factor. ACS Appl. Electron. Mater. 2, 1402–1412 (2020). https://doi.org/10.1021/acsaelm.0c00179
- S.-C. Feng, X.-M. Hu, Y. Shen, Y.-Q. Li, J.-X. Tang et al., Phase regulation of layered perovskites toward high-performance light-emitting diodes. Adv. Funct. Mater 2310220 (2023). https://doi.org/10.1002/adfm.202310220
- S. Sahayaraj, E. Radicchi, M. Ziółek, M. Ścigaj, M. Tamulewicz-Szwajkowska et al., Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. J. Mater. Chem. A 9, 9175–9190 (2021). https://doi.org/10.1039/d0ta12431a
- H. Kim, K.A. Huynh, S.Y. Kim, Q.V. Le, H.W. Jang, 2D and quasi-2D halide perovskites: applications and progress. Phys. Status Solidi RRL 14, 2070015 (2020). https://doi.org/10.1002/pssr.202070015
- H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018). https://doi.org/10.1002/aenm.201800051
- Y. Pan, H. Wang, Y. Wang, Y. Wang, X. Li et al., An ultrasensitive sandwiched heterostructure planar photodetector with gradient quasi-2D perovskite. Adv. Electron. Mater. 9, 2201028 (2023). https://doi.org/10.1002/aelm.202201028
- A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang et al., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018). https://doi.org/10.1038/s41467-018-03757-0
- J.A. Steele, E. Solano, D. Hardy, D. Dayton, D. Ladd et al., How to GIWAXS: Grazing Incidence Wide Angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023). https://doi.org/10.1002/aenm.202300760
- R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018). https://doi.org/10.1002/adma.201804771
- Y. Zhou, O.S. Game, S. Pang, N.P. Padture, Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827–4839 (2015). https://doi.org/10.1021/acs.jpclett.5b01843
- X. Lai, W. Li, X. Gu, H. Chen, Y. Zhang et al., High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 427, 130949 (2022). https://doi.org/10.1016/j.cej.2021.130949
- F. Zheng, C.R. Hall, D. Angmo, C. Zuo, S. Rubanov et al., A sandwich-like structural model revealed for quasi-2D perovskite films. J. Mater. Chem. C 9, 5362–5372 (2021). https://doi.org/10.1039/D1TC00606A
- X. Zhu, H. Xu, Y. Liu, J. Zhang, M. Wang et al., Two-photon up-conversion photoluminescence realized through spatially extended gap states in quasi-2D perovskite films. Adv. Mater. 31, 1901240 (2019). https://doi.org/10.1002/adma.201901240
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- Y. Shao, W. Gao, H. Yan, R. Li, I. Abdelwahab et al., Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat. Commun. 13, 138 (2022). https://doi.org/10.1038/s41467-021-27747-x
- W. Zhang, J. Zhang, S. Cheng, C.M. Rouleau, K. Kisslinger et al., Exploring the spatial control of topotactic phase transitions using vertically oriented epitaxial interfaces. Nano-Micro Lett. 14, 2 (2021). https://doi.org/10.1007/s40820-021-00752-x
- Y.H. Kim, H. Jeong, B.-R. Won, H. Jeon, C.-H. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16, 33 (2024). https://doi.org/10.1007/s40820-023-01258-4
- X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16, 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
- Z. Chen, Y. Guo, E. Wertz, J. Shi, Merits and challenges of ruddlesden–popper soft halide perovskites in electro-optics and optoelectronics. Adv. Mater. 31, 1803514 (2019). https://doi.org/10.1002/adma.201803514
- J. Yang, T. He, M. Li, G. Li, H. Liu et al., π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7, 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
- J. Lai, R. Zhu, J. Tan, Z. Yang, S. Ye, Stacking arrangement and orientation of aromatic cations tune bandgap and charge transport of 2D organic-inorganic hybrid perovskites. Small 19, 2303449 (2023). https://doi.org/10.1002/smll.202303449
- F. Weinhold, Anti-electrostatic pi-hole bonding: how covalency conquers coulombics. Molecules 27, 377 (2022). https://doi.org/10.3390/molecules27020377
- M.W. Lufaso, P.M. Woodward, Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Cryst. B 60, 10–20 (2004). https://doi.org/10.1107/S0108768103026661
- J. Wang, X. Jiang, H. Wu, G. Feng, H. Wu et al., Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat. Commun. 12, 6679 (2021). https://doi.org/10.1038/s41467-021-26995-1
- N. Zhou, B. Huang, M. Sun, Y. Zhang, L. Li et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells. Adv. Energy Mater. 10, 1901566 (2020). https://doi.org/10.1002/aenm.201901566
- C.J. Dahlman, R.M. Kennard, P. Paluch, N.R. Venkatesan, M.L. Chabinyc et al., Dynamic motion of organic spacer cations in Ruddlesden–Popper lead iodide perovskites probed by solid-state NMR spectroscopy. Chem. Mater. 33, 642–656 (2021). https://doi.org/10.1021/acs.chemmater.0c03958
- P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15, 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
- P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
- T. Zhu, Y. Yang, K. Gu, C. Liu, J. Zheng et al., Novel quasi-2D perovskites for stable and efficient perovskite solar cells. ACS Appl. Mater. Interfaces 12, 51744–51755 (2020). https://doi.org/10.1021/acsami.0c16514
- H. Zheng, H. Xu, F. Zheng, G. Liu, X. Xu et al., The effect of constituent ratios and varisized ammonium salts on the performance of two-dimensional perovskite materials. ChemSusChem 13, 252–259 (2020). https://doi.org/10.1002/cssc.201901948
- B. Cheng, T. Li, P. Maity, P. Wei, D. Nordlund et al., Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018). https://doi.org/10.1038/s42005-018-0082-8
- D. Yao, C. Zhang, S. Zhang, Y. Yang, A. Du et al., 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces 11, 29753–29764 (2019). https://doi.org/10.1021/acsami.9b06305
- N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140, 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
- Q. Xu, K. Meng, Z. Liu, X. Wang, Y. Hu et al., Synergistic improvements in efficiency and stability of 2D perovskite solar cells with metal ion doping. Adv. Mater. Interfaces 6, 1901259 (2019). https://doi.org/10.1002/admi.201901259
- X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett. 13, 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
- G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31, 1903889 (2019). https://doi.org/10.1002/adma.201903889
- X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10, 2001832 (2020). https://doi.org/10.1002/aenm.202001832
- H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140, 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
- Y. Li, E.L. Lim, Y. Zhang, T. Kong, X. Liu et al., I/Pb ratio control in the solid perovskite films toward efficient and stable two-dimensional perovskite solar cells. ACS Appl. Energy Mater. 5, 15233–15238 (2022). https://doi.org/10.1021/acsaem.2c02875
- H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden–Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32, 2001470 (2020). https://doi.org/10.1002/adma.202001470
- P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen et al., Low-dimensional Dion–Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59, 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
- L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden–Popper perovskite solar cells enabled by reducing tunnel barrier. J. Phys. Chem. Lett. 10, 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
- P. Li, C. Liang, X.-L. Liu, F. Li, Y. Zhang et al., Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 31, e1901966 (2019). https://doi.org/10.1002/adma.201901966
- S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden–popper perovskites. Adv. Sci. 7, 2002445 (2020). https://doi.org/10.1002/advs.202002445
- J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3, 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
- N. Nishimura, H. Kanda, R. Katoh, A. Kogo, T.N. Murakami, Thermally stable phenylethylammonium-based perovskite passivation: spontaneous passivation with phenylethylammonium bis(trifluoromethylsulfonyl)imide during deposition of PTAA for enhancing photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 12, 15631–15640 (2024). https://doi.org/10.1039/D4TA02036G
- Y. Liu, H. Zhou, Y. Ni, R. Lu, C. Li et al., Revealing stability origin of Dion-Jacobson 2D perovskites with different-rigidity organic cations. Joule 7, 1016–1032 (2023). https://doi.org/10.1016/j.joule.2023.03.010
- Y. Lv, H. Ma, Y. Yin, Q. Dong, W. Zhao et al., [NH3(CH2)6NH3]PbI4 as Dion-Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent UV stability. J. Mater. Chem. A 8, 10283–10290 (2020). https://doi.org/10.1039/D0TA02437F
- J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). https://doi.org/10.1063/1.4774090
- F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
- L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- Y. Wang, L. Pedesseau, C. Katan, J. Even, O.V. Prezhdo et al., Nonadiabatic molecular dynamics analysis of hybrid Dion-Jacobson 2D leads iodide perovskites: a nonadiabatic molecular dynamics study. Appl. Phys. Lett. 119, 201102 (2021). https://doi.org/10.1063/5.0066087
- C. Ma, D. Shen, T.-W. Ng, M.-F. Lo, C.-S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30, 1800710 (2018). https://doi.org/10.1002/adma.201800710
- L. Cheng, Z. Liu, S. Li, Y. Zhai, X. Wang et al., Highly thermostable and efficient formamidinium-based low-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 133, 869–877 (2021). https://doi.org/10.1002/ange.202006970
- Y. Zheng, T. Niu, J. Qiu, L. Chao, B. Li et al., Oriented and uniform distribution of Dion–Jacobson phase perovskites controlled by quantum well barrier thickness. Solar RRL 3, 1900090 (2019). https://doi.org/10.1002/solr.201900090
- S. Ahmad, R. Lu, Y. Liu, X. Liu, Q. Yang et al., Cesium-doped Dion-Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy 103, 107822 (2022). https://doi.org/10.1016/j.nanoen.2022.107822
- T. Niu, H. Ren, B. Wu, Y. Xia, X. Xie et al., Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019). https://doi.org/10.1021/acs.jpclett.9b00750
- Z. Zhai, J. Chen, Q. Liu, S. Jiang, Y. Li, Defect regulation of efficient dion–jacobson quasi-2D perovskite solar cells via a polyaspartic acid interlayer. ACS Appl. Mater. Interfaces 15, 38068–38079 (2023). https://doi.org/10.1021/acsami.3c07093
- W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion–jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019). https://doi.org/10.1002/aenm.201803384
- H. Wu, X. Lian, S. Tian, Y. Zhang, M. Qin et al., Additive-assisted hot-casting free fabrication of Dion–Jacobson 2D perovskite solar cell with efficiency beyond 16%. Solar RRL 4, 2000087 (2020). https://doi.org/10.1002/solr.202000087
- H. Wu, X. Lian, J. Li, Y. Zhang, G. Zhou et al., Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion-Jacobson perovskite solar cells with efficiency over 18%. J. Mater. Chem. A 9, 12566–12573 (2021). https://doi.org/10.1039/D1TA02015C
- K. Sun, Y. Meng, R. Cao, Y. Ren, Y. Mao et al., Effect of the rigidity of an organic interlayer on the nonradiative recombination and exciton dissociation in hybrid Dion-Jacobson 2D lead iodide perovskites. J. Mater. Chem. A 12, 5215–5224 (2024). https://doi.org/10.1039/D3TA07838H
- T. He, S. Li, Y. Jiang, C. Qin, M. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
- Y. Ma, F. Zheng, S. Li, Y. Liu, J. Ren et al., Regulating the crystallization growth of Sn–Pb mixed perovskites using the 2D perovskite (4-AMP)PbI4 substrate for high-efficiency and stable solar cells. ACS Appl. Mater. Interfaces 15, 34862–34873 (2023). https://doi.org/10.1021/acsami.3c05277
- X. Li, W. Ke, B. Traoré, P. Guo, I. Hadar et al., Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
- C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
- L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. Fang et al., Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016). https://doi.org/10.1021/acsnano.6b05944
- C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis et al., Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56, 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
- C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
- T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31, 1903848 (2019). https://doi.org/10.1002/adma.201903848
- J. Yang, T. Yang, D. Liu, Y. Zhang, T. Luo et al., Stable 2D alternating cation perovskite solar cells with power conversion efficiency >19% via solvent engineering. Sol. RRL 5, 2100286 (2021). https://doi.org/10.1002/solr.202100286
- D. Zhang, Y. Fu, C. Liu, C. Zhao, X. Gao et al., Domain controlling by compound additive toward highly efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103890 (2021). https://doi.org/10.1002/adfm.202103890
- Q. Han, Y. Bai, J. Liu, K.-Z. Du, T. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/c7ee02272g
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- J. Jiao, C. Yang, Z. Wang, C. Yan, C. Fang, Solvent engineering for the formation of high-quality perovskite films: a review. Results Engin. 18, 101158 (2023). https://doi.org/10.1016/j.rineng.2023.101158
- M. Aldamasy, Z. Iqbal, G. Li, J. Pascual, F. Alharthi et al., Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 23, 23413–23427 (2021). https://doi.org/10.1039/D1CP02596A
- L. Gao, F. Zhang, C. Xiao, X. Chen, B.W. Larson et al., Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells. Adv. Funct. Mater. 29, 1901652 (2019). https://doi.org/10.1002/adfm.201901652
- W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3, 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
- Y. Su, J. Xue, A. Liu, T. Ma, L. Gao, Unveiling the effect of solvents on crystallization and morphology of 2D perovskite in solvent-assisted method. Molecules 27, 1828 (2022). https://doi.org/10.3390/molecules27061828
- S. Wafee, B.H. Liu, C.-C. Leu, Lewis bases: promising additives for enhanced performance of perovskite solar cells. Mater. Today Energy 22, 100847 (2021). https://doi.org/10.1016/j.mtener.2021.100847
- A.Z. Chen, M. Shiu, X. Deng, M. Mahmoud, D. Zhang et al., Understanding the formation of vertical orientation in two-dimensional metal halide perovskite thin films. Chem. Mater. 31, 1336–1343 (2019). https://doi.org/10.1021/acs.chemmater.8b04531
- H. Yu, Y. Xie, J. Zhang, J. Duan, X. Chen et al., Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells. Adv. Sci. 9, 2004510 (2022). https://doi.org/10.1002/advs.202004510
- X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 58, 9409–9413 (2019). https://doi.org/10.1002/anie.201902959
- X. Dong, Y. Li, X. Wang, Y. Zhou, Y. Zhao et al., Promoting ruddlesden–popper perovskite formation by tailoring spacer intramolecular interaction for efficient and stable solar cells. Small 20, 2309218 (2024). https://doi.org/10.1002/smll.202309218
- X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 131, 9509–9513 (2019). https://doi.org/10.1002/ange.201902959
- N. Zhou, H. Zhou, Spacer organic cation engineering for quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3, 2100232 (2022). https://doi.org/10.1002/sstr.202100232
- M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16, 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
- B. Wang, Y. Zhou, S. Yuan, Y. Lou, K. Wang et al., Low-dimensional phase regulation to restrain non-radiative recombination for sky-blue perovskite LEDs with EQE exceeding 15%. Angew. Chem. Int. Ed. 135, e202219255 (2023). https://doi.org/10.1002/ange.202219255
- D. Laxmi, Kabra, Optimization of composition with reduced phase impurity in quasi-2D perovskite for electroluminescence. Adv. Photonics Res. 2, 2000164 (2021). https://doi.org/10.1002/adpr.202000164
- C. Shen, S. Fang, J. Zhang, X. Liang, C. Su et al., High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering. Adv. Photon. 6, 026002 (2024). https://doi.org/10.1117/1.ap.6.2.026002
- H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao et al., Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J. Mater. Chem. C 10, 13590–13610 (2022). https://doi.org/10.1039/D2TC01869A
- K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma et al., Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023). https://doi.org/10.1038/s41467-023-36118-7
- C.-H. Chen, C.-H. Hsu, I.-C. Ni, B.-H. Lin, C.-I. Wu et al., Regulating the phase distribution of quasi-2D perovskites using a three-dimensional cyclic molecule toward improved light-emitting performance. Nanoscale 14, 17409–17417 (2022). https://doi.org/10.1039/d2nr04735g
- J.K. Mishra, N. Yantara, A. Kanwat, T. Furuhashi, S. Ramesh et al., Defect passivation using a phosphonic acid surface modifier for efficient RP perovskite blue-light-emitting diodes. ACS Appl. Mater. Interfaces 14, 34238–34246 (2022). https://doi.org/10.1021/acsami.2c00899
- H. Wang, C.C.S. Chan, M. Chu, J. Xie, S. Zhao et al., Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Sol. RRL 4, 1900578 (2020). https://doi.org/10.1002/solr.201900578
- L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
- L. Kong, Y. Luo, L. Turyanska, T. Zhang, Z. Zhang et al., A spacer cation assisted nucleation and growth strategy enables efficient and high-luminance quasi-2D perovskite LEDs. Adv. Funct. Mater. 33, 2209186 (2023). https://doi.org/10.1002/adfm.202209186
- Z. Tang, Y. Guo, Z. Li, Q. Wang, Y. Fu et al., Efficient sky-blue perovskite light-emitting diodes by regulating the quantum well distribution of quasi-2D perovskites by suppressing lattice distortion. J. Mater. Chem. C 12, 9693–9701 (2024). https://doi.org/10.1039/D4TC01553C
- K. Yang, B. Xu, Q. Lin, Y. Yu, H. Hu et al., Interface engineering with ionic liquid for achieving efficient Quasi-2D perovskite light-emitting diodes. Chem. Eng. J. 483, 149291 (2024). https://doi.org/10.1016/j.cej.2024.149291
- J. Sun, Z. Ren, Z. Wang, H. Wang, D. Wu et al., Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes. Adv. Opt. Mater. 11, 2202721 (2023). https://doi.org/10.1002/adom.202202721
- M. Xiong, W. Zou, K. Fan, C. Qin, S. Li et al., Tailoring phase purity in the 2D/3D perovskite heterostructures using lattice mismatch. ACS Energy Lett. 7, 550–559 (2022). https://doi.org/10.1021/acsenergylett.1c02580
- H. Li, S. Hu, H. Wang, X. Zhang, Y. Tong et al., Control of N-phase distribution in quasi two-dimensional perovskite for efficient blue light-emitting diodes. ACS Appl. Mater. Interfaces 15, 9574–9583 (2023). https://doi.org/10.1021/acsami.2c19979
- H. Li, X. Zhang, H. Wang, S. Hu, J. Wu et al., Dual ligands synergy enables thermal and moisture stability-enhanced blue quasi-2D perovskite for efficient light-emitting diodes. Chem. Eng. J. 482, 148659 (2024). https://doi.org/10.1016/j.cej.2024.148659
- F. Yuan, Y. Liang, Z. Miao, T. Zhang, R. Zhao et al., Oxygen-containing diamine cations enable highly efficient and stable 2D Dion-jacobson perovskite solar cells. Chem. Mater. 36, 1621–1630 (2024). https://doi.org/10.1021/acs.chemmater.3c02960
- S. Ahmad, M. Guan, J. Kim, X. He, Z. Ren et al., High-quality pure-phase MA-free formamidinium Dion-Jacobson 2D perovskites for stable unencapsulated photovoltaics. Adv. Energy Mater. 14, 2302774 (2024). https://doi.org/10.1002/aenm.202302774
- P. Chen, D. He, X. Huang, C. Zhang, L. Wang, Bilayer 2D–3D perovskite heterostructures for efficient and stable solar cells. ACS Nano 18, 67–88 (2024). https://doi.org/10.1021/acsnano.3c09176
References
J. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
J. Kim, A.J. Yun, B. Park, J. Kim, Minimizing the transport loss and degradation of perovskite optoelectronics via grain dimerization technique. EcoMat 5, e12314 (2023). https://doi.org/10.1002/eom2.12314
A. Giuri, E. Saleh, A. Listorti, S. Colella, A. Rizzo et al., Rheological tunability of perovskite precursor solutions: from spin coating to inkjet printing process. Nanomaterials (Basel) 9, 582 (2019). https://doi.org/10.3390/nano9040582
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/interactive-cell-efficiency.html (accessed: May 2024).
T. Hwang, B. Lee, J. Kim, S. Lee, B. Gil et al., From nanostructural evolution to dynamic interplay of Constituents: perspectives for perovskite solar cells. Adv. Mater. 30, 1704208 (2018). https://doi.org/10.1002/adma.201704208
C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). https://doi.org/10.1126/science.286.5441.945
A. Liu, H. Zhu, S. Bai, Y. Reo, T. Zou et al., High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). https://doi.org/10.1038/s41928-022-00712-2
B. Kim, B. Gil, S. Ryu, J. Kim, and B. Park, Double-side passivation of perovskite solar cells for high performance and stability. Adv. Funct. Mater. 33, 2307640 (2023). https://doi.org/10.1002/adfm.202307640
S. Deumel, A. van Breemen, G. Gelinck, B. Peeters, J. Maas et al., High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron. 4, 681–688 (2021). https://doi.org/10.1038/s41928-021-00644-3
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
T. Wang, D. Zheng, K. Vegso, N. Mrkyvkova, P. Siffalovic et al., High-resolution and stable ruddlesden–popper quasi-2D perovskite flexible photodetectors arrays for potential applications as optical image sensor. Adv. Funct. Mater. 33, 2304659 (2023). https://doi.org/10.1002/adfm.202304659
D.-Y. Li, J.-H. Song, Y. Cheng, X.-M. Wu, Y. Wang et al., Ultra-sensitive, selective and repeatable fluorescence sensor for methanol based on a highly emissive 0D hybrid lead-free perovskite. Angew. Chem. Int. Ed. 134, e202206437 (2022). https://doi.org/10.1002/ange.202206437
K. Wen, Y. Cao, L. Gu, S. Wang et al., Continuous-wave lasing in perovskite LEDs with an integrated distributed feedback resonator. Adv. Mater. 35, 2303144 (2023). https://doi.org/10.1002/adma.202303144
Y. Sun, L. Ge, L. Dai, C. Cho et al., Bright and stable perovskite light-emitting diodes in the near-Infrared range Nature 615, 830–835 (2023). https://doi.org/10.1038/s41586-023-05792-4
S. Xing, Y. Yuan, G. Zhang, S. Zhang et al., Energy-efficient perovskite LEDs with Rec. 2020 compliance. ACS Energy Lett. 9, 3643–3651 (2024). https://doi.org/10.1021/acsenergylett.4c01501
A.J. Yun, J. Kim, T. Hwang, B. Park et al., Origins of efficient perovskite solar cells with low-temperature processed SnO2 electron transport layer. ACS Appl. Energy Mater. 2, 3554–3560 (2019). https://doi.org/10.1021/acsaem.9b00293
K. Kim, M. Kim, H. Lee, D. Chung et al., Multi-functional PEDOT:PSS as the efficient perovskite solar cells. Small 20, 2402341 (2024). https://doi.org/10.1002/smll.202402341
B.-C. Jeon, J. Kim, T. Moon, Effects of Br substitution on inorganic rudorffite AgBiI4 for stable, Pb-free solar cells. ChemistrySelect 9, e202400337 (2024). https://doi.org/10.1002/slct.202400337
B. Gil, J. Kim, and B. Park, alloying strategy for efficient and durable formamidinium-based perovskite solar cells. Solar RRL 8, 2300881 (2024). https://doi.org/10.1002/solr.202300881
G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green et al., Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717
R. He, W. Wang, Z. Yi, F. Lang, C. Chen et al., Improvinginterface quality for1-Cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023). https://doi.org/10.1038/s41586-023-05992-y
R. Lin, Y. Wang, Q. Lu, B. Tang, J. Li et al., All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023). https://doi.org/10.1038/s41586-023-06278-z
E. Aydin, E. Ugur, B.K. Yildirim, T.G. Allen, P. Dally et al., Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023). https://doi.org/10.1038/s41586-023-06667-4
J. Kim, H. Lee, Y. Lee, J. Kim, From wide-bandgap to narrow-bandgap perovskite: applications from single-junction to tandem optoelectronics. ChemSusChem (2024). https://doi.org/10.1002/cssc.202400945
B. Gil, J. Kim, and B. Park, Phenyltrimethylammonium as an interlayer spacer for stable formamidinium-based quasi-2D perovskite solar cells. Electron. Mater. Lett. 20, 791–798 (2024). https://doi.org/10.1007/s13391-024-00497-w
D. Li, J. Shi, Y. Xu, Y. Luo, H. Wu et al., Inorganic–organic halide perovskites for new photovoltaic technology. Natl. Sci. Rev. 5, 559–576 (2018). https://doi.org/10.1093/nsr/nwx100
B. Yang, O. Dyck, W. Ming, M.-H. Du, S. Das et al., Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM. ACS Appl. Mater. Interfaces 8, 32333–32340 (2016). https://doi.org/10.1021/acsami.6b11341
E.J. Juarez-Perez, L.K. Ono, I. Uriarte, E.J. Cocinero, Y. Qi, Degradation mechanism and relative stability of methylammonium halide based perovskites analyzed on the basis of acid–base theory. ACS Appl. Mater. Interfaces 11, 12586–12593 (2019). https://doi.org/10.1021/acsami.9b02374
G. Xing, N. ews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). https://doi.org/10.1126/science.1243167
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982
D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Solar Energy Mater. Solar Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025
S. Ryu, B. Gil, B. Kim, J. Kim, and B. Park, Understanding the trap characteristics of perovskite solar cells via drive-level capacitance profiling. ACS Appl. Mater. Interfaces 15, 56909–56917 (2023). https://doi.org/10.1021/acsami.3c10126
B. Saparov, D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
J.-C. Blancon, J. Even, C.C. Stoumpos, M.G. Kanatzidis, A.D. Mohite, Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15, 969–985 (2020). https://doi.org/10.1038/s41565-020-00811-1
K. Leng, W. Fu, Y. Liu, M. Chhowalla, K.P. Loh, From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020). https://doi.org/10.1038/s41578-020-0185-1
T. Song, Q.-X. Ma, Q. Wang, H.-L. Zhang, Design of two-dimensional halide perovskite composites for optoelectronic applications and beyond. Mater. Adv. 3, 756–778 (2022). https://doi.org/10.1039/D1MA00944C
C. Katan, N. Mercier, J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019). https://doi.org/10.1021/acs.chemrev.8b00417
A. Morteza Najarian, F. Dinic, H. Chen, R. Sabatini, C. Zheng et al., Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023). https://doi.org/10.1038/s41586-023-06209-y
B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale et al., Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 33, 2103394 (2021). https://doi.org/10.1002/adma.202103394
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann et al., The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019). https://doi.org/10.1039/C9EE02020A
Y. Ma, J. Gong, P. Zeng, M. Liu, Recent progress in interfacial dipole engineering for perovskite solar cells. Nano-Micro Lett. 15, 173 (2023). https://doi.org/10.1007/s40820-023-01131-4
P. Fu, Y. Liu, S. Yu, H. Yin, B. Yang et al., Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells. Nano Energy 88, 106249 (2021). https://doi.org/10.1016/j.nanoen.2021.106249
A. Dučinskas, M. Jung, Y.-R. Wang, J.V. Milić, D. Moia et al., Mixed ionic-electronic conduction in Ruddlesden-Popper and Dion-Jacobson layered hybrid perovskites with aromatic organic spacers. J. Mater. Chem. C 12, 7909–7915 (2024). https://doi.org/10.1039/d4tc01010h
L.A. Muscarella, A. Dučinskas, M. Dankl, M. Andrzejewski, N.P.M. Casati et al., Reversible pressure-dependent mechanochromism of Dion–jacobson and Ruddlesden–Popper layered hybrid perovskites. Adv. Mater. 34, 2108720 (2022). https://doi.org/10.1002/adma.202108720
D. Ghosh, D. Acharya, L. Pedesseau, C. Katan, J. Even et al., Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson versus Ruddlesden-Popper phases. J. Mater. Chem. A. (2020). https://doi.org/10.1039/d0ta07205b
A.H. Proppe, R. Quintero-Bermudez, O. Tan, O. Voznyy, S.O. Kelley et al., Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018). https://doi.org/10.1021/jacs.7b12551
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
S. Kang, Z. Wang, W. Chen, Z. Zhang et al., Boosting carrier transport in quasi-2D/3D Perovskite heterojunction for high-performance perovskite/organic tandems. Adv. Mater. (2024). https://doi.org/10.1002/adma.202411027
J. Kim, T. Hwang, S. Lee, B. Lee, J. Kim et al., Solvent and intermediate phase as boosters for the perovskite transformation and solar cell performance. Sci. Rep. 6, 25648 (2016). https://doi.org/10.1038/srep25648
M. Kepenekian, B. Traore, J.-C. Blancon, L. Pedesseau, H. Tsai et al., Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett. 18, 5603–5609 (2018). https://doi.org/10.1021/acs.nanolett.8b02078
G. Wu, R. Liang, Z. Zhang, M. Ge, G. Xing et al., 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small 17, 2103514 (2021). https://doi.org/10.1002/smll.202103514
G. Li, J. Song, J. Wu, Z. Song, X. Wang et al., Efficient and stable 2D@3D/2D perovskite solar cells based on dual optimization of grain boundary and interface. ACS Energy Lett. 6, 3614–3623 (2021). https://doi.org/10.1021/acsenergylett.1c01649
Q.A. Akkerman, L. Manna, What defines a halide perovskite? ACS Energy Lett. 5, 604–610 (2020). https://doi.org/10.1021/acsenergylett.0c00039
M. Li, R. Sun, J. Chang, J. Dong, Q. Tian et al., Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023). https://doi.org/10.1038/s41467-023-36224-6
A.M. Leguy, J.M. Frost, A.P. McMahon, V.G. Sakai, W. Kochelmann et al., The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015). https://doi.org/10.1038/ncomms8124
I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013). https://doi.org/10.1038/nature12622
N.A. Benedek, Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg. Chem. 53, 3769–3777 (2014). https://doi.org/10.1021/ic500106a
R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez et al., Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001). https://doi.org/10.1126/science.1061655
E.J. Juarez-Perez, R.S. Sanchez, L. Badia, G. Garcia-Belmonte, Y.S. Kang et al., Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014). https://doi.org/10.1021/jz5011169
J. Yang, Z. Yuan, X. Liu, S. Braun, Y. Li et al., Oxygen- and water-induced energetics degradation in organometal halide perovskites. ACS Appl. Mater. Interfaces 10, 16225–16230 (2018). https://doi.org/10.1021/acsami.8b04182
T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, Y. Yang, W.F. Kau et al., Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J. Am. Chem. Soc. 144, 5552–5561 (2022). https://doi.org/10.1021/jacs.2c00391
N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 127, 8326–8330 (2015). https://doi.org/10.1002/ange.201503153
N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco et al., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017). https://doi.org/10.1038/ncomms15218
G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker et al., The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9, 9380–9393 (2015). https://doi.org/10.1021/acsnano.5b03626
M. Gartia, J. Eichorst, R. Clegg, G.L. Liu, Lifetime imaging of radiative and non-radiative fluorescence decays on nanoplasmonic surface. Appl. Phys. Lett. 101, 023118 (2012). https://doi.org/10.1063/1.4736575
A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M. Isabel Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
E. Mosconi, J.M. Azpiroz, F. De Angelis, Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015). https://doi.org/10.1021/acs.chemmater.5b01991
P. Raval, M.A.A. Kazemi, J. Ruellou, J. Trébosc, O. Lafon et al., Examining a year-long chemical degradation process and reaction kinetics in pristine and defect-passivated lead halide perovskites. Chem. Mater. 35, 2904–2917 (2023). https://doi.org/10.1021/acs.chemmater.2c03803
J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015). https://doi.org/10.1021/nn506864k
B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi et al., Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015). https://doi.org/10.1021/acs.chemmater.5b00348
G. Niu, W. Li, F. Meng, L. Wang, H. Dong et al., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2013). https://doi.org/10.1039/C3TA13606J
X. Yu, Y. Qin, Q. Peng, Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. J. Phys. Chem. A 121, 1169–1174 (2017). https://doi.org/10.1021/acs.jpca.6b12170
P.V. Kamat, M. Kuno, Halide ion migration in perovskite nanocrystals and nanostructures. Acc. Chem. Res. 54, 520–531 (2021). https://doi.org/10.1021/acs.accounts.0c00749
A. Mehdizadeh, S.F. Akhtarianfar, S. Shojaei, Role of methylammonium rotation in hybrid halide MAPbX3 (X = I, Br, and Cl) perovskites by a density functional theory approach: optical and electronic properties. J. Phys. Chem. C 123, 6725–6734 (2019). https://doi.org/10.1021/acs.jpcc.8b11422
S. Liu, J. Wang, Z. Hu, Z. Duan, H. Zhang et al., Role of organic cation orientation in formamidine based perovskite materials. Sci. Rep. 11, 20433 (2021). https://doi.org/10.1038/s41598-021-99621-1
Y.-H. Seo, J.H. Kim, D.-H. Kim, H.-S. Chung, S.-I. Na, In situ TEM observation of the heat–induced degradation of single– and triple–cation planar perovskite solar cells. Nano Energy 77, 105164 (2020). https://doi.org/10.1016/j.nanoen.2020.105164
T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong et al., Heterogeneous FASnI3 absorber with enhanced electric field for high-performance lead-free perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4
D. Liu, D. Luo, A.N. Iqbal, K.W.P. Orr, T.A.S. Doherty et al., Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021). https://doi.org/10.1038/s41563-021-01097-x
Y. Zhou, Z. Guo, S.M.H. Qaid, Z. Xu, Y. Zhou et al., Strain engineering toward high-performance formamidinium-based perovskite solar cells. Sol. RRL 7, 2300438 (2023). https://doi.org/10.1002/solr.202300438
H. Liang, W. Yang, J. Xia, H. Gu, X. Meng et al., Strain effects on flexible perovskite solar cells. Adv. Sci. 10, 2304733 (2023). https://doi.org/10.1002/advs.202304733
R. Wang, X. Li, J. Qi, C. Su, J. Yang et al., Lattice strain regulation enables high-performance formamidinium perovskite photovoltaics. Adv. Mater. 35, 2304149 (2023). https://doi.org/10.1002/adma.202304149
T. Ishihara, J. Takahashi, T. Goto, Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989). https://doi.org/10.1016/0038-1098(89)90935-6
Y. Han, S. Yue, B.-B. Cui, Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Adv. Sci. 8, 2004805 (2021). https://doi.org/10.1002/advs.202004805
L. Mao, C.C. Stoumpos, M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019). https://doi.org/10.1021/jacs.8b10851
M. Kober-Czerny, S.G. Motti, P. Holzhey, B. Wenger, J. Lim et al., Excellent long-range charge-carrier mobility in 2D perovskites. Adv. Funct. Mater. 32, 2203064 (2022). https://doi.org/10.1002/adfm.202203064
R. Wang, X. Dong, Q. Ling, Q. Fu, Z. Hu et al., Spacer engineering for 2D Ruddlesden-Popper perovskites with an ultralong carrier lifetime of over 18 μs enable efficient solar cells. ACS Energy Lett. 7, 3656–3665 (2022). https://doi.org/10.1021/acsenergylett.2c01800
S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu et al., Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019). https://doi.org/10.1016/j.joule.2018.11.026
T.T. Akagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46, 15578–15581 (1992). https://doi.org/10.1103/PhysRevB.46.15578
L. Polavarapu, B. Nickel, J. Feldmann, A.S. Urban, Advances in quantum-confined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 7, 1700267 (2017). https://doi.org/10.1002/aenm.201700267
J.L. Dye, Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009). https://doi.org/10.1021/ar9000857
C. Otero-Martínez, D. García-Lojo, I. Pastoriza-Santos, J. Pérez-Juste, L. Polavarapu et al., Dimensionality control of inorganic and hybrid perovskite nanocrystals by reaction temperature: from no-confinement to 3D and 1D quantum confinement. Angew. Chem. Int. Ed. 133, 26881–26888 (2021). https://doi.org/10.1002/ange.202109308
L. Mishra, R.K. Behera, A. Panigrahi, P. Dubey, S. Dutta et al., Deciphering the relevance of quantum confinement in the optoelectronics of CsPbBr3 perovskite nanostructures. J. Phys. Chem. Lett. 14, 2651–2659 (2023). https://doi.org/10.1021/acs.jpclett.3c00010
S. Yuan, Z. Wang, L. Xiao, C. Zhang, S. Yang et al., Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater. 31, 1904319 (2019). https://doi.org/10.1002/adma.201904319
A. Caiazzo, R.A.J. Janssen, High efficiency quasi-2D Ruddlesden-Popper perovskite solar cells. Adv. Energy Mater. 12, 2202830 (2022). https://doi.org/10.1002/aenm.202202830
Q. Wang, X.-D. Liu, Y.-H. Qiu, K. Chen, L. Zhou et al., Quantum confinement effect and exciton binding energy of layered perovskite nanoplatelets. AIP Adv. 8, 025108 (2018). https://doi.org/10.1063/1.5020836
Y.-F. Ding, Q.-Q. Zhao, Z.-L. Yu, Y.-Q. Zhao, B. Liu et al., Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden-Popper structure. J. Mater. Chem. C 7, 7433–7441 (2019). https://doi.org/10.1039/c9tc02267h
M.E. Kamminga, H. Fang, M.R. Filip, F. Giustino, J. Baas et al., Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 28, 4554–4562 (2016). https://doi.org/10.1021/acs.chemmater.6b00809
M. Dyksik, S. Wang, W. Paritmongkol, D.K. Maude, W.A. Tisdale et al., Tuning the excitonic properties of the 2D (PEA)2(MA)n−1PbnI3n+1 perovskite family via quantum confinement. J. Phys. Chem. Lett. 12, 1638–1643 (2021). https://doi.org/10.1021/acs.jpclett.0c03731
R. Chakraborty, A. Nag, Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Phys. Chem. Chem. Phys. 23, 82–93 (2021). https://doi.org/10.1039/D0CP04682E
D. Pariari, S. Mehta, S. Mandal, A. Mahata, T. Pramanik et al., Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system. J. Am. Chem. Soc. 145, 15896–15905 (2023). https://doi.org/10.1021/jacs.3c03300
J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala et al., Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016). https://doi.org/10.1002/adma.201601369
Y. Han, S. Park, C. Kim, M. Lee, I. Hwang, Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanop intercalation. Nanoscale 11, 3546–3556 (2019). https://doi.org/10.1039/c8nr07361a
L.N. Quan, F.P. García de Arquer, R.P. Sabatini, E.H. Sargent, Perovskites for light emission. Adv. Mater. 30, 1801996 (2018). https://doi.org/10.1002/adma.201801996
D.R. Kripalani, Y. Cai, J. Lou, K. Zhou, Strong edge stress in molecularly thin organic–inorganic hybrid Ruddlesden-Popper perovskites and modulations of their edge electronic properties. ACS Nano 16, 261–270 (2022). https://doi.org/10.1021/acsnano.1c06158
S.B. Saadatmand, S. Shokouhi, V. Ahmadi, S.M. Hamidi, Metastructure engineering with Ruddlesden-Popper 2D perovskites: stability, flexibility, and quality factor trade-offs. ACS Omega 9, 24925–24932 (2024). https://doi.org/10.1021/acsomega.4c01827
W. Paritmongkol, N.S. Dahod, A. Stollmann, N. Mao, C. Settens et al., Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater. 31, 5592–5607 (2019). https://doi.org/10.1021/acs.chemmater.9b01318
S. Lim, D.H. Lee, H. Choi, Y. Choi, D.G. Lee et al., High-performance perovskite quantum dot solar cells enabled by incorporation with dimensionally engineered organic semiconductor. Nano-Micro Lett. 14, 204 (2022). https://doi.org/10.1007/s40820-022-00946-x
K.T. Butler, The chemical forces underlying octahedral tilting in halide perovskites. J. Mater. Chem. C 6, 12045–12051 (2018). https://doi.org/10.1039/c8tc02976h
K. Wang, L. Zheng, Y. Hou, A. Nozariasbmarz, B. Poudel et al., Overcoming Shockley-Queisser limit using halide perovskite platform? Joule 6, 756–771 (2022). https://doi.org/10.1016/j.joule.2022.01.009
X. Dong, M. Chen, R. Wang, Q. Ling, Z. Hu et al., Quantum confinement breaking: orbital coupling in 2D ruddlesden–popper perovskites enables efficient solar cells. Adv. Energy Mater. 13, 2301006 (2023). https://doi.org/10.1002/aenm.202301006
D.B. Straus, C.R. Kagan, Photophysics of two-dimensional semiconducting organic-inorganic metal-halide perovskites. Ann. Rev. Phys. Chem. 73, 403–428 (2022). https://doi.org/10.1146/annurev-physchem-082820-015402
M. Tremblay, J. Bacsa, B. Zhao, F. Pulvirenti, S. Barlow et al., Structures of (4-Y-C6H4CH2NH3)2PbI4 {Y = H, F, Cl, Br, I}: tuning of hybrid organic inorganic perovskite structures from Ruddlesden-Popper to Dion-Jacobson limits. Chem. Mater. 31, 6145–6153 (2019). https://doi.org/10.1021/acs.chemmater.9b01564
D.B. Straus, N. Iotov, M.R. Gau, Q. Zhao, P.J. Carroll et al., Longer cations increase energetic disorder in excitonic 2D hybrid perovskites. J. Phys. Chem. Lett. 10, 1198–1205 (2019). https://doi.org/10.1021/acs.jpclett.9b00247
D.B. Straus, S. Hurtado Parra, N. Iotov, Q. Zhao, M.R. Gau et al., Tailoring hot exciton dynamics in 2D hybrid perovskites through cation modification. ACS Nano 14, 3621–3629 (2020). https://doi.org/10.1021/acsnano.0c00037
M.-H. Tremblay, J. Bacsa, S. Barlow, S.R. Marder, Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Mater. Chem. Front. 4, 2023–2028 (2020). https://doi.org/10.1039/D0QM00118J
G.C. Papavassiliou, G.A. Mousdis, C.P. Raptopoulou, A. Terzis, Preparation and characterization of [C6H5CH2 NH3]2PbI4, [C6H5CH2CH2SC(NH2)2]3PbI5 and [C10H7CH2NH3]PbI3 organic-inorganic hybrid compounds. Zeitschrift für Naturforschung B 54, 1405–1409 (1999). https://doi.org/10.1515/znb-1999-1112
J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N. Zhou et al., Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 10, 1276 (2019). https://doi.org/10.1038/s41467-019-08980-x
D.G. Billing, A. Lemmerer, Synthesis, characterization and phase transitions in the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 4, 5 and 6. Acta Cryst. B 63, 735–747 (2007). https://doi.org/10.1107/S0108768107031758
A. Lemmerer, D.G. Billing, Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9 and 10. Dalton Trans. 41, 1146–1157 (2012). https://doi.org/10.1039/C0DT01805H
J.L. Knutson, J.D. Martin, D.B. Mitzi, Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44, 4699–4705 (2005). https://doi.org/10.1021/ic050244q
R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit et al., Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981
Y. Fu, X. Jiang, X. Li, B. Traore, I. Spanopoulos et al., Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142, 4008–4021 (2020). https://doi.org/10.1021/jacs.9b13587
M. Liang, W. Lin, Z. Lan, J. Meng, Q. Zhao et al., Electronic structure and trap states of two-dimensional Ruddlesden-Popper perovskites with the relaxed goldschmidt tolerance factor. ACS Appl. Electron. Mater. 2, 1402–1412 (2020). https://doi.org/10.1021/acsaelm.0c00179
S.-C. Feng, X.-M. Hu, Y. Shen, Y.-Q. Li, J.-X. Tang et al., Phase regulation of layered perovskites toward high-performance light-emitting diodes. Adv. Funct. Mater 2310220 (2023). https://doi.org/10.1002/adfm.202310220
S. Sahayaraj, E. Radicchi, M. Ziółek, M. Ścigaj, M. Tamulewicz-Szwajkowska et al., Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. J. Mater. Chem. A 9, 9175–9190 (2021). https://doi.org/10.1039/d0ta12431a
H. Kim, K.A. Huynh, S.Y. Kim, Q.V. Le, H.W. Jang, 2D and quasi-2D halide perovskites: applications and progress. Phys. Status Solidi RRL 14, 2070015 (2020). https://doi.org/10.1002/pssr.202070015
H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018). https://doi.org/10.1002/aenm.201800051
Y. Pan, H. Wang, Y. Wang, Y. Wang, X. Li et al., An ultrasensitive sandwiched heterostructure planar photodetector with gradient quasi-2D perovskite. Adv. Electron. Mater. 9, 2201028 (2023). https://doi.org/10.1002/aelm.202201028
A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang et al., Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018). https://doi.org/10.1038/s41467-018-03757-0
J.A. Steele, E. Solano, D. Hardy, D. Dayton, D. Ladd et al., How to GIWAXS: Grazing Incidence Wide Angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023). https://doi.org/10.1002/aenm.202300760
R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao et al., Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018). https://doi.org/10.1002/adma.201804771
Y. Zhou, O.S. Game, S. Pang, N.P. Padture, Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J. Phys. Chem. Lett. 6, 4827–4839 (2015). https://doi.org/10.1021/acs.jpclett.5b01843
X. Lai, W. Li, X. Gu, H. Chen, Y. Zhang et al., High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chem. Eng. J. 427, 130949 (2022). https://doi.org/10.1016/j.cej.2021.130949
F. Zheng, C.R. Hall, D. Angmo, C. Zuo, S. Rubanov et al., A sandwich-like structural model revealed for quasi-2D perovskite films. J. Mater. Chem. C 9, 5362–5372 (2021). https://doi.org/10.1039/D1TC00606A
X. Zhu, H. Xu, Y. Liu, J. Zhang, M. Wang et al., Two-photon up-conversion photoluminescence realized through spatially extended gap states in quasi-2D perovskite films. Adv. Mater. 31, 1901240 (2019). https://doi.org/10.1002/adma.201901240
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
Y. Shao, W. Gao, H. Yan, R. Li, I. Abdelwahab et al., Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat. Commun. 13, 138 (2022). https://doi.org/10.1038/s41467-021-27747-x
W. Zhang, J. Zhang, S. Cheng, C.M. Rouleau, K. Kisslinger et al., Exploring the spatial control of topotactic phase transitions using vertically oriented epitaxial interfaces. Nano-Micro Lett. 14, 2 (2021). https://doi.org/10.1007/s40820-021-00752-x
Y.H. Kim, H. Jeong, B.-R. Won, H. Jeon, C.-H. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16, 33 (2024). https://doi.org/10.1007/s40820-023-01258-4
X. Shen, X. Lin, Y. Peng, Y. Zhang, F. Long et al., Two-dimensional materials for highly efficient and stable perovskite solar cells. Nano-Micro Lett. 16, 201 (2024). https://doi.org/10.1007/s40820-024-01417-1
Z. Chen, Y. Guo, E. Wertz, J. Shi, Merits and challenges of ruddlesden–popper soft halide perovskites in electro-optics and optoelectronics. Adv. Mater. 31, 1803514 (2019). https://doi.org/10.1002/adma.201803514
J. Yang, T. He, M. Li, G. Li, H. Liu et al., π-conjugated carbazole cations enable wet-stable quasi-2D perovskite photovoltaics. ACS Energy Lett. 7, 4451–4458 (2022). https://doi.org/10.1021/acsenergylett.2c02219
J. Lai, R. Zhu, J. Tan, Z. Yang, S. Ye, Stacking arrangement and orientation of aromatic cations tune bandgap and charge transport of 2D organic-inorganic hybrid perovskites. Small 19, 2303449 (2023). https://doi.org/10.1002/smll.202303449
F. Weinhold, Anti-electrostatic pi-hole bonding: how covalency conquers coulombics. Molecules 27, 377 (2022). https://doi.org/10.3390/molecules27020377
M.W. Lufaso, P.M. Woodward, Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Cryst. B 60, 10–20 (2004). https://doi.org/10.1107/S0108768103026661
J. Wang, X. Jiang, H. Wu, G. Feng, H. Wu et al., Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat. Commun. 12, 6679 (2021). https://doi.org/10.1038/s41467-021-26995-1
N. Zhou, B. Huang, M. Sun, Y. Zhang, L. Li et al., The spacer cations interplay for efficient and stable layered 2D perovskite solar cells. Adv. Energy Mater. 10, 1901566 (2020). https://doi.org/10.1002/aenm.201901566
C.J. Dahlman, R.M. Kennard, P. Paluch, N.R. Venkatesan, M.L. Chabinyc et al., Dynamic motion of organic spacer cations in Ruddlesden–Popper lead iodide perovskites probed by solid-state NMR spectroscopy. Chem. Mater. 33, 642–656 (2021). https://doi.org/10.1021/acs.chemmater.0c03958
P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15, 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
T. Zhu, Y. Yang, K. Gu, C. Liu, J. Zheng et al., Novel quasi-2D perovskites for stable and efficient perovskite solar cells. ACS Appl. Mater. Interfaces 12, 51744–51755 (2020). https://doi.org/10.1021/acsami.0c16514
H. Zheng, H. Xu, F. Zheng, G. Liu, X. Xu et al., The effect of constituent ratios and varisized ammonium salts on the performance of two-dimensional perovskite materials. ChemSusChem 13, 252–259 (2020). https://doi.org/10.1002/cssc.201901948
B. Cheng, T. Li, P. Maity, P. Wei, D. Nordlund et al., Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018). https://doi.org/10.1038/s42005-018-0082-8
D. Yao, C. Zhang, S. Zhang, Y. Yang, A. Du et al., 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces 11, 29753–29764 (2019). https://doi.org/10.1021/acsami.9b06305
N. Zhou, Y. Shen, L. Li, S. Tan, N. Liu et al., Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140, 459–465 (2018). https://doi.org/10.1021/jacs.7b11157
Q. Xu, K. Meng, Z. Liu, X. Wang, Y. Hu et al., Synergistic improvements in efficiency and stability of 2D perovskite solar cells with metal ion doping. Adv. Mater. Interfaces 6, 1901259 (2019). https://doi.org/10.1002/admi.201901259
X. Jin, L. Yang, X.-F. Wang, Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett. 13, 68 (2021). https://doi.org/10.1007/s40820-021-00602-w
G. Wu, X. Li, J. Zhou, J. Zhang, X. Zhang et al., Fine multi-phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 31, 1903889 (2019). https://doi.org/10.1002/adma.201903889
X. Li, G. Wu, M. Wang, B. Yu, J. Zhou et al., Water-assisted crystal growth in quasi-2D perovskites with enhanced charge transport and photovoltaic performance. Adv. Energy Mater. 10, 2001832 (2020). https://doi.org/10.1002/aenm.202001832
H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie et al., Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140, 11639–11646 (2018). https://doi.org/10.1021/jacs.8b04604
Y. Li, E.L. Lim, Y. Zhang, T. Kong, X. Liu et al., I/Pb ratio control in the solid perovskite films toward efficient and stable two-dimensional perovskite solar cells. ACS Appl. Energy Mater. 5, 15233–15238 (2022). https://doi.org/10.1021/acsaem.2c02875
H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D Ruddlesden–Popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32, 2001470 (2020). https://doi.org/10.1002/adma.202001470
P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen et al., Low-dimensional Dion–Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59, 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
L. Chao, T. Niu, Y. Xia, X. Ran, Y. Chen et al., Efficient and stable low-dimensional Ruddlesden–Popper perovskite solar cells enabled by reducing tunnel barrier. J. Phys. Chem. Lett. 10, 1173–1179 (2019). https://doi.org/10.1021/acs.jpclett.9b00276
P. Li, C. Liang, X.-L. Liu, F. Li, Y. Zhang et al., Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 31, e1901966 (2019). https://doi.org/10.1002/adma.201901966
S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden–popper perovskites. Adv. Sci. 7, 2002445 (2020). https://doi.org/10.1002/advs.202002445
J. Zhang, J. Qin, M. Wang, Y. Bai, H. Zou et al., Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 3, 3061–3071 (2019). https://doi.org/10.1016/j.joule.2019.09.020
N. Nishimura, H. Kanda, R. Katoh, A. Kogo, T.N. Murakami, Thermally stable phenylethylammonium-based perovskite passivation: spontaneous passivation with phenylethylammonium bis(trifluoromethylsulfonyl)imide during deposition of PTAA for enhancing photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 12, 15631–15640 (2024). https://doi.org/10.1039/D4TA02036G
Y. Liu, H. Zhou, Y. Ni, R. Lu, C. Li et al., Revealing stability origin of Dion-Jacobson 2D perovskites with different-rigidity organic cations. Joule 7, 1016–1032 (2023). https://doi.org/10.1016/j.joule.2023.03.010
Y. Lv, H. Ma, Y. Yin, Q. Dong, W. Zhao et al., [NH3(CH2)6NH3]PbI4 as Dion-Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent UV stability. J. Mater. Chem. A 8, 10283–10290 (2020). https://doi.org/10.1039/D0TA02437F
J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). https://doi.org/10.1063/1.4774090
F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield et al., Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022). https://doi.org/10.1126/science.abj2637
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
Y. Wang, L. Pedesseau, C. Katan, J. Even, O.V. Prezhdo et al., Nonadiabatic molecular dynamics analysis of hybrid Dion-Jacobson 2D leads iodide perovskites: a nonadiabatic molecular dynamics study. Appl. Phys. Lett. 119, 201102 (2021). https://doi.org/10.1063/5.0066087
C. Ma, D. Shen, T.-W. Ng, M.-F. Lo, C.-S. Lee, 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 30, 1800710 (2018). https://doi.org/10.1002/adma.201800710
L. Cheng, Z. Liu, S. Li, Y. Zhai, X. Wang et al., Highly thermostable and efficient formamidinium-based low-dimensional perovskite solar cells. Angew. Chem. Int. Ed. 133, 869–877 (2021). https://doi.org/10.1002/ange.202006970
Y. Zheng, T. Niu, J. Qiu, L. Chao, B. Li et al., Oriented and uniform distribution of Dion–Jacobson phase perovskites controlled by quantum well barrier thickness. Solar RRL 3, 1900090 (2019). https://doi.org/10.1002/solr.201900090
S. Ahmad, R. Lu, Y. Liu, X. Liu, Q. Yang et al., Cesium-doped Dion-Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy 103, 107822 (2022). https://doi.org/10.1016/j.nanoen.2022.107822
T. Niu, H. Ren, B. Wu, Y. Xia, X. Xie et al., Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019). https://doi.org/10.1021/acs.jpclett.9b00750
Z. Zhai, J. Chen, Q. Liu, S. Jiang, Y. Li, Defect regulation of efficient dion–jacobson quasi-2D perovskite solar cells via a polyaspartic acid interlayer. ACS Appl. Mater. Interfaces 15, 38068–38079 (2023). https://doi.org/10.1021/acsami.3c07093
W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion–jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9, 1803384 (2019). https://doi.org/10.1002/aenm.201803384
H. Wu, X. Lian, S. Tian, Y. Zhang, M. Qin et al., Additive-assisted hot-casting free fabrication of Dion–Jacobson 2D perovskite solar cell with efficiency beyond 16%. Solar RRL 4, 2000087 (2020). https://doi.org/10.1002/solr.202000087
H. Wu, X. Lian, J. Li, Y. Zhang, G. Zhou et al., Merged interface construction toward ultra-low Voc loss in inverted two-dimensional Dion-Jacobson perovskite solar cells with efficiency over 18%. J. Mater. Chem. A 9, 12566–12573 (2021). https://doi.org/10.1039/D1TA02015C
K. Sun, Y. Meng, R. Cao, Y. Ren, Y. Mao et al., Effect of the rigidity of an organic interlayer on the nonradiative recombination and exciton dissociation in hybrid Dion-Jacobson 2D lead iodide perovskites. J. Mater. Chem. A 12, 5215–5224 (2024). https://doi.org/10.1039/D3TA07838H
T. He, S. Li, Y. Jiang, C. Qin, M. Cui et al., Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nat. Commun. 11, 1672 (2020). https://doi.org/10.1038/s41467-020-15451-1
Y. Ma, F. Zheng, S. Li, Y. Liu, J. Ren et al., Regulating the crystallization growth of Sn–Pb mixed perovskites using the 2D perovskite (4-AMP)PbI4 substrate for high-efficiency and stable solar cells. ACS Appl. Mater. Interfaces 15, 34862–34873 (2023). https://doi.org/10.1021/acsami.3c05277
X. Li, W. Ke, B. Traoré, P. Guo, I. Hadar et al., Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019). https://doi.org/10.1021/jacs.9b06398
C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli et al., Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016). https://doi.org/10.1021/acs.chemmater.6b00847
L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. Fang et al., Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016). https://doi.org/10.1021/acsnano.6b05944
C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis et al., Structure–band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56, 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai et al., New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017). https://doi.org/10.1021/jacs.7b09096
T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen et al., Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31, 1903848 (2019). https://doi.org/10.1002/adma.201903848
J. Yang, T. Yang, D. Liu, Y. Zhang, T. Luo et al., Stable 2D alternating cation perovskite solar cells with power conversion efficiency >19% via solvent engineering. Sol. RRL 5, 2100286 (2021). https://doi.org/10.1002/solr.202100286
D. Zhang, Y. Fu, C. Liu, C. Zhao, X. Gao et al., Domain controlling by compound additive toward highly efficient quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103890 (2021). https://doi.org/10.1002/adfm.202103890
Q. Han, Y. Bai, J. Liu, K.-Z. Du, T. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/c7ee02272g
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
J. Jiao, C. Yang, Z. Wang, C. Yan, C. Fang, Solvent engineering for the formation of high-quality perovskite films: a review. Results Engin. 18, 101158 (2023). https://doi.org/10.1016/j.rineng.2023.101158
M. Aldamasy, Z. Iqbal, G. Li, J. Pascual, F. Alharthi et al., Challenges in tin perovskite solar cells. Phys. Chem. Chem. Phys. 23, 23413–23427 (2021). https://doi.org/10.1039/D1CP02596A
L. Gao, F. Zhang, C. Xiao, X. Chen, B.W. Larson et al., Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells. Adv. Funct. Mater. 29, 1901652 (2019). https://doi.org/10.1002/adfm.201901652
W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu et al., Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS Energy Lett. 3, 2086–2093 (2018). https://doi.org/10.1021/acsenergylett.8b01181
Y. Su, J. Xue, A. Liu, T. Ma, L. Gao, Unveiling the effect of solvents on crystallization and morphology of 2D perovskite in solvent-assisted method. Molecules 27, 1828 (2022). https://doi.org/10.3390/molecules27061828
S. Wafee, B.H. Liu, C.-C. Leu, Lewis bases: promising additives for enhanced performance of perovskite solar cells. Mater. Today Energy 22, 100847 (2021). https://doi.org/10.1016/j.mtener.2021.100847
A.Z. Chen, M. Shiu, X. Deng, M. Mahmoud, D. Zhang et al., Understanding the formation of vertical orientation in two-dimensional metal halide perovskite thin films. Chem. Mater. 31, 1336–1343 (2019). https://doi.org/10.1021/acs.chemmater.8b04531
H. Yu, Y. Xie, J. Zhang, J. Duan, X. Chen et al., Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells. Adv. Sci. 9, 2004510 (2022). https://doi.org/10.1002/advs.202004510
X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 58, 9409–9413 (2019). https://doi.org/10.1002/anie.201902959
X. Dong, Y. Li, X. Wang, Y. Zhou, Y. Zhao et al., Promoting ruddlesden–popper perovskite formation by tailoring spacer intramolecular interaction for efficient and stable solar cells. Small 20, 2309218 (2024). https://doi.org/10.1002/smll.202309218
X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian et al., The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. Int. Ed. 131, 9509–9513 (2019). https://doi.org/10.1002/ange.201902959
N. Zhou, H. Zhou, Spacer organic cation engineering for quasi-2D metal halide perovskites and the optoelectronic application. Small Struct. 3, 2100232 (2022). https://doi.org/10.1002/sstr.202100232
M. Girolami, F. Matteocci, S. Pettinato, V. Serpente, E. Bolli et al., Metal-halide perovskite submicrometer-thick films for ultra-stable self-powered direct X-ray detectors. Nano-Micro Lett. 16, 182 (2024). https://doi.org/10.1007/s40820-024-01393-6
B. Wang, Y. Zhou, S. Yuan, Y. Lou, K. Wang et al., Low-dimensional phase regulation to restrain non-radiative recombination for sky-blue perovskite LEDs with EQE exceeding 15%. Angew. Chem. Int. Ed. 135, e202219255 (2023). https://doi.org/10.1002/ange.202219255
D. Laxmi, Kabra, Optimization of composition with reduced phase impurity in quasi-2D perovskite for electroluminescence. Adv. Photonics Res. 2, 2000164 (2021). https://doi.org/10.1002/adpr.202000164
C. Shen, S. Fang, J. Zhang, X. Liang, C. Su et al., High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering. Adv. Photon. 6, 026002 (2024). https://doi.org/10.1117/1.ap.6.2.026002
H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao et al., Understanding and minimizing non-radiative recombination losses in perovskite light-emitting diodes. J. Mater. Chem. C 10, 13590–13610 (2022). https://doi.org/10.1039/D2TC01869A
K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma et al., Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023). https://doi.org/10.1038/s41467-023-36118-7
C.-H. Chen, C.-H. Hsu, I.-C. Ni, B.-H. Lin, C.-I. Wu et al., Regulating the phase distribution of quasi-2D perovskites using a three-dimensional cyclic molecule toward improved light-emitting performance. Nanoscale 14, 17409–17417 (2022). https://doi.org/10.1039/d2nr04735g
J.K. Mishra, N. Yantara, A. Kanwat, T. Furuhashi, S. Ramesh et al., Defect passivation using a phosphonic acid surface modifier for efficient RP perovskite blue-light-emitting diodes. ACS Appl. Mater. Interfaces 14, 34238–34246 (2022). https://doi.org/10.1021/acsami.2c00899
H. Wang, C.C.S. Chan, M. Chu, J. Xie, S. Zhao et al., Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Sol. RRL 4, 1900578 (2020). https://doi.org/10.1002/solr.201900578
L. Kong, X. Zhang, Y. Li, H. Wang, Y. Jiang et al., Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nat. Commun. 12, 1246 (2021). https://doi.org/10.1038/s41467-021-21522-8
L. Kong, Y. Luo, L. Turyanska, T. Zhang, Z. Zhang et al., A spacer cation assisted nucleation and growth strategy enables efficient and high-luminance quasi-2D perovskite LEDs. Adv. Funct. Mater. 33, 2209186 (2023). https://doi.org/10.1002/adfm.202209186
Z. Tang, Y. Guo, Z. Li, Q. Wang, Y. Fu et al., Efficient sky-blue perovskite light-emitting diodes by regulating the quantum well distribution of quasi-2D perovskites by suppressing lattice distortion. J. Mater. Chem. C 12, 9693–9701 (2024). https://doi.org/10.1039/D4TC01553C
K. Yang, B. Xu, Q. Lin, Y. Yu, H. Hu et al., Interface engineering with ionic liquid for achieving efficient Quasi-2D perovskite light-emitting diodes. Chem. Eng. J. 483, 149291 (2024). https://doi.org/10.1016/j.cej.2024.149291
J. Sun, Z. Ren, Z. Wang, H. Wang, D. Wu et al., Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes. Adv. Opt. Mater. 11, 2202721 (2023). https://doi.org/10.1002/adom.202202721
M. Xiong, W. Zou, K. Fan, C. Qin, S. Li et al., Tailoring phase purity in the 2D/3D perovskite heterostructures using lattice mismatch. ACS Energy Lett. 7, 550–559 (2022). https://doi.org/10.1021/acsenergylett.1c02580
H. Li, S. Hu, H. Wang, X. Zhang, Y. Tong et al., Control of N-phase distribution in quasi two-dimensional perovskite for efficient blue light-emitting diodes. ACS Appl. Mater. Interfaces 15, 9574–9583 (2023). https://doi.org/10.1021/acsami.2c19979
H. Li, X. Zhang, H. Wang, S. Hu, J. Wu et al., Dual ligands synergy enables thermal and moisture stability-enhanced blue quasi-2D perovskite for efficient light-emitting diodes. Chem. Eng. J. 482, 148659 (2024). https://doi.org/10.1016/j.cej.2024.148659
F. Yuan, Y. Liang, Z. Miao, T. Zhang, R. Zhao et al., Oxygen-containing diamine cations enable highly efficient and stable 2D Dion-jacobson perovskite solar cells. Chem. Mater. 36, 1621–1630 (2024). https://doi.org/10.1021/acs.chemmater.3c02960
S. Ahmad, M. Guan, J. Kim, X. He, Z. Ren et al., High-quality pure-phase MA-free formamidinium Dion-Jacobson 2D perovskites for stable unencapsulated photovoltaics. Adv. Energy Mater. 14, 2302774 (2024). https://doi.org/10.1002/aenm.202302774
P. Chen, D. He, X. Huang, C. Zhang, L. Wang, Bilayer 2D–3D perovskite heterostructures for efficient and stable solar cells. ACS Nano 18, 67–88 (2024). https://doi.org/10.1021/acsnano.3c09176