Fast-Developing Dynamic Radiative Thermal Management: Full-Scale Fundamentals, Switching Methods, Applications, and Challenges
Corresponding Author: Xinhua Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 146
Abstract
Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change, including global warming. Currently, the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health, driving a growing dependence on cooling and heating energy sources. Consequently, efficient thermal management has become a central focus of energy research. Traditional thermal management systems consume substantial energy, further contributing to greenhouse gas emissions. In contrast, emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives. However, achieving year-round thermal management without additional energy input remains a formidable challenge. Recently, dynamic radiative thermal management technologies have emerged as the most promising solution, offering the potential for energy-efficient adaptation across seasonal variations. This review systematically presents recent advancements in dynamic radiative thermal management, covering fundamental principles, switching mechanisms, primary materials, and application areas. Additionally, the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed. By highlighting their transformative potential, this review provides insights into the design and industrial scalability of these innovations, with the ultimate aim of promoting renewable energy integration in thermal management applications.
Highlights:
1 This review comprehensively summarizes the current state-of-the-art in dynamic radiative thermal management technology.
2 In-depth discussion of the basic principles of dynamic radiative thermal management technology, design strategies, and a list of related applications are presented.
3 An in-depth look at the challenges facing dynamic radiative thermal management technology, providing potential solutions for the future direction of the field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Lesk, P. Rowhani, N. Ramankutty, Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016). https://doi.org/10.1038/nature16467
- X. Liu, P. Li, Y. Liu, C. Zhang, M. He et al., Hybrid passive cooling for power equipment enabled by metal-organic framework. Adv. Mater. 36(45), 2409473 (2024). https://doi.org/10.1002/adma.202409473
- L. Cai, A. Song, W. Li, P. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
- Y. Xu, V. Ramanathan, D. Victor, Global warming will happen faster than we think. Nature 564, 30–32 (2018). https://doi.org/10.1038/d41586-018-07586-5
- D. Easterling, G. Meehl, C. Parmesan, S. Changnon, T. Karl et al., Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000). https://doi.org/10.1126/science.289.5487.2068
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4, 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
- Y. Fang, G. Chen, M. Bick, J. Chen, Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021). https://doi.org/10.1039/D1CS00003A
- E. Benz, S. Trück, Modeling the price dynamics of CO2 emission allowances. Energy Econ. 31(1), 4–15 (2009). https://doi.org/10.1016/j.eneco.2008.07.003
- I. Staffell, S. Pfenninger, N. Johnson, A global model of hourly space heating and cooling demand at multiple spatial scales. Nat. Energy 8, 1328–1344 (2023). https://doi.org/10.1038/s41560-023-01341-5
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
- C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
- X. Song, H. Gong, H. Li, M. Zhang, L. Jiang et al., Molecularly and structurally designed polyimide nanofiber radiative cooling films for spacecraft thermal management. Adv. Funct. Mater. 35(2), 2313191 (2024). https://doi.org/10.1002/adfm.202413191
- V. Barbarossa, J. Bosmans, N. Wanders, H. King, M. Bierkens et al., Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021). https://doi.org/10.1038/s41467-021-21655-w
- R. Ma, D. Li, C. Xu, J. Yang, J. Huang et al., Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting. Adv. Colloid Interface Sci. 332, 103252 (2024). https://doi.org/10.1016/j.cis.2024.103252
- R. Vilà, I. Martorell, M. Medrano, A. Castell, Adaptive covers for combined radiative cooling and solar heating. A review of existing technology and materials. Sol. Energy Mater Sol. Cells 230, 111275 (2021). https://doi.org/10.1016/j.solmat.2021.111275
- D. Steel, C. DesRoches, K. Mintz-Woo, Climate change and the threat to civilization. Proc. Natl. Acad. Sci. U.S.A. 119(42), e2210525119 (2022). https://doi.org/10.1073/pnas.2210525119
- X. Li, B. Sun, C. Sui, A. Nandi, H. Fang et al., Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 11, 6101 (2020). https://doi.org/10.1038/s41467-020-19790-x
- C. Lan, J. Meng, C. Pan, L. Jia, X. Pu, Hierarchical porous dual-mode thermal management fabrics achieved by regulating solar and body radiations. Mater. Horiz. 11, 1760–1768 (2024). https://doi.org/10.1039/D3MH01938A
- Y. Zhang, D. Wu, S. Liao, D. Chen, A. Mensah et al., A multi-mode cellulose acetate/MXene Janus film with structure enhanced self-reflection, selective emission and absorption for cooling and heating. Compos. Part A Appl. Sci. Manuf. 172, 107622 (2023). https://doi.org/10.1016/j.compositesa.2023.107622
- X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
- X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
- P. Hsu, A. Song, P. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7, 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
- H. Wang, W. Zhao, Z. Zhang, W. Hou, L. Yin et al., Synergizing electron and ion transports of Ti3C2TX MXene fiber via dot-sheet heterostructure and covalent Ti-C-Ti cross-linking for efficient charge storage and thermal management. Adv. Funct. Mater. 34(48), 2408508 (2024). https://doi.org/10.1002/adfm.202408508
- Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
- Y. Du, Y. Chen, X. Yang, J. Liu, Y. Liang et al., Hybrid passive cooling: towards the next breakthrough of radiative sky cooling technology. J. Mater. Chem. A 12, 21490–21514 (2024). https://doi.org/10.1039/D4TA03122A
- P. Lan, C. Hwang, T. Chen, T. Wang, H. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
- L. Qi, W. Cai, J. Li, T. Cui, L. Chen et al., Advanced Janus coatings for thermal management and synergistic flame retardancy in polyester fabric. J. Mater. Chem. A 12, 24934–24946 (2024). https://doi.org/10.1039/D4TA04320K
- X. Liu, P. Li, J. Chen, P. Jiang, Y. Mai et al., Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Sci. Bull. 67(19), 1991–2000 (2022). https://doi.org/10.1016/j.scib.2022.09.014
- X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
- L. Xie, X. Wang, C. Wei, S. Sun, S. Liang et al., Nano-engineered versatile Janus natural-skin with sandwich structure for wearable all-season personal thermal management. Compos. Part B Eng. 281, 111573 (2024). https://doi.org/10.1016/j.compositesb.2024.111573
- M. Huang, M. Yang, X. Guo, C. Xue, H. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
- K. Lin, J. Chen, A. Pan, H. Li, Y. Fu et al., Beyond the static: dynamic radiative cooling materials and applications. Mater. Today Energy 44, 101647 (2024). https://doi.org/10.1016/j.mtener.2024.101647
- J. Wang, G. Tan, R. Yang, D. Zhao, Materials, structures, and devices for dynamic radiative cooling. Cell Rep. Phys. Sci. 3(12), 101198 (2022). https://doi.org/10.1016/j.xcrp.2022.101198
- J. Wang, S. Sheng, Z. He, R. Wang, Z. Pan et al., Self-powered flexible electrochromic smart window. Nano Lett. 21(23), 9976–9982 (2021). https://doi.org/10.1021/acs.nanolett.1c03438
- M. Wang, X. Xing, I. Perepichka, Y. Shi, D. Zhou et al., Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv. Energy Mater. 9(21), 1900433 (2019). https://doi.org/10.1002/aenm.201900433
- S. Lee, S. Lee, H. Kang, S. Nahm, B. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
- D. Wang, G. Chen, J. Fu, Multifunctional thermochromic smart windows for building energy saving. J. Mater. Chem. A 12, 12960–12982 (2024). https://doi.org/10.1039/D4TA01767F
- H. Peng, R. Fu, Y. Zhao, X. Lu, H. Zhao et al., Dynamically tunable thermochromic smart windows for building energy conservation. ACS Mater. Lett. 6(8), 3404–3413 (2024). https://doi.org/10.1021/acsmaterialslett.4c01210
- G. Xu, Y. Lu, X. Zhou, N. Moloto, J. Liu et al., Thermochromic hydrogel-based energy efficient smart windows: fabrication, mechanisms, and advancements. Mater. Horiz. 11, 4867–4884 (2024). https://doi.org/10.1039/D4MH00903G
- Z. Zhang, L. Zhang, Y. Zhou, Y. Cui, Z. Chen et al., Thermochromic energy efficient windows: fundamentals, recent advances, and perspectives. Chem. Rev. 123(11), 7025–7080 (2023). https://doi.org/10.1021/acs.chemrev.2c00762
- L. Xie, X. Wang, X. Zou, Z. Bai, S. Liang et al., Engineering self-adaptive multi-response thermochromic hydrogel for energy-saving smart windows and wearable temperature-sensing. Small 19(52), 2304321 (2023). https://doi.org/10.1002/smll.202304321
- Y. Zhao, Q. Liang, S. Li, Y. Chen, X. Liu et al., Thermal emission manipulation enabled by nano-kirigami structures. Small 20(3), 2305171 (2024). https://doi.org/10.1002/smll.202305171
- X. Liu, Y. Tian, F. Chen, A. Ghanekar, M. Antezza et al., Continuously variable emission for mechanical deformation induced radiative cooling. Commun. Mater. 1, 95 (2020). https://doi.org/10.1038/s43246-020-00098-8
- Z. Chen, Q. Peng, Y. Hu, Z. Liu, X. Zhao et al., Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices. J. Mater. Sci. Technol. 167, 152–160 (2023). https://doi.org/10.1016/j.jmst.2023.05.050
- J. Koh, X. Zhang, S. Ling, X. Liu, L. Zhou et al., A smart self-healing material with reversible optical, mechanical, and electrical transition induced by humidity and temperature. Adv. Mater. Technol. 9(16), 2400214 (2024). https://doi.org/10.1002/admt.202400214
- Y. Zhou, W. Meng, X. Cao, J. Wang, L. Jiang, Wrinkled structure and morphology transition of poly (vinylidene fluoride cohexafluoropropylene films for smart windows. ACS Appl. Nano Mater. 6(22), 21236–21244 (2023). https://doi.org/10.1021/acsanm.3c04430
- B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
- C. Wang, H. Chen, Z. Jiang, X. Zhang, Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects. Energy 263, 125735 (2023). https://doi.org/10.1016/j.energy.2022.125735
- Z. Cheng, F. Wang, D. Gong, H. Liang, Y. Shuai, Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window.” Sol. Energy Mater. Sol. Cells 213, 110563 (2020). https://doi.org/10.1016/j.solmat.2020.110563
- Y. Feng, C. Wang, Discontinuous finite element method applied to transient pure and coupled radiative heat transfer. Int. Commun. Heat Mass Transf. 122, 105156 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105156
- R. Drake, J. Gordon, Mie scattering. Am. J. Phys. 53, 955–962 (1985). https://doi.org/10.1119/1.14011
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
- M. Feng, X. Bu, J. Yang, D. Li, Z. Zhang et al., Review: smart windows based on photonic crystals. J. Mater. Sci. 55, 8444–8463 (2020). https://doi.org/10.1007/s10853-020-04460-6
- H. Zhai, D. Fan, Q. Li, Dynamic radiation regulations for thermal comfort. Nano Energy 100, 107435 (2022). https://doi.org/10.1016/j.nanoen.2022.107435
- X. Wang, Y. Lu, D. Yang, Z. Zhong, Y. Zhao et al., Enhanced electro-optical properties of polymer dispersed liquid crystals doped with functional nanofibers for applications of efficient smart windows and advanced anti-counterfeiting. Chem. Eng. J. 497, 155675 (2024). https://doi.org/10.1016/j.cej.2024.155675
- Y. Zhai, Y. Ma, S. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- X. Yang, S. Wang, D. Zhang, J. Yu, Theoretical investigation of two ideal radiative cooling materials and radiative sky water-cooling module with ideal selective radiative materials. Energy Build. 323, 114768 (2024). https://doi.org/10.1016/j.enbuild.2024.114768
- Y. Dong, Y. Zou, X. Li, F. Wang, Z. Cheng et al., Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application. Appl. Energy 344, 121273 (2023). https://doi.org/10.1016/j.apenergy.2023.121273
- X. Shi, J. Song, Z. Cheng, H. Liang, Y. Dong et al., Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency. Renew. Energ. 207, 436–446 (2023). https://doi.org/10.1016/j.renene.2023.03.024
- X. Zhang, Z. Cheng, D. Yang, Y. Dong, X. Shi et al., Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements. ACS Photonics 10(5), 1624–1632 (2023). https://doi.org/10.1021/acsphotonics.3c00241
- W. Zha, Y. Zhu, B. Ma, J. Yu, P. Ghosh et al., Nonvolatile high-contrast whole long-wave infrared emissivity switching based on In3SbTe2. ACS Photonics 10(7), 2165–2172 (2022). https://doi.org/10.1021/acsphotonics.2c00714
- M. Yoo, K. Pyun, Y. Jung, M. Lee, J. Lee et al., Switchable radiative cooling and solar heating for sustainable thermal management. Nanophotonics 13(5), 543–561 (2024). https://doi.org/10.1515/nanoph-2023-0627
- P. Berdahl, R. Fromberg, The thermal radiance of clear skies. Sol. Energy 29(4), 299 (1982). https://doi.org/10.1016/0038-092X(82)90245-6
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- J. Chai, J. Fan, Solar and thermal radiation-modulation materials for building applications. Adv. Energy Mater. 13(1), 2202932 (2023). https://doi.org/10.1002/aenm.202202932
- P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
- X. Xue, M. Qiu, Y. Li, Q. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), 1906751 (2020). https://doi.org/10.1002/adma.201906751
- X. Wu, J. Li, F. Xie, X. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
- X. Li, C. Chen, Z. Li, P. Yi, H. Zou et al., Inter-skeleton conductive routes tuning multifunctional conductive foam for electromagnetic interference shielding, sensing and thermal management. Nano-Micro Lett. 17, 52 (2025). https://doi.org/10.1007/s40820-024-01540-z
- J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17, 14 (2025). https://doi.org/10.1007/s40820-024-01510-5
- H. Dolatkhah, S. Salimi, A. Khorashad, S. Haseli, The entropy production for thermal operations. Sci. Rep. 10, 9757 (2020). https://doi.org/10.1038/s41598-020-66416-9
- T. Basak, R. Anandalakshmi, S. Roy, I. Pop, Role of entropy generation on thermal management due to thermal convection in porous trapezoidal enclosures with isothermal and non-isothermal heating of wall. Int. J. Heat Mass Transf. 67, 810–828 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.019
- S. Giordano, Entropy production and Onsager reciprocal relations describing the relaxation to equilibrium in stochastic thermodynamics. Phys. Rev. E 103, 052116 (2021). https://doi.org/10.1103/PhysRevE.103.052116
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- A. Rico, V. Ovejas, A. Cuadras, Analysis of energy and entropy balance in a residential building. J. Clean. Prod. 333, 130145 (2022). https://doi.org/10.1016/j.jclepro.2021.130145
- S. Nadarajah, M. Kebe, Explicit expressions for most common entropies. Entropy 25(3), 534 (2023). https://doi.org/10.3390/e25030534
- H. Li, D. Feng, Q. Guo, S. Lu, Z. Ma et al., Interfacial wrinkling structures based on a double cross-linking strategy enable a dual-mode optical information encryption. ACS Appl. Mater. Interfaces 16(32), 43006–43015 (2024). https://doi.org/10.1021/acsami.4c09255
- L. Zhang, D. Li, X. Li, B. Wang, G. Xu et al., Further explore on the behaviors of IR electrochromism of a double layer constructed by proton acid-doped polyaniline film and ITO layer. Dyes Pigments 170, 107570 (2019). https://doi.org/10.1016/j.dyepig.2019.107570
- L. Zhang, Y. Du, F. Xia, Y. Gao, Two birds with one stone: a novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows. Chem. Eng. J. 455, 140849 (2023). https://doi.org/10.1016/j.cej.2022.140849
- T. Wang, S. Zhang, Q. Zhu, J. Zhang, Y. Zhang et al., A trilayer structure with surface binary microsphere array for radiative cooling and heating regulation. ACS Photonics 11(7), 2815–2823 (2024). https://doi.org/10.1021/acsphotonics.4c00833
- J. Huang, X. Zhang, X. Yu, G. Tang, X. Wang et al., Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell ps. Renew. Energ. 224, 120208 (2024). https://doi.org/10.1016/j.renene.2024.120208
- Y. Liu, Y. Tian, X. Liu, F. Chen, A. Caratenuto et al., Intelligent regulation of VO2-PDMS-driven radiative cooling. Appl. Phys. Lett. 120, 171704 (2022). https://doi.org/10.1063/5.0089353
- N. Sudhakaran, M. Abraham, P. Parvathy, S. Das, S. Sahoo, Flexible and thermoresponsive AEMR-pNIPAM/Cs0. 33WO3 composite hydrogel film with NIR shielding potential for smart windows and smart curtains. Chem. Eng. J. 490, 151603 (2024). https://doi.org/10.1016/j.cej.2024.151603
- K. Shi, Z. Liu, C. Yang, X. Li, Y. Sun et al., Novel biocompatible thermoresponsive poly (N-vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces 9(26), 21979–21990 (2017). https://doi.org/10.1021/acsami.7b04552
- Z. Xu, S. Wang, X. Hu, J. Jiang, X. Sun et al., Sunlight-induced photo-thermochromic supramolecular nanocomposite hydrogel film for energy-saving smart window. Sol. RRL 2(11), 1800204 (2018). https://doi.org/10.1002/solr.201800204
- Y. Sheng, Q. Gui, Y. Zhang, X. Yang, F. Xing et al., Lead-free perovskites with photochromism and reversed thermochromism for repeatable information writing and erasing. Adv. Funct. Mater. 34(42), 2406995 (2024). https://doi.org/10.1002/adfm.202406995
- Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12(24), 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
- B. Zhao, M. Hu, Q. Xuan, T. Kwan, Y. Dabwan et al., Tunable thermal management based on solar heating and radiative cooling. Sol. Energy Mater. Sol. Cells 235, 111457 (2022). https://doi.org/10.1016/j.solmat.2021.111457
- Y. Ke, Y. Li, L. Wu, S. Wang, R. Yang et al., On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 7(5), 1758–1763 (2022). https://doi.org/10.1021/acsenergylett.2c00419
- R. Ito, S. Lee, Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades. Appl. Energy 359, 122711 (2024). https://doi.org/10.1016/j.apenergy.2024.122711
- X. Guan, Y. Zhu, B. Zhang, X. Sun, M. Abosheasha et al., Shutters-inspired metal ions coordination hydrogel strain/pressure sensor for joint behavior evaluation and flatfeet correction. Chem. Eng. J. 489, 151353 (2024). https://doi.org/10.1016/j.cej.2024.151353
- S. Tao, J. Han, Y. Xu, Z. Fang, Y. Ni et al., Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating. ACS Appl. Mater. Interfaces 15(13), 17123–17133 (2023). https://doi.org/10.1021/acsami.2c21961
- Z. Yang, Y. Jia, J. Zhang, Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl. Mater. Interfaces 14(21), 24755–24765 (2022). https://doi.org/10.1021/acsami.2c03513
- Y. Zhang, C. Zhou, L. Qu, H. Yi, Active control of near-field radiative heat transfer through nonreciprocal graphene surface plasmons. Appl. Phys. Lett. 116, 151101 (2020). https://doi.org/10.1063/1.5145224
- K. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
- M. Blees, A. Barnard, P. Rose, S. Roberts, K. Mcgill et al., Graphene kirigami. Nature 524, 204–207 (2015). https://doi.org/10.1038/nature14588
- X. Xia, A. Afshar, H. Yang, C. Portela, D. Kochmann et al., Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019). https://doi.org/10.1038/s41586-019-1538-z
- C. Xu, G. Stiubianu, A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
- F. Zhao, M. Wang, Z. Huang, M. Zhu, C. Chen et al., Bio-inspired mechanically responsive smart windows for visible and near-infrared multiwavelength spectral modulation. Adv. Mater. 36(40), 2408192 (2024). https://doi.org/10.1002/adma.202408192
- H. Chen, G. Chang, T. Lee, S. Min, S. Nam et al., Compression-sensitive smart windows: inclined pores for dynamic transparency changes. Nat. Commun. 15, 8074 (2024). https://doi.org/10.1038/s41467-024-52305-6
- H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32(29), 2000870 (2020). https://doi.org/10.1002/adma.202000870
- H. Fang, W. Xie, X. Li, K. Fan, Y. Lai et al., A triple-mode midinfrared modulator for radiative heat management of objects with various emissivity. Nano Lett. 21(9), 4106–4114 (2021). https://doi.org/10.1021/acs.nanolett.1c01147
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33(18), 2212776 (2023). https://doi.org/10.1002/adfm.202212776
- H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
- N. Guo, C. Shi, B. Sheldon, H. Yan, M. Chen, A mechanical–optical coupling design on solar and thermal radiation modulation for thermoregulation. J. Mater. Chem. A 12, 17520–17528 (2024). https://doi.org/10.1039/D4TA03388D
- S. Zeng, K. Shen, Y. Liu, A. Chooi, A. Smith et al., Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Mater. Today 45, 44–53 (2021). https://doi.org/10.1016/j.mattod.2020.12.001
- Z. Zhou, Y. Fang, X. Wang, E. Yang, R. Liu et al., Synergistic modulation of solar and thermal radiation in dynamic energy-efficient windows. Nano Energy 93, 106865 (2022). https://doi.org/10.1016/j.nanoen.2021.106865
- S. Lee, J. Seo, S. Kim, J. Park, H. Jin et al., Reversible solar heating and radiative cooling devices via mechanically guided assembly of 3D macro/microstructures. Adv. Mater. 36(39), 2400930 (2024). https://doi.org/10.1002/adma.202400930
- E. Leung, M. Colorado Escobar, G. Stiubianu, S. Jim, A. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10(1), 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
- Y. Lv, F. Cai, X. Zhao, X. Zhu, F. Wei et al., Bioinspired microstructured Janus bioadhesive for the prevention of abdominal and intrauterine adhesions. Adv. Funct. Mater. 34(21), 2314402 (2024). https://doi.org/10.1002/adfm.202314402
- B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
- Y. Zhang, Q. Xie, J. Pan, C. Ma, G. Zhang, Strong-adhesion and nonfouling self-generating zwitterionic Janus hydrogel paint. Chem. Eng. J. 485, 149959 (2024). https://doi.org/10.1016/j.cej.2024.149959
- Z. Cui, Y. Zhang, Z. Zhang, B. Liu, Y. Chen et al., Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser. Nat. Commun. 15, 1443 (2024). https://doi.org/10.1038/s41467-024-45926-4
- A. Mcglasson, E. Morgenthaler, L. Bradley, T. Russell, On the interfacial assembly of anisotropic amphiphilic janus ps. Adv. Funct. Mater. 34(11), 2306651 (2024). https://doi.org/10.1002/adfm.202306651
- Z. Zeng, B. Tang, F. Zeng, H. Chen, S. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
- Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
- W. Yang, P. Xiao, S. Li, F. Deng, F. Ni et al., Engineering structural Janus MXene-nanofibrils aerogels for season-adaptive radiative thermal regulation. Small 19(30), 2302509 (2023). https://doi.org/10.1002/smll.202302509
- L. Liu, D. Yuan, X. Hu, P. Hu, J. Wang et al., Wind-proof and moisture permeability aerogel-functionalized textile as all-seasonal passive thermal regulators. Adv. Funct. Mater. 34(49), 2411551 (2024). https://doi.org/10.1002/adfm.202411551
- Y. Chen, T. Zhang, Y. Li, Y. Yurekli, F. Qiu et al., A cellulose-based membrane with temperature regulation and water transportation for thermal management applications. Compos. Sci. Technol. 243, 110243 (2023). https://doi.org/10.1016/j.compscitech.2023.110243
- Z. Luo, B. Li, H. Sun, J. Liu, H. Zhao et al., Dual-functional reduced graphene oxide decorated nanoporous polytetrafluoroethylene metafabrics for radiative cooling and solar-heating. J. Mater. Chem. A 11, 16595–16604 (2023). https://doi.org/10.1039/D3TA03683A
- D. Hu, X. Chen, S. Zhang, Z. Wang, T. Wang et al., Ultrawhite and ultrablack asymmetric coatings for radiative cooling and solar heating. Prog. Org. Coat. 198, 108870 (2025). https://doi.org/10.1016/j.porgcoat.2024.108870
- G. Cai, J. Wang, P. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49(8), 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
- T. Bai, W. Li, G. Fu, Y. Shen, Q. Zhang et al., Dual-band electrochromic optical modulation improved by a precise control of lithium content in Li4+xTi5O12. ACS Appl. Mater. Interfaces 14(46), 52193–52203 (2022). https://doi.org/10.1021/acsami.2c16654
- Q. Huang, J. Wang, H. Gong, Q. Zhang, M. Wang et al., A rechargeable electrochromic energy storage device enabling effective energy recovery. J. Mater. Chem. A 9, 6451–6459 (2021). https://doi.org/10.1039/D0TA11234H
- B. Sun, Z. Liu, W. Li, H. Huang, Y. Xia et al., A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Sol. Energy Mater. Sol. Cells 231, 111314 (2021). https://doi.org/10.1016/j.solmat.2021.111314
- V. Bayzi Isfahani, M. Silva, Fundamentals and advances of electrochromic systems: a review. Adv. Eng. Mater. 23(12), 2100567 (2021). https://doi.org/10.1002/adem.202100567
- X. Hu, T. Li, B. Shou, L. Li, H. Ren et al., Novel personal cooling textiles revolutionizing human thermal management: principles, designs and applications. Chem. Eng. J. 499, 155729 (2024). https://doi.org/10.1016/j.cej.2024.155729
- J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu et al., Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 28(36), 1802180 (2018). https://doi.org/10.1002/adfm.201802180
- M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
- Y. Rao, J. Dai, C. Sui, Y. Lai, Z. Li et al., Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 6(11), 3906–3915 (2021). https://doi.org/10.1021/acsenergylett.1c01486
- Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7, 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
- P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15, 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
- L. Zhang, B. Wang, X. Li, G. Xu, S. Dou et al., Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J. Mater. Chem. C 7, 9878–9891 (2019). https://doi.org/10.1039/C9TC02126D
- Y. Deng, Y. Yang, Y. Xiao, H. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
- Y. Xiao, X. Zhang, Z. Li, M. Chen, W. Sun et al., A visible-to-infrared broadband all-solid-state electrochromic device based Li4Ti5O12/WO3 for optical and thermal management. Sol. Energy Mater. Sol. Cells 268, 112735 (2024). https://doi.org/10.1016/j.solmat.2024.112735
- C. Sui, J. Pu, T. Chen, J. Liang, Y. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6, 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
- M. Chen, X. Zhang, D. Yan, J. Deng, W. Sun et al., Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 10, 2191–2203 (2023). https://doi.org/10.1039/D2MH01472F
- S. Sheng, J. Wang, B. Zhao, Z. He, X. Feng et al., Nanowire-based smart windows combining electro-and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14, 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
- W. Wang, X. Wang, X. Xia, Z. Yao, Y. Zhong et al., Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 10, 8162–8169 (2018). https://doi.org/10.1039/C8NR00790J
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- D. Tang, J. Wang, X. Huang, D. Zhang, S. Cao et al., A highly efficient and energy saving electrochromic platform for adaptive visible and near-infrared light modulation. Chem. Eng. J. 482, 148870 (2024). https://doi.org/10.1016/j.cej.2024.148870
- P. Chandrasekhar, B. Zay, D. Lawrence, E. Caldwell, R. Sheth et al., Variable-emittance infrared electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes, and semiconductor/polymer coatings, for spacecraft thermal control. J. Appl. Polym. Sci. 131, 40850 (2014). https://doi.org/10.1002/app.40850
- C. Louet, S. Cantin, J. Dudon, P. Aubert, F. Vidal et al., A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 143, 141 (2015). https://doi.org/10.1016/j.solmat.2015.06.047
- G. Petroffe, L. Beouch, S. Cantin, P. Aubert, C. Plesse et al., Investigations of ionic liquids on the infrared electroreflective properties of poly (3, 4-ethylenedioxythiophene. Sol. Energy Mater. Sol. Cells 177, 23 (2018). https://doi.org/10.1016/j.solmat.2017.07.018
- J. Niu, Y. Wang, X. Zou, Y. Tan, C. Jia et al., Infrared electrochromic materials, devices and applications. Applied Mater. Today 24, 101073 (2021). https://doi.org/10.1016/j.apmt.2021.101073
- H. Gong, J. Ai, W. Li, J. Zhu, Q. Zhang et al., Self-driven infrared electrochromic device with tunable optical and thermal management. ACS Appl. Mater. Interfaces 13(42), 50319–50328 (2021). https://doi.org/10.1021/acsami.1c14123
- T. Tabak, S. Altinisik, S. Ulucay, S. Koyuncu, K. Kaya, Black-to-transmissive electrochromic switching PEDOT-co-poly(N-ethylcarbazole via a sustainable and facile in situ photo(co) polymerization method. Macromolecules 57(10), 4769–4781 (2024). https://doi.org/10.1021/acs.macromol.4c00364
- R. Zhang, Z. Song, W. Cao, G. Gao, L. Yang et al., Multispectral smart window: dynamic light modulation and electromagnetic microwave shielding. Light Sci. Appl. 13, 223 (2024). https://doi.org/10.1038/s41377-024-01541-y
- G. Xu, L. Zhang, B. Wang, X. Chen, S. Dou et al., A visible-to-infrared broadband flexible electrochromic device based polyaniline for simultaneously variable optical and thermal management. Sol. Energy Mater. Sol. Cells 208, 110356 (2020). https://doi.org/10.1016/j.solmat.2019.110356
- D. Banerjee, T. Hallberg, S. Chen, C. Kuang, M. Liao et al., Electrical tuning of radiative cooling at ambient conditions. Cell Rep. Phys. Sci. 4(2), 101274 (2023). https://doi.org/10.1016/j.xcrp.2023.101274
- W. Kamal, M. Li, J. Lin, E. Parry, Y. Jin et al., Spatially patterned polymer dispersed liquid crystals for image-integrated smart windows. Adv. Opt. Mater. 10(3), 2101748 (2022). https://doi.org/10.1002/adom.202101748
- D. Higgins, Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals. Adv. Mater. 12(4), 251–264 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4%3c251::AID-ADMA251%3e3.0.CO;2-4
- S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8(4), 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
- X. Feng, S. Sheng, C. Chen, X. Li, Z. Xian et al., A multi-stimuli-responsive actuator for efficient thermal management and various biomimetic locomotion. Cell Rep. Phys. Sci. 4(10), 101588 (2023). https://doi.org/10.1016/j.xcrp.2023.101588
- S. Chen, G. Jiang, J. Zhou, G. Wang, Y. Zhu et al., Robust solvatochromic gels for self-defensive smart windows. Adv. Funct. Mater. 33(20), 2214382 (2023). https://doi.org/10.1002/adfm.202214382
- J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
- J. Fei, D. Han, J. Ge, X. Wang, S. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
- N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
- C. Zhang, J. Yang, Y. Li, J. Song, J. Guo et al., Vapor–liquid transition-based broadband light modulation for self-adaptive thermal management. Adv. Funct. Mater. 32(48), 2208144 (2022). https://doi.org/10.1002/adfm.202208144
- X. Wang, S. Narayan, Thermal radiative switching interface for energy-efficient temperature control. Renew. Energ. 197, 574–582 (2022). https://doi.org/10.1016/j.renene.2022.07.143
- S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
- H. Bennett, G. Rosasco, Resonances in the efficiency factors for absorption: mie scattering theory. Appl. Opt. 17(4), 491–493 (1978). https://doi.org/10.1364/AO.17.000491
- L. An, J. Ma, P. Wang, A. Kuchmizhak, J. Yao et al., In situ switchable nanofiber films based on photoselective asymmetric assembly towards year-round energy saving. J. Mater. Chem. A 12, 18304–18312 (2024). https://doi.org/10.1039/D4TA03558E
- Z. Sun, H. Yu, Y. Feng, W. Feng, Application and development of smart thermally conductive fiber materials. Nanomaterials 14(2), 154 (2024). https://doi.org/10.3390/nano14020154
- R. Guo, L. Shan, Y. Wu, Y. Cai, R. Huang et al., Phase-change materials for intelligent temperature regulation. Mater. Today Energy 23, 100888 (2022). https://doi.org/10.1016/j.mtener.2021.100888
- K. Araki, R. Zhang, An optimized self-adaptive thermal radiation turn-down coating with vanadium dioxide nanowire array. Int. J. Heat Mass Transf. 191, 122835 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122835
- F. Ramirez-Cuevas, K. Gurunatha, L. Li, U. Zulfiqar, S. Sathasivam et al., Infrared thermochromic antenna composite for self-adaptive thermoregulation. Nat. Commun. 15, 9109 (2024). https://doi.org/10.1038/s41467-024-53177-6
- J. Li, P. Gu, H. Pan, Z. Qiao, J. Wang et al., A facile yet versatile strategy to construct liquid hybrid energy-saving windows for strong solar modulation. Adv. Sci. 10(10), 2206044 (2023). https://doi.org/10.1002/advs.202206044
- W. Lv, M. Feng, X. Li, W. Liu, M. Lu et al., Summary review of spectral frequency division utilization of renewable radiant energy. J. Mater. Chem. A 12, 24839–24861 (2024). https://doi.org/10.1039/D4TA03430A
- W. Kort-Kamp, S. Kramadhati, A. Azad, M. Reiten, D. Dalvit, Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5(11), 4554–4560 (2018). https://doi.org/10.1021/acsphotonics.8b01026
- X. Xu, J. Gu, H. Zhao, X. Zhang, S. Dou et al., Passive and dynamic phase-change-based radiative cooling in outdoor weather. ACS Appl. Mater. Interfaces 14(12), 14313–14320 (2022). https://doi.org/10.1021/acsami.1c23401
- B. Xie, S. Zhang, W. Zhang, J. Zhao, L. Liu, Multistage smart radiator with gradient emittance based on phase change materials VO2/GST/IST. Appl. Phys. Lett. 124, 011701 (2024). https://doi.org/10.1063/5.0185406
- S. Liu, Y. Li, Y. Wang, K. Yu, B. Huang et al., Near-infrared-activated thermochromic perovskite smart windows. Adv. Sci. 9(14), 2106090 (2022). https://doi.org/10.1002/advs.202106090
- S. Liu, Y. Du, C. Tso, H. Lee, R. Cheng et al., Organic hybrid perovskite (MAPbI3-xClx) for thermochromic smart window with strong optical regulation ability, low transition temperature, and narrow hysteresis width. Adv. Funct. Mater. 31(26), 2010426 (2021). https://doi.org/10.1002/adfm.202010426
- X. Li, C. Liu, S. Feng, N. Fang, Broadband light management with thermochromic hydrogel microps for smart windows. Joule 3(1), 290–302 (2019). https://doi.org/10.1016/j.joule.2018.10.019
- M. Huang, C. Xue, Z. Bai, J. Cheng, Y. Wu et al., Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation. J. Energy Chem. 101, 175–190 (2025). https://doi.org/10.1016/j.jechem.2024.09.051
- L. Hu, C. Wang, H. Zhu, Y. Zhou, H. Li et al., Adaptive thermal management radiative cooling smart window with perfect near-infrared shielding. Small 20(30), 2306823 (2024). https://doi.org/10.1002/smll.202306823
- X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10, 11092–11100 (2022). https://doi.org/10.1039/D2TA01291J
- M. Dai, J. Zhao, Y. Zhang, H. Li, L. Zhang et al., Dual-responsive hydrogels with three-stage optical modulation for smart windows. ACS Appl. Mater. Interfaces 14(47), 53314–53322 (2022). https://doi.org/10.1021/acsami.2c16319
- C. Hong, B. Li, J. Zhang, Y. Li, J. Sun, Supramolecular polymer-based ionogels enable large-scale fabrication of stable smart windows with room-temperature closed-loop recyclability and self-healing capability. Adv. Funct. Mater. 34(23), 2313781 (2024). https://doi.org/10.1002/adfm.202313781
- Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
- Z. Cheng, L. Lei, B. Zhao, Y. Zhu, T. Yu et al., High performance reversible thermochromic composite films with wide thermochromic range and multiple colors based on micro/nanoencapsulated phase change materials for temperature indicators. Compos. Sci. Technol. 240, 110091 (2023). https://doi.org/10.1016/j.compscitech.2023.110091
- Y. Liu, Y. Wu, Y. Ma, P. Wang, B. Yu et al., Reversible thermochromic and heat storage coating for adaptive de/anti-icing and thermal regulation. Chem. Eng. J. 482, 148837 (2024). https://doi.org/10.1016/j.cej.2024.148837
- S. Saju, A. Puthirath, S. Wang, T. Tsafack, L. Beagle et al., Thermochromic polymer blends. Joule 8(9), 2696–2714 (2024). https://doi.org/10.1016/j.joule.2024.07.020
- C. Cao, B. Hu, G. Tu, X. Ji, Z. Li et al., Sputtering flexible VO2 films for effective thermal modulation. ACS Appl. Mater. Interfaces 14(24), 28105–28113 (2022). https://doi.org/10.1021/acsami.2c05482
- N. Shen, S. Chen, R. Huang, J. Huang, J. Li et al., Vanadium dioxide for thermochromic smart windows in ambient conditions. Mater. Today Energy 21, 100827 (2021). https://doi.org/10.1016/j.mtener.2021.100827
- M. Ono, K. Chen, W. Li, S. Fan, Self-adaptive radiative cooling based on phase change materials. Opt. Express 26(18), A777–A787 (2018). https://doi.org/10.1364/OE.26.00A777
- L. Mai, W. Chen, Q. Xu, J. Peng, Q. Zhu, Mo doped vanadium oxide nanotubes: microstructure and electrochemistry. Chem. Phys. Lett. 382(3–4), 307–312 (2003). https://doi.org/10.1016/j.cplett.2003.10.067
- C. Jiang, L. He, Q. Xuan, Y. Liao, J. Dai et al., Phase-change VO2-based thermochromic smart windows. Light Sci. Appl. 13, 255 (2024). https://doi.org/10.1038/s41377-024-01560-9
- G. Ulpiani, G. Ranzi, K. Shah, J. Feng, M. Santamouris, On the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcooling. Sol. Energy 209, 278–301 (2020). https://doi.org/10.1016/j.solener.2020.08.077
- M. Kats, S. Byrnes, R. Blanchard, M. Kolle, P. Genevet et al., Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 103, 101104 (2013). https://doi.org/10.1063/1.4820147
- K. Tang, K. Dong, J. Li, M. Gordon, F. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- M. Liu, X. Li, L. Li, L. Li, S. Zhao et al., Continuous photothermal and radiative cooling energy harvesting by VO2 smart coatings with switchable broadband infrared emission. ACS Nano 17(10), 9501–9509 (2023). https://doi.org/10.1021/acsnano.3c01755
- D. Kang, Y. Kim, M. Lee, Laser dynamic control of the thermal emissivity of a planar cavity structure based on a phase-change material. ACS Appl. Mater. Interfaces 16(4), 4925–4933 (2024). https://doi.org/10.1021/acsami.3c16162
- Y. Zhao, D. Fan, Q. Li, Flexible perovskite-based photonic stack device for adaptive thermal management. Mater. Des. 219, 110719 (2022). https://doi.org/10.1016/j.matdes.2022.110719
- S. Liu, Y. Li, Y. Wang, Y. Du, K. Yu et al., Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows. Nat. Commun. 15, 876 (2024). https://doi.org/10.1038/s41467-024-45047-y
- S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
- G. Chen, K. Wang, J. Yang, J. Huang, Z. Chen et al., Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates. Adv. Mater. 35(20), 2211716 (2023). https://doi.org/10.1002/adma.202211716
- A. Tittl, A. Michel, M. Schäferling, X. Yin, B. Gholipour et al., Plasmonic absorbers: a switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27(31), 4526 (2015). https://doi.org/10.1002/adma.201570207
- Y. Zhou, H. Feng, X. Li, P. Sun, L. Su et al., Tunable mid-infrared selective emitter with thermal management for infrared camouflage. Plasmonics 18, 2465–2473 (2023). https://doi.org/10.1007/s11468-023-01955-1
- Z. Tan, M. Wen, J. Guo, J. Chen, X. Wu et al., Ruthenium doped Ge2Sb2Te5 nanomaterial as fast speed phase-change materials with good thermal stability. Solid State Electron. 186, 108176 (2021). https://doi.org/10.1016/j.sse.2021.108176
- M. Hao, J. Li, S. Park, S. Moura, C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018). https://doi.org/10.1038/s41560-018-0243-8
- J. Wang, G. Li, D. Zhao, Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving. Energy 288, 129798 (2024). https://doi.org/10.1016/j.energy.2023.129798
- D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Radiative properties of thermochromic material with solar reflection films. Sol. Energy Mater. Sol. Cells 112, 52 (2013). https://doi.org/10.1016/j.solmat.2013.01.018
- Z. Fang, L. Ding, L. Li, K. Shuai, B. Cao et al., Thermal homeostasis enabled by dynamically regulating the passive radiative cooling and solar heating based on a thermochromic hydrogel. ACS Photonics 8(9), 2781–2790 (2021). https://doi.org/10.1021/acsphotonics.1c00967
- G. Xu, H. Xia, P. Chen, W. She, H. Zhang et al., Thermochromic hydrogels with dynamic solar modulation and regulatable critical response temperature for energy-saving smart windows. Adv. Funct. Mater. 32(5), 2109597 (2022). https://doi.org/10.1002/adfm.202109597
- K. Huang, Z. Huang, Y. Du, Y. Liang, J. Liu et al., Advances in radiative cooling materials for building energy efficiency: a decade of progress. J. Mater. Chem. A 12, 28682–28710 (2024). https://doi.org/10.1039/D4TA04942J
- M. Fu, Y. Yuan, X. Liu, Z. Sun, F. Hu et al., A thermosensitive ionic hydrogel for thermotropic smart windows with integrated thermoelectric energy harvesting capability. Adv. Funct. Mater. 35(1), 2412081 (2024). https://doi.org/10.1002/adfm.202412081
- C. Zhao, M. Guo, J. Mao, Y. Li, Y. Wu et al., Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chin. J. Polym. Sci. 41, 334–344 (2023). https://doi.org/10.1007/s10118-022-2854-6
- G. Li, J. Chen, Z. Yan, S. Wang, Y. Ke et al., Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance. Mater. Horiz. 10, 2004–2012 (2023). https://doi.org/10.1039/D3MH00057E
- Y. Zhou, X. Dong, Y. Mi, F. Fan, Q. Xu et al., Hydrogel smart windows. J. Mater. Chem. A 8, 10007–10025 (2020). https://doi.org/10.1039/D0TA00849D
- Y. Li, M. Xu, D. Wang, Z. Liu, W. Mao et al., Phase-changing NIPAM-AM/ATO hydrogels for thermochromic smart windows with highly adaptive solar modulation. Chem. Eng. J. 499, 156394 (2024). https://doi.org/10.1016/j.cej.2024.156394
- Q. Lei, W. Yu, G. Xie, Y. Li, C. Wu et al., Novel photothermochromic smart window based on PNIPAm-glass-MXene/PAM with high shield, fast response, and excellent stability. Sol. RRL 7(7), 2200990 (2023). https://doi.org/10.1002/solr.202200990
- Z. Yu, Y. Ma, L. Mao, Y. Lian, Y. Xiao et al., Bidirectional optical response hydrogel with adjustable human comfort temperature for smart windows. Mater. Horiz. 11, 207–216 (2024). https://doi.org/10.1039/D3MH01376F
- Z. Wang, J. Liang, D. Lei, C. Jiang, Z. Yang et al., Temperature-adaptive smart windows with passive transmittance and radiative cooling regulation. Appl. Energy 369, 123619 (2024). https://doi.org/10.1016/j.apenergy.2024.123619
- R. Sala, R. Gonçalves, E. Camargo, E. Leite, Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Sol. Energy Mater. Sol. Cells 186, 266 (2018). https://doi.org/10.1016/j.solmat.2018.06.037
- Q. Chang, Z. Shen, Z. Guo, C. Xue, N. Li et al., Hydroxypropylmethyl cellulose modified with carbon dots exhibits light-responsive and reversible optical switching. ACS Appl. Mater. Interfaces 13(10), 12375–12382 (2021). https://doi.org/10.1021/acsami.0c22300
- L. Zhang, H. Xia, F. Xia, Y. Du, Y. Wu et al., Energy-saving smart windows with HPC/PAA hybrid hydrogels as thermochromic materials. ACS Appl. Energy Mater. 4(9), 9783–9791 (2021). https://doi.org/10.1021/acsaem.1c01854
- N. Mohammad, Y. Zhang, W. Xu, S. Aranke, D. Carne et al., Highly tunable cellulosic hydrogels with dynamic solar modulation for energy-efficient windows. Small 20(27), 2303706 (2024). https://doi.org/10.1002/smll.202303706
- F. Chen, X. Wu, G. Lu, J. Nie, X. Zhu, Thermochromic hydrogels with adjustable transition behavior for smart windows. ACS Appl. Mater. Interfaces 16(16), 21013–21023 (2024). https://doi.org/10.1021/acsami.3c19272
- Z. Lin, Z. Yang, L. Gao, Engineering a polyvinyl butyral hydrogel as a thermochromic interlayer for energy-saving windows. Mater. Horiz. 11, 3127–3142 (2024). https://doi.org/10.1039/D4MH00158C
- T. Ho, B. Febriansyah, N. Yantara, S. Pethe, D. Accoto et al., Inducing thermoreversible optical transitions in urethane-acrylate systems via ionic liquid incorporation for stretchable smart devices. J. Mater. Chem. A 9, 13615–13624 (2021). https://doi.org/10.1039/D1TA02635F
- Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), 2008486 (2021). https://doi.org/10.1002/adma.202008486
- L. Chen, C. Zhao, X. Duan, J. Zhou, M. Liu, Finely tuning the lower critical solution temperature of ionogels by regulating the polarity of polymer networks and ionic liquids. CCS Chem. 4(4), 1386–1396 (2022). https://doi.org/10.31635/ccschem.021.202100855
- Y. Liu, Y. Zhang, T. Chen, Z. Jin, W. Feng et al., A stable and Self-Healing thermochromic polymer coating for all weather thermal regulation. Adv. Funct. Mater. 33(49), 2307240 (2023). https://doi.org/10.1002/adfm.202307240
- B. Li, F. Xu, T. Guan, Y. Li, J. Sun, Self-adhesive self-healing thermochromic ionogels for smart windows with excellent environmental and mechanical stability, solar modulation, and antifogging capabilities. Adv. Mater. 35(20), 2211456 (2023). https://doi.org/10.1002/adma.202211456
- B. Liu, J. Wu, C. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-in-one coating for adaptive thermoregulation. Adv. Mater. 36(31), 2400745 (2024). https://doi.org/10.1002/adma.202400745
- H. Zhang, J. Huang, D. Fan, Switchable radiative cooling from temperature-responsive thermal resistance modulation. ACS Appl. Energy Mater. 5(5), 6003–6010 (2022). https://doi.org/10.1021/acsaem.2c00421
- W. Meng, A. Kragt, Y. Gao, E. Brembilla, X. Hu et al., Scalable photochromic film for solar heat and daylight management. Adv. Mater. 36(5), 2304910 (2024). https://doi.org/10.1002/adma.202304910
- X. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
- Z. Zhao, H. Li, Y. Peng, J. Hu, F. Sun, Hierarchically programmed meta-louver fabric for adaptive personal thermal management. Adv. Funct. Mater. 34(14), 2404721 (2024). https://doi.org/10.1002/adfm.202404721
- Y. Wu, Y. Wang, S. Zhang, S. Wu, Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 15(10), 15720–15729 (2021). https://doi.org/10.1021/acsnano.1c05612
- R. Ligon, K. Mcgraw, A chorus of color: hierarchical and graded information content of rapid color change signals in chameleons. Behav. Ecol. 29(5), 1075–1087 (2018). https://doi.org/10.1093/beheco/ary076
- L. Xie, X. Wang, S. Liang, X. Zou, S. Sun et al., “Change according to the situation”–color-accommodative nature-skin-derived thermochromic membrane for active all-season thermal management. Adv. Funct. Mater. 34(45), 2405582 (2024). https://doi.org/10.1002/adfm.202405582
- Q. Zhang, Y. Wang, Y. Lv, S. Yu, R. Ma, Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. U. S. A. 119(38), e2207353119 (2022). https://doi.org/10.1073/pnas.2207353119
- Y. Yin, P. Sun, Y. Zeng, M. Yang, S. Gao et al., A colored temperature-adaptive cloak for year-round building energy saving. Adv. Energy Mater. 14(37), 2402202 (2024). https://doi.org/10.1002/aenm.202402202
- P. Aklujkar, B. Kandasubramanian, A review of microencapsulated thermochromic coatings for sustainable building applications. J. Coat. Technol. Res. 18, 19–37 (2021). https://doi.org/10.1007/s11998-020-00396-3
- W. Cai, L. Qi, T. Cui, B. Lin, M. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2024). https://doi.org/10.1002/adfm.202412902
- J. Chai, Z. Kang, Y. Yan, L. Lou, Y. Zhou et al., Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation. Cell Rep. Phys. Sci. 3(7), 100958 (2022). https://doi.org/10.1016/j.xcrp.2022.100958
- J. Li, X. Lu, Y. Zhang, X. Wen, K. Yao et al., Dynamic refractive index-matching for adaptive thermoresponsive smart windows. Small 18(28), 2201322 (2022). https://doi.org/10.1002/smll.202201322
- Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
- M. Yang, H. Zhong, T. Li, B. Wu, Z. Wang et al., Phase change material enhanced radiative cooler for temperature-adaptive thermal regulation. ACS Nano 17(2), 1693–1700 (2023). https://doi.org/10.1021/acsnano.2c11916
- P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
- M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
- M. Qin, F. Xiong, W. Aftab, J. Shi, H. Han et al., Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling. iScience 25(7), 104584 (2022). https://doi.org/10.1016/j.isci.2022.104584
- Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhan et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202416111
- P. Zhang, Y. Hao, H. Shi, J. Lu, Y. Liu et al., Highly thermally conductive and structurally ultra-stable graphitic films with seamless heterointerfaces for extreme thermal management. Nano-Micro Lett. 16, 58 (2024). https://doi.org/10.1007/s40820-023-01277-1
- H. Liu, M. Jiang, S. Geng, X. Liu, Modulation of an Si-O-Si structure in uniformly photochromic microcapsules for solar heat and daylight management. Chem. Eng. J. 490, 151545 (2024). https://doi.org/10.1016/j.cej.2024.151545
- H. Zhao, X. Qi, Y. Ma, X. Sun, X. Liu et al., Wearable sunlight-triggered bimorph textile actuators. Nano Lett. 21(19), 8126–8134 (2021). https://doi.org/10.1021/acs.nanolett.1c02578
- T. Ube, J. Imai, M. Yoshida, T. Fujisawa, H. Hasebe et al., Sunlight-driven smart windows with polymer/liquid crystal composites for autonomous control of optical properties. J. Mater. Chem. C 10, 12789–12794 (2022). https://doi.org/10.1039/D2TC02754B
- Q. Gong, H. Wong, J. Chen, P. Li, L. Lu, Solar-driven adaptive radiative cooling coating with polymer carbon dots-enhanced photoluminescence for urban skin. Chem. Eng. J. 494, 153262 (2024). https://doi.org/10.1016/j.cej.2024.153262
- Y. Yang, J. Wang, D. Li, J. Yang, M. Fang et al., Tunable photoresponsive behaviors based on triphenylamine derivatives: the pivotal role of π-conjugated structure and corresponding application. Adv. Mater. 33(43), 2104002 (2021). https://doi.org/10.1002/adma.202104002
- X. Li, M. Liu, K. Chen, L. Li, G. Pei et al., Adaptive fabric with emissivity regulation for thermal management of humans. Nanophotonics 13(17), 3067–3075 (2024). https://doi.org/10.1515/nanoph-2023-0930
- X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7(51), eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
- J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
- Z. Szelényi, S. Komoly, Thermoregulation: from basic neuroscience to clinical neurology, part 2. Temperature 6(1), 7–10 (2019). https://doi.org/10.1080/23328940.2018.1541680
- M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
- M. Morabito, A. Messeri, A. Crisci, L. Pratali, M. Bonafede et al., Heat warning and public and workers’ health at the time of COVID-19 pandemic. Sci. Total. Environ. 738, 140347 (2020). https://doi.org/10.1016/j.scitotenv.2020.140347
- X. Han, Y. Huang, J. Wang, G. Zhang, T. Li et al., Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect. Compos. Part B Eng. 229, 109458 (2022). https://doi.org/10.1016/j.compositesb.2021.109458
- H. Li, W. Zhang, Q. Ding, X. Jin, Q. Ke et al., Facile strategy for fabrication of flexible, breathable, and washable piezoelectric sensors via welding of nanofibers with multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 11(41), 38023–38030 (2019). https://doi.org/10.1021/acsami.9b10886
- Q. Zhang, H. Cheng, S. Zhang, Y. Li, Z. Li et al., Advancements and challenges in thermoregulating textiles: smart clothing for enhanced personal thermal management. Chem. Eng. J. 488, 151040 (2024). https://doi.org/10.1016/j.cej.2024.151040
- R. Liu, Y. Wang, W. Fan, J. Zou, X. Yu et al., Adaptive dynamic smart textiles for personal thermal-moisture management. Eur. Polym. J. 206, 112777 (2024). https://doi.org/10.1016/j.eurpolymj.2024.112777
- M. Chen, Y. Liu, X. Zhao, Emerging passive thermoregulatory textiles through tailoring different heat transfer routes. Text. Res. J. 93(13–14), 3414 (2023). https://doi.org/10.1177/00405175231154018
- P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2024). https://doi.org/10.1002/inf2.12629
- T. Xue, X. Chen, C. Wang, Y. Yin, Dual-Mode cellulose acetate@Al2O3/MWCNTs Janus fabric with radiative cooling and solar heating for personal thermal management. Chem. Eng. J. 500, 156713 (2024). https://doi.org/10.1016/j.cej.2024.156713
- Y. Liu, L. Chen, W. Li, J. Pu, Z. Wang et al., Scalable production of functional fibers with nanoscale features for smart textiles. ACS Nano 18(43), 29394–29420 (2024). https://doi.org/10.1021/acsnano.4c10111
- N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
- K. Zhu, H. Yao, J. Song, Q. Liao, S. He et al., Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 10(41), eadr2062 (2024). https://doi.org/10.1126/sciadv.adr2062
- Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
- H. Yuan, R. Liu, S. Cheng, W. Li, M. Ma et al., Scalable fabrication of dual-function fabric for zero-energy thermal environmental management through multiband, synergistic, and asymmetric optical modulations. Adv. Mater. 35(18), 2209897 (2023). https://doi.org/10.1002/adma.202209897
- Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in Winter and Cool in Summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
- X. Li, W. Xie, C. Sui, P. Hsu, Multispectral thermal management designs for net-zero energy buildings. ACS Mater. Lett. 2(12), 1624–1643 (2020). https://doi.org/10.1021/acsmaterialslett.0c00322
- M. Aliyariyan, D. Fathi, M. Eskandari, M. Mohammadi, Simulation and investigation of perovskite/nano-pyramidal GeSe solar cell: realizing high efficiency by controllable light trapping. Sol. Energy 214, 310–318 (2021). https://doi.org/10.1016/j.solener.2020.11.063
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- Z. Ruan, Y. Zhu, Y. Yuan, H. Tan, A theoretical approach on estimating temperature-dependent optical properties of two typical molten alkali chloride salts (KCl and NaCl). Int. J. Therm. Sci. 187, 108153 (2023). https://doi.org/10.1016/j.ijthermalsci.2023.108153
- L. Zhao, X. Lee, R. Smith, K. Oleson, Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014). https://doi.org/10.1038/nature13462
- Q. Wang, Z. Na, L. Yu, S. Dai, M. Nazeeruddin et al., Smart photovoltaic windows for next-generation energy-saving buildings. Adv. Sci. 11(44), 2407177 (2024). https://doi.org/10.1002/advs.202407177
- D. Cao, K. Xu, Q. Huang, C. Tam, S. Chen et al., Exceptionally prolonged extreme heat waves over South China in early summer 2020: the role of warming in the tropical Indian Ocean. Atmos. Res. 278, 106335 (2022). https://doi.org/10.1016/j.atmosres.2022.106335
- E. Bozonnet, M. Doya, F. Allard, Cool roofs impact on building thermal response: a French case study. Energy Build. 43(11), 3006–3012 (2011). https://doi.org/10.1016/j.enbuild.2011.07.017
- G. Xiao, H. Li, Z. Yu, H. Niu, Y. Yao, Highly Thermoconductive, strong graphene-based composite films by eliminating nanosheets wrinkles. Nano-Micro Lett. 16, 17 (2024). https://doi.org/10.1007/s40820-023-01252-w
- X. Cao, X. Dai, J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 128, 198–213 (2016). https://doi.org/10.1016/j.enbuild.2016.06.089
- J. Testa, M. Krarti, A review of benefits and limitations of static and switchable cool roof systems. Renew. Sust. Energ. Rev. 77, 451–460 (2017). https://doi.org/10.1016/j.rser.2017.04.030
- F. Favoino, M. Overend, Q. Jin, The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Appl. Energy 156, 1–15 (2015). https://doi.org/10.1016/j.apenergy.2015.05.065
- A. Butt, S. De Vries, R. Loonen, J. Hensen, A. Stuiver et al., Investigating the energy saving potential of thermochromic coatings on building envelopes. Appl. Energy 291, 116788 (2021). https://doi.org/10.1016/j.apenergy.2021.116788
- Z. Xiao, C. Chen, S. Liu, C. Liu, W. Liu et al., Endowing durable icephobicity by combination of a rough powder coating and a superamph
References
C. Lesk, P. Rowhani, N. Ramankutty, Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016). https://doi.org/10.1038/nature16467
X. Liu, P. Li, Y. Liu, C. Zhang, M. He et al., Hybrid passive cooling for power equipment enabled by metal-organic framework. Adv. Mater. 36(45), 2409473 (2024). https://doi.org/10.1002/adma.202409473
L. Cai, A. Song, W. Li, P. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
Y. Xu, V. Ramanathan, D. Victor, Global warming will happen faster than we think. Nature 564, 30–32 (2018). https://doi.org/10.1038/d41586-018-07586-5
D. Easterling, G. Meehl, C. Parmesan, S. Changnon, T. Karl et al., Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000). https://doi.org/10.1126/science.289.5487.2068
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4(4), 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4, 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
Y. Fang, G. Chen, M. Bick, J. Chen, Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021). https://doi.org/10.1039/D1CS00003A
E. Benz, S. Trück, Modeling the price dynamics of CO2 emission allowances. Energy Econ. 31(1), 4–15 (2009). https://doi.org/10.1016/j.eneco.2008.07.003
I. Staffell, S. Pfenninger, N. Johnson, A global model of hourly space heating and cooling demand at multiple spatial scales. Nat. Energy 8, 1328–1344 (2023). https://doi.org/10.1038/s41560-023-01341-5
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475
C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
X. Song, H. Gong, H. Li, M. Zhang, L. Jiang et al., Molecularly and structurally designed polyimide nanofiber radiative cooling films for spacecraft thermal management. Adv. Funct. Mater. 35(2), 2313191 (2024). https://doi.org/10.1002/adfm.202413191
V. Barbarossa, J. Bosmans, N. Wanders, H. King, M. Bierkens et al., Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021). https://doi.org/10.1038/s41467-021-21655-w
R. Ma, D. Li, C. Xu, J. Yang, J. Huang et al., Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting. Adv. Colloid Interface Sci. 332, 103252 (2024). https://doi.org/10.1016/j.cis.2024.103252
R. Vilà, I. Martorell, M. Medrano, A. Castell, Adaptive covers for combined radiative cooling and solar heating. A review of existing technology and materials. Sol. Energy Mater Sol. Cells 230, 111275 (2021). https://doi.org/10.1016/j.solmat.2021.111275
D. Steel, C. DesRoches, K. Mintz-Woo, Climate change and the threat to civilization. Proc. Natl. Acad. Sci. U.S.A. 119(42), e2210525119 (2022). https://doi.org/10.1073/pnas.2210525119
X. Li, B. Sun, C. Sui, A. Nandi, H. Fang et al., Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat. Commun. 11, 6101 (2020). https://doi.org/10.1038/s41467-020-19790-x
C. Lan, J. Meng, C. Pan, L. Jia, X. Pu, Hierarchical porous dual-mode thermal management fabrics achieved by regulating solar and body radiations. Mater. Horiz. 11, 1760–1768 (2024). https://doi.org/10.1039/D3MH01938A
Y. Zhang, D. Wu, S. Liao, D. Chen, A. Mensah et al., A multi-mode cellulose acetate/MXene Janus film with structure enhanced self-reflection, selective emission and absorption for cooling and heating. Compos. Part A Appl. Sci. Manuf. 172, 107622 (2023). https://doi.org/10.1016/j.compositesa.2023.107622
X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen et al., Personal thermal management by thermally conductive composites: a review. Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595
X. Zhao, T. Li, H. Xie, H. Liu, L. Wang et al., A solution-processed radiative cooling glass. Science 382(6671), 684–691 (2023). https://doi.org/10.1126/science.adi2224
P. Hsu, A. Song, P. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
J. Li, Y. Jiang, J. Liu, L. Wu, N. Xu et al., A photosynthetically active radiative cooling film. Nat. Sustain. 7, 786–795 (2024). https://doi.org/10.1038/s41893-024-01350-6
H. Wang, W. Zhao, Z. Zhang, W. Hou, L. Yin et al., Synergizing electron and ion transports of Ti3C2TX MXene fiber via dot-sheet heterostructure and covalent Ti-C-Ti cross-linking for efficient charge storage and thermal management. Adv. Funct. Mater. 34(48), 2408508 (2024). https://doi.org/10.1002/adfm.202408508
Z. Yan, H. Zhai, D. Fan, Q. Li, Biological optics, photonics and bioinspired radiative cooling. Prog. Mater. Sci. 144, 101291 (2024). https://doi.org/10.1016/j.pmatsci.2024.101291
Y. Du, Y. Chen, X. Yang, J. Liu, Y. Liang et al., Hybrid passive cooling: towards the next breakthrough of radiative sky cooling technology. J. Mater. Chem. A 12, 21490–21514 (2024). https://doi.org/10.1039/D4TA03122A
P. Lan, C. Hwang, T. Chen, T. Wang, H. Chen et al., Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34(52), 2410285 (2024). https://doi.org/10.1002/adfm.202410285
L. Qi, W. Cai, J. Li, T. Cui, L. Chen et al., Advanced Janus coatings for thermal management and synergistic flame retardancy in polyester fabric. J. Mater. Chem. A 12, 24934–24946 (2024). https://doi.org/10.1039/D4TA04320K
X. Liu, P. Li, J. Chen, P. Jiang, Y. Mai et al., Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Sci. Bull. 67(19), 1991–2000 (2022). https://doi.org/10.1016/j.scib.2022.09.014
X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
L. Xie, X. Wang, C. Wei, S. Sun, S. Liang et al., Nano-engineered versatile Janus natural-skin with sandwich structure for wearable all-season personal thermal management. Compos. Part B Eng. 281, 111573 (2024). https://doi.org/10.1016/j.compositesb.2024.111573
M. Huang, M. Yang, X. Guo, C. Xue, H. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
K. Lin, J. Chen, A. Pan, H. Li, Y. Fu et al., Beyond the static: dynamic radiative cooling materials and applications. Mater. Today Energy 44, 101647 (2024). https://doi.org/10.1016/j.mtener.2024.101647
J. Wang, G. Tan, R. Yang, D. Zhao, Materials, structures, and devices for dynamic radiative cooling. Cell Rep. Phys. Sci. 3(12), 101198 (2022). https://doi.org/10.1016/j.xcrp.2022.101198
J. Wang, S. Sheng, Z. He, R. Wang, Z. Pan et al., Self-powered flexible electrochromic smart window. Nano Lett. 21(23), 9976–9982 (2021). https://doi.org/10.1021/acs.nanolett.1c03438
M. Wang, X. Xing, I. Perepichka, Y. Shi, D. Zhou et al., Electrochromic smart windows can achieve an absolute private state through thermochromically engineered electrolyte. Adv. Energy Mater. 9(21), 1900433 (2019). https://doi.org/10.1002/aenm.201900433
S. Lee, S. Lee, H. Kang, S. Nahm, B. Kim et al., Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chem. Eng. J. 416, 129028 (2021). https://doi.org/10.1016/j.cej.2021.129028
D. Wang, G. Chen, J. Fu, Multifunctional thermochromic smart windows for building energy saving. J. Mater. Chem. A 12, 12960–12982 (2024). https://doi.org/10.1039/D4TA01767F
H. Peng, R. Fu, Y. Zhao, X. Lu, H. Zhao et al., Dynamically tunable thermochromic smart windows for building energy conservation. ACS Mater. Lett. 6(8), 3404–3413 (2024). https://doi.org/10.1021/acsmaterialslett.4c01210
G. Xu, Y. Lu, X. Zhou, N. Moloto, J. Liu et al., Thermochromic hydrogel-based energy efficient smart windows: fabrication, mechanisms, and advancements. Mater. Horiz. 11, 4867–4884 (2024). https://doi.org/10.1039/D4MH00903G
Z. Zhang, L. Zhang, Y. Zhou, Y. Cui, Z. Chen et al., Thermochromic energy efficient windows: fundamentals, recent advances, and perspectives. Chem. Rev. 123(11), 7025–7080 (2023). https://doi.org/10.1021/acs.chemrev.2c00762
L. Xie, X. Wang, X. Zou, Z. Bai, S. Liang et al., Engineering self-adaptive multi-response thermochromic hydrogel for energy-saving smart windows and wearable temperature-sensing. Small 19(52), 2304321 (2023). https://doi.org/10.1002/smll.202304321
Y. Zhao, Q. Liang, S. Li, Y. Chen, X. Liu et al., Thermal emission manipulation enabled by nano-kirigami structures. Small 20(3), 2305171 (2024). https://doi.org/10.1002/smll.202305171
X. Liu, Y. Tian, F. Chen, A. Ghanekar, M. Antezza et al., Continuously variable emission for mechanical deformation induced radiative cooling. Commun. Mater. 1, 95 (2020). https://doi.org/10.1038/s43246-020-00098-8
Z. Chen, Q. Peng, Y. Hu, Z. Liu, X. Zhao et al., Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices. J. Mater. Sci. Technol. 167, 152–160 (2023). https://doi.org/10.1016/j.jmst.2023.05.050
J. Koh, X. Zhang, S. Ling, X. Liu, L. Zhou et al., A smart self-healing material with reversible optical, mechanical, and electrical transition induced by humidity and temperature. Adv. Mater. Technol. 9(16), 2400214 (2024). https://doi.org/10.1002/admt.202400214
Y. Zhou, W. Meng, X. Cao, J. Wang, L. Jiang, Wrinkled structure and morphology transition of poly (vinylidene fluoride cohexafluoropropylene films for smart windows. ACS Appl. Nano Mater. 6(22), 21236–21244 (2023). https://doi.org/10.1021/acsanm.3c04430
B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Radiative cooling: a review of fundamentals, materials, applications, and prospects. Appl. Energy 236, 489–513 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
C. Wang, H. Chen, Z. Jiang, X. Zhang, Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects. Energy 263, 125735 (2023). https://doi.org/10.1016/j.energy.2022.125735
Z. Cheng, F. Wang, D. Gong, H. Liang, Y. Shuai, Low-cost radiative cooling blade coating with ultrahigh visible light transmittance and emission within an “atmospheric window.” Sol. Energy Mater. Sol. Cells 213, 110563 (2020). https://doi.org/10.1016/j.solmat.2020.110563
Y. Feng, C. Wang, Discontinuous finite element method applied to transient pure and coupled radiative heat transfer. Int. Commun. Heat Mass Transf. 122, 105156 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105156
R. Drake, J. Gordon, Mie scattering. Am. J. Phys. 53, 955–962 (1985). https://doi.org/10.1119/1.14011
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
M. Feng, X. Bu, J. Yang, D. Li, Z. Zhang et al., Review: smart windows based on photonic crystals. J. Mater. Sci. 55, 8444–8463 (2020). https://doi.org/10.1007/s10853-020-04460-6
H. Zhai, D. Fan, Q. Li, Dynamic radiation regulations for thermal comfort. Nano Energy 100, 107435 (2022). https://doi.org/10.1016/j.nanoen.2022.107435
X. Wang, Y. Lu, D. Yang, Z. Zhong, Y. Zhao et al., Enhanced electro-optical properties of polymer dispersed liquid crystals doped with functional nanofibers for applications of efficient smart windows and advanced anti-counterfeiting. Chem. Eng. J. 497, 155675 (2024). https://doi.org/10.1016/j.cej.2024.155675
Y. Zhai, Y. Ma, S. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
X. Yang, S. Wang, D. Zhang, J. Yu, Theoretical investigation of two ideal radiative cooling materials and radiative sky water-cooling module with ideal selective radiative materials. Energy Build. 323, 114768 (2024). https://doi.org/10.1016/j.enbuild.2024.114768
Y. Dong, Y. Zou, X. Li, F. Wang, Z. Cheng et al., Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application. Appl. Energy 344, 121273 (2023). https://doi.org/10.1016/j.apenergy.2023.121273
X. Shi, J. Song, Z. Cheng, H. Liang, Y. Dong et al., Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency. Renew. Energ. 207, 436–446 (2023). https://doi.org/10.1016/j.renene.2023.03.024
X. Zhang, Z. Cheng, D. Yang, Y. Dong, X. Shi et al., Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements. ACS Photonics 10(5), 1624–1632 (2023). https://doi.org/10.1021/acsphotonics.3c00241
W. Zha, Y. Zhu, B. Ma, J. Yu, P. Ghosh et al., Nonvolatile high-contrast whole long-wave infrared emissivity switching based on In3SbTe2. ACS Photonics 10(7), 2165–2172 (2022). https://doi.org/10.1021/acsphotonics.2c00714
M. Yoo, K. Pyun, Y. Jung, M. Lee, J. Lee et al., Switchable radiative cooling and solar heating for sustainable thermal management. Nanophotonics 13(5), 543–561 (2024). https://doi.org/10.1515/nanoph-2023-0627
P. Berdahl, R. Fromberg, The thermal radiance of clear skies. Sol. Energy 29(4), 299 (1982). https://doi.org/10.1016/0038-092X(82)90245-6
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
J. Chai, J. Fan, Solar and thermal radiation-modulation materials for building applications. Adv. Energy Mater. 13(1), 2202932 (2023). https://doi.org/10.1002/aenm.202202932
P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
X. Xue, M. Qiu, Y. Li, Q. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), 1906751 (2020). https://doi.org/10.1002/adma.201906751
X. Wu, J. Li, F. Xie, X. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
X. Li, C. Chen, Z. Li, P. Yi, H. Zou et al., Inter-skeleton conductive routes tuning multifunctional conductive foam for electromagnetic interference shielding, sensing and thermal management. Nano-Micro Lett. 17, 52 (2025). https://doi.org/10.1007/s40820-024-01540-z
J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17, 14 (2025). https://doi.org/10.1007/s40820-024-01510-5
H. Dolatkhah, S. Salimi, A. Khorashad, S. Haseli, The entropy production for thermal operations. Sci. Rep. 10, 9757 (2020). https://doi.org/10.1038/s41598-020-66416-9
T. Basak, R. Anandalakshmi, S. Roy, I. Pop, Role of entropy generation on thermal management due to thermal convection in porous trapezoidal enclosures with isothermal and non-isothermal heating of wall. Int. J. Heat Mass Transf. 67, 810–828 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.019
S. Giordano, Entropy production and Onsager reciprocal relations describing the relaxation to equilibrium in stochastic thermodynamics. Phys. Rev. E 103, 052116 (2021). https://doi.org/10.1103/PhysRevE.103.052116
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
A. Rico, V. Ovejas, A. Cuadras, Analysis of energy and entropy balance in a residential building. J. Clean. Prod. 333, 130145 (2022). https://doi.org/10.1016/j.jclepro.2021.130145
S. Nadarajah, M. Kebe, Explicit expressions for most common entropies. Entropy 25(3), 534 (2023). https://doi.org/10.3390/e25030534
H. Li, D. Feng, Q. Guo, S. Lu, Z. Ma et al., Interfacial wrinkling structures based on a double cross-linking strategy enable a dual-mode optical information encryption. ACS Appl. Mater. Interfaces 16(32), 43006–43015 (2024). https://doi.org/10.1021/acsami.4c09255
L. Zhang, D. Li, X. Li, B. Wang, G. Xu et al., Further explore on the behaviors of IR electrochromism of a double layer constructed by proton acid-doped polyaniline film and ITO layer. Dyes Pigments 170, 107570 (2019). https://doi.org/10.1016/j.dyepig.2019.107570
L. Zhang, Y. Du, F. Xia, Y. Gao, Two birds with one stone: a novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows. Chem. Eng. J. 455, 140849 (2023). https://doi.org/10.1016/j.cej.2022.140849
T. Wang, S. Zhang, Q. Zhu, J. Zhang, Y. Zhang et al., A trilayer structure with surface binary microsphere array for radiative cooling and heating regulation. ACS Photonics 11(7), 2815–2823 (2024). https://doi.org/10.1021/acsphotonics.4c00833
J. Huang, X. Zhang, X. Yu, G. Tang, X. Wang et al., Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell ps. Renew. Energ. 224, 120208 (2024). https://doi.org/10.1016/j.renene.2024.120208
Y. Liu, Y. Tian, X. Liu, F. Chen, A. Caratenuto et al., Intelligent regulation of VO2-PDMS-driven radiative cooling. Appl. Phys. Lett. 120, 171704 (2022). https://doi.org/10.1063/5.0089353
N. Sudhakaran, M. Abraham, P. Parvathy, S. Das, S. Sahoo, Flexible and thermoresponsive AEMR-pNIPAM/Cs0. 33WO3 composite hydrogel film with NIR shielding potential for smart windows and smart curtains. Chem. Eng. J. 490, 151603 (2024). https://doi.org/10.1016/j.cej.2024.151603
K. Shi, Z. Liu, C. Yang, X. Li, Y. Sun et al., Novel biocompatible thermoresponsive poly (N-vinyl caprolactam)/clay nanocomposite hydrogels with macroporous structure and improved mechanical characteristics. ACS Appl. Mater. Interfaces 9(26), 21979–21990 (2017). https://doi.org/10.1021/acsami.7b04552
Z. Xu, S. Wang, X. Hu, J. Jiang, X. Sun et al., Sunlight-induced photo-thermochromic supramolecular nanocomposite hydrogel film for energy-saving smart window. Sol. RRL 2(11), 1800204 (2018). https://doi.org/10.1002/solr.201800204
Y. Sheng, Q. Gui, Y. Zhang, X. Yang, F. Xing et al., Lead-free perovskites with photochromism and reversed thermochromism for repeatable information writing and erasing. Adv. Funct. Mater. 34(42), 2406995 (2024). https://doi.org/10.1002/adfm.202406995
Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12(24), 27241–27248 (2020). https://doi.org/10.1021/acsami.0c05803
B. Zhao, M. Hu, Q. Xuan, T. Kwan, Y. Dabwan et al., Tunable thermal management based on solar heating and radiative cooling. Sol. Energy Mater. Sol. Cells 235, 111457 (2022). https://doi.org/10.1016/j.solmat.2021.111457
Y. Ke, Y. Li, L. Wu, S. Wang, R. Yang et al., On-demand solar and thermal radiation management based on switchable interwoven surfaces. ACS Energy Lett. 7(5), 1758–1763 (2022). https://doi.org/10.1021/acsenergylett.2c00419
R. Ito, S. Lee, Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades. Appl. Energy 359, 122711 (2024). https://doi.org/10.1016/j.apenergy.2024.122711
X. Guan, Y. Zhu, B. Zhang, X. Sun, M. Abosheasha et al., Shutters-inspired metal ions coordination hydrogel strain/pressure sensor for joint behavior evaluation and flatfeet correction. Chem. Eng. J. 489, 151353 (2024). https://doi.org/10.1016/j.cej.2024.151353
S. Tao, J. Han, Y. Xu, Z. Fang, Y. Ni et al., Mechanically switchable multifunctional device for regulating passive radiative cooling and solar heating. ACS Appl. Mater. Interfaces 15(13), 17123–17133 (2023). https://doi.org/10.1021/acsami.2c21961
Z. Yang, Y. Jia, J. Zhang, Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl. Mater. Interfaces 14(21), 24755–24765 (2022). https://doi.org/10.1021/acsami.2c03513
Y. Zhang, C. Zhou, L. Qu, H. Yi, Active control of near-field radiative heat transfer through nonreciprocal graphene surface plasmons. Appl. Phys. Lett. 116, 151101 (2020). https://doi.org/10.1063/1.5145224
K. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
M. Blees, A. Barnard, P. Rose, S. Roberts, K. Mcgill et al., Graphene kirigami. Nature 524, 204–207 (2015). https://doi.org/10.1038/nature14588
X. Xia, A. Afshar, H. Yang, C. Portela, D. Kochmann et al., Electrochemically reconfigurable architected materials. Nature 573, 205–213 (2019). https://doi.org/10.1038/s41586-019-1538-z
C. Xu, G. Stiubianu, A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
F. Zhao, M. Wang, Z. Huang, M. Zhu, C. Chen et al., Bio-inspired mechanically responsive smart windows for visible and near-infrared multiwavelength spectral modulation. Adv. Mater. 36(40), 2408192 (2024). https://doi.org/10.1002/adma.202408192
H. Chen, G. Chang, T. Lee, S. Min, S. Nam et al., Compression-sensitive smart windows: inclined pores for dynamic transparency changes. Nat. Commun. 15, 8074 (2024). https://doi.org/10.1038/s41467-024-52305-6
H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32(29), 2000870 (2020). https://doi.org/10.1002/adma.202000870
H. Fang, W. Xie, X. Li, K. Fan, Y. Lai et al., A triple-mode midinfrared modulator for radiative heat management of objects with various emissivity. Nano Lett. 21(9), 4106–4114 (2021). https://doi.org/10.1021/acs.nanolett.1c01147
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
X. Li, X. Sheng, Y. Fang, X. Hu, S. Gong et al., Wearable Janus-type film with integrated all-season active/passive thermal management, thermal camouflage, and ultra-high electromagnetic shielding efficiency tunable by origami process. Adv. Funct. Mater. 33(18), 2212776 (2023). https://doi.org/10.1002/adfm.202212776
H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh et al., Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21(9), 3879–3886 (2021). https://doi.org/10.1021/acs.nanolett.1c00400
N. Guo, C. Shi, B. Sheldon, H. Yan, M. Chen, A mechanical–optical coupling design on solar and thermal radiation modulation for thermoregulation. J. Mater. Chem. A 12, 17520–17528 (2024). https://doi.org/10.1039/D4TA03388D
S. Zeng, K. Shen, Y. Liu, A. Chooi, A. Smith et al., Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Mater. Today 45, 44–53 (2021). https://doi.org/10.1016/j.mattod.2020.12.001
Z. Zhou, Y. Fang, X. Wang, E. Yang, R. Liu et al., Synergistic modulation of solar and thermal radiation in dynamic energy-efficient windows. Nano Energy 93, 106865 (2022). https://doi.org/10.1016/j.nanoen.2021.106865
S. Lee, J. Seo, S. Kim, J. Park, H. Jin et al., Reversible solar heating and radiative cooling devices via mechanically guided assembly of 3D macro/microstructures. Adv. Mater. 36(39), 2400930 (2024). https://doi.org/10.1002/adma.202400930
E. Leung, M. Colorado Escobar, G. Stiubianu, S. Jim, A. Vyatskikh et al., A dynamic thermoregulatory material inspired by squid skin. Nat. Commun. 10(1), 1947 (2019). https://doi.org/10.1038/s41467-019-09589-w
Y. Lv, F. Cai, X. Zhao, X. Zhu, F. Wei et al., Bioinspired microstructured Janus bioadhesive for the prevention of abdominal and intrauterine adhesions. Adv. Funct. Mater. 34(21), 2314402 (2024). https://doi.org/10.1002/adfm.202314402
B. Dai, X. Li, T. Xu, X. Zhang, Radiative cooling and solar heating Janus films for personal thermal management. ACS Appl. Mater. Interfaces 14(16), 18877–18883 (2022). https://doi.org/10.1021/acsami.2c01370
Y. Zhang, Q. Xie, J. Pan, C. Ma, G. Zhang, Strong-adhesion and nonfouling self-generating zwitterionic Janus hydrogel paint. Chem. Eng. J. 485, 149959 (2024). https://doi.org/10.1016/j.cej.2024.149959
Z. Cui, Y. Zhang, Z. Zhang, B. Liu, Y. Chen et al., Durable Janus membrane with on-demand mode switching fabricated by femtosecond laser. Nat. Commun. 15, 1443 (2024). https://doi.org/10.1038/s41467-024-45926-4
A. Mcglasson, E. Morgenthaler, L. Bradley, T. Russell, On the interfacial assembly of anisotropic amphiphilic janus ps. Adv. Funct. Mater. 34(11), 2306651 (2024). https://doi.org/10.1002/adfm.202306651
Z. Zeng, B. Tang, F. Zeng, H. Chen, S. Chen et al., An intelligent, recyclable, biomass film for adaptive day-night and year-round energy savings. Adv. Funct. Mater. 34(39), 2403061 (2024). https://doi.org/10.1002/adfm.202403061
Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
W. Yang, P. Xiao, S. Li, F. Deng, F. Ni et al., Engineering structural Janus MXene-nanofibrils aerogels for season-adaptive radiative thermal regulation. Small 19(30), 2302509 (2023). https://doi.org/10.1002/smll.202302509
L. Liu, D. Yuan, X. Hu, P. Hu, J. Wang et al., Wind-proof and moisture permeability aerogel-functionalized textile as all-seasonal passive thermal regulators. Adv. Funct. Mater. 34(49), 2411551 (2024). https://doi.org/10.1002/adfm.202411551
Y. Chen, T. Zhang, Y. Li, Y. Yurekli, F. Qiu et al., A cellulose-based membrane with temperature regulation and water transportation for thermal management applications. Compos. Sci. Technol. 243, 110243 (2023). https://doi.org/10.1016/j.compscitech.2023.110243
Z. Luo, B. Li, H. Sun, J. Liu, H. Zhao et al., Dual-functional reduced graphene oxide decorated nanoporous polytetrafluoroethylene metafabrics for radiative cooling and solar-heating. J. Mater. Chem. A 11, 16595–16604 (2023). https://doi.org/10.1039/D3TA03683A
D. Hu, X. Chen, S. Zhang, Z. Wang, T. Wang et al., Ultrawhite and ultrablack asymmetric coatings for radiative cooling and solar heating. Prog. Org. Coat. 198, 108870 (2025). https://doi.org/10.1016/j.porgcoat.2024.108870
G. Cai, J. Wang, P. Lee, Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 49(8), 1469–1476 (2016). https://doi.org/10.1021/acs.accounts.6b00183
T. Bai, W. Li, G. Fu, Y. Shen, Q. Zhang et al., Dual-band electrochromic optical modulation improved by a precise control of lithium content in Li4+xTi5O12. ACS Appl. Mater. Interfaces 14(46), 52193–52203 (2022). https://doi.org/10.1021/acsami.2c16654
Q. Huang, J. Wang, H. Gong, Q. Zhang, M. Wang et al., A rechargeable electrochromic energy storage device enabling effective energy recovery. J. Mater. Chem. A 9, 6451–6459 (2021). https://doi.org/10.1039/D0TA11234H
B. Sun, Z. Liu, W. Li, H. Huang, Y. Xia et al., A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Sol. Energy Mater. Sol. Cells 231, 111314 (2021). https://doi.org/10.1016/j.solmat.2021.111314
V. Bayzi Isfahani, M. Silva, Fundamentals and advances of electrochromic systems: a review. Adv. Eng. Mater. 23(12), 2100567 (2021). https://doi.org/10.1002/adem.202100567
X. Hu, T. Li, B. Shou, L. Li, H. Ren et al., Novel personal cooling textiles revolutionizing human thermal management: principles, designs and applications. Chem. Eng. J. 499, 155729 (2024). https://doi.org/10.1016/j.cej.2024.155729
J. Mandal, S. Du, M. Dontigny, K. Zaghib, N. Yu et al., Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Adv. Funct. Mater. 28(36), 1802180 (2018). https://doi.org/10.1002/adfm.201802180
M. Li, D. Liu, H. Cheng, L. Peng, M. Zu, Manipulating metals for adaptive thermal camouflage. Sci. Adv. 6(22), eaba3494 (2020). https://doi.org/10.1126/sciadv.aba3494
Y. Rao, J. Dai, C. Sui, Y. Lai, Z. Li et al., Ultra-wideband transparent conductive electrode for electrochromic synergistic solar and radiative heat management. ACS Energy Lett. 6(11), 3906–3915 (2021). https://doi.org/10.1021/acsenergylett.1c01486
Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7, 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15, 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
L. Zhang, B. Wang, X. Li, G. Xu, S. Dou et al., Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. J. Mater. Chem. C 7, 9878–9891 (2019). https://doi.org/10.1039/C9TC02126D
Y. Deng, Y. Yang, Y. Xiao, H. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
Y. Xiao, X. Zhang, Z. Li, M. Chen, W. Sun et al., A visible-to-infrared broadband all-solid-state electrochromic device based Li4Ti5O12/WO3 for optical and thermal management. Sol. Energy Mater. Sol. Cells 268, 112735 (2024). https://doi.org/10.1016/j.solmat.2024.112735
C. Sui, J. Pu, T. Chen, J. Liang, Y. Lai et al., Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 6, 428–437 (2023). https://doi.org/10.1038/s41893-022-01023-2
M. Chen, X. Zhang, D. Yan, J. Deng, W. Sun et al., Oxygen vacancy modulated amorphous tungsten oxide films for fast-switching and ultra-stable dual-band electrochromic energy storage smart windows. Mater. Horiz. 10, 2191–2203 (2023). https://doi.org/10.1039/D2MH01472F
S. Sheng, J. Wang, B. Zhao, Z. He, X. Feng et al., Nanowire-based smart windows combining electro-and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 14, 3231 (2023). https://doi.org/10.1038/s41467-023-38353-4
W. Wang, X. Wang, X. Xia, Z. Yao, Y. Zhong et al., Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window. Nanoscale 10, 8162–8169 (2018). https://doi.org/10.1039/C8NR00790J
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
D. Tang, J. Wang, X. Huang, D. Zhang, S. Cao et al., A highly efficient and energy saving electrochromic platform for adaptive visible and near-infrared light modulation. Chem. Eng. J. 482, 148870 (2024). https://doi.org/10.1016/j.cej.2024.148870
P. Chandrasekhar, B. Zay, D. Lawrence, E. Caldwell, R. Sheth et al., Variable-emittance infrared electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes, and semiconductor/polymer coatings, for spacecraft thermal control. J. Appl. Polym. Sci. 131, 40850 (2014). https://doi.org/10.1002/app.40850
C. Louet, S. Cantin, J. Dudon, P. Aubert, F. Vidal et al., A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 143, 141 (2015). https://doi.org/10.1016/j.solmat.2015.06.047
G. Petroffe, L. Beouch, S. Cantin, P. Aubert, C. Plesse et al., Investigations of ionic liquids on the infrared electroreflective properties of poly (3, 4-ethylenedioxythiophene. Sol. Energy Mater. Sol. Cells 177, 23 (2018). https://doi.org/10.1016/j.solmat.2017.07.018
J. Niu, Y. Wang, X. Zou, Y. Tan, C. Jia et al., Infrared electrochromic materials, devices and applications. Applied Mater. Today 24, 101073 (2021). https://doi.org/10.1016/j.apmt.2021.101073
H. Gong, J. Ai, W. Li, J. Zhu, Q. Zhang et al., Self-driven infrared electrochromic device with tunable optical and thermal management. ACS Appl. Mater. Interfaces 13(42), 50319–50328 (2021). https://doi.org/10.1021/acsami.1c14123
T. Tabak, S. Altinisik, S. Ulucay, S. Koyuncu, K. Kaya, Black-to-transmissive electrochromic switching PEDOT-co-poly(N-ethylcarbazole via a sustainable and facile in situ photo(co) polymerization method. Macromolecules 57(10), 4769–4781 (2024). https://doi.org/10.1021/acs.macromol.4c00364
R. Zhang, Z. Song, W. Cao, G. Gao, L. Yang et al., Multispectral smart window: dynamic light modulation and electromagnetic microwave shielding. Light Sci. Appl. 13, 223 (2024). https://doi.org/10.1038/s41377-024-01541-y
G. Xu, L. Zhang, B. Wang, X. Chen, S. Dou et al., A visible-to-infrared broadband flexible electrochromic device based polyaniline for simultaneously variable optical and thermal management. Sol. Energy Mater. Sol. Cells 208, 110356 (2020). https://doi.org/10.1016/j.solmat.2019.110356
D. Banerjee, T. Hallberg, S. Chen, C. Kuang, M. Liao et al., Electrical tuning of radiative cooling at ambient conditions. Cell Rep. Phys. Sci. 4(2), 101274 (2023). https://doi.org/10.1016/j.xcrp.2023.101274
W. Kamal, M. Li, J. Lin, E. Parry, Y. Jin et al., Spatially patterned polymer dispersed liquid crystals for image-integrated smart windows. Adv. Opt. Mater. 10(3), 2101748 (2022). https://doi.org/10.1002/adom.202101748
D. Higgins, Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals. Adv. Mater. 12(4), 251–264 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4%3c251::AID-ADMA251%3e3.0.CO;2-4
S. Kandpal, T. Ghosh, C. Rani, A. Chaudhary, J. Park et al., Multifunctional electrochromic devices for energy applications. ACS Energy Lett. 8(4), 1870–1886 (2023). https://doi.org/10.1021/acsenergylett.3c00159
X. Feng, S. Sheng, C. Chen, X. Li, Z. Xian et al., A multi-stimuli-responsive actuator for efficient thermal management and various biomimetic locomotion. Cell Rep. Phys. Sci. 4(10), 101588 (2023). https://doi.org/10.1016/j.xcrp.2023.101588
S. Chen, G. Jiang, J. Zhou, G. Wang, Y. Zhu et al., Robust solvatochromic gels for self-defensive smart windows. Adv. Funct. Mater. 33(20), 2214382 (2023). https://doi.org/10.1002/adfm.202214382
J. Mandal, M. Jia, A. Overvig, Y. Fu, E. Che et al., Porous polymers with switchable optical transmittance for optical and thermal regulation. Joule 3(12), 3088–3099 (2019). https://doi.org/10.1016/j.joule.2019.09.016
J. Fei, D. Han, J. Ge, X. Wang, S. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
C. Zhang, J. Yang, Y. Li, J. Song, J. Guo et al., Vapor–liquid transition-based broadband light modulation for self-adaptive thermal management. Adv. Funct. Mater. 32(48), 2208144 (2022). https://doi.org/10.1002/adfm.202208144
X. Wang, S. Narayan, Thermal radiative switching interface for energy-efficient temperature control. Renew. Energ. 197, 574–582 (2022). https://doi.org/10.1016/j.renene.2022.07.143
S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), 2301957 (2023). https://doi.org/10.1002/smll.202301957
H. Bennett, G. Rosasco, Resonances in the efficiency factors for absorption: mie scattering theory. Appl. Opt. 17(4), 491–493 (1978). https://doi.org/10.1364/AO.17.000491
L. An, J. Ma, P. Wang, A. Kuchmizhak, J. Yao et al., In situ switchable nanofiber films based on photoselective asymmetric assembly towards year-round energy saving. J. Mater. Chem. A 12, 18304–18312 (2024). https://doi.org/10.1039/D4TA03558E
Z. Sun, H. Yu, Y. Feng, W. Feng, Application and development of smart thermally conductive fiber materials. Nanomaterials 14(2), 154 (2024). https://doi.org/10.3390/nano14020154
R. Guo, L. Shan, Y. Wu, Y. Cai, R. Huang et al., Phase-change materials for intelligent temperature regulation. Mater. Today Energy 23, 100888 (2022). https://doi.org/10.1016/j.mtener.2021.100888
K. Araki, R. Zhang, An optimized self-adaptive thermal radiation turn-down coating with vanadium dioxide nanowire array. Int. J. Heat Mass Transf. 191, 122835 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122835
F. Ramirez-Cuevas, K. Gurunatha, L. Li, U. Zulfiqar, S. Sathasivam et al., Infrared thermochromic antenna composite for self-adaptive thermoregulation. Nat. Commun. 15, 9109 (2024). https://doi.org/10.1038/s41467-024-53177-6
J. Li, P. Gu, H. Pan, Z. Qiao, J. Wang et al., A facile yet versatile strategy to construct liquid hybrid energy-saving windows for strong solar modulation. Adv. Sci. 10(10), 2206044 (2023). https://doi.org/10.1002/advs.202206044
W. Lv, M. Feng, X. Li, W. Liu, M. Lu et al., Summary review of spectral frequency division utilization of renewable radiant energy. J. Mater. Chem. A 12, 24839–24861 (2024). https://doi.org/10.1039/D4TA03430A
W. Kort-Kamp, S. Kramadhati, A. Azad, M. Reiten, D. Dalvit, Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics 5(11), 4554–4560 (2018). https://doi.org/10.1021/acsphotonics.8b01026
X. Xu, J. Gu, H. Zhao, X. Zhang, S. Dou et al., Passive and dynamic phase-change-based radiative cooling in outdoor weather. ACS Appl. Mater. Interfaces 14(12), 14313–14320 (2022). https://doi.org/10.1021/acsami.1c23401
B. Xie, S. Zhang, W. Zhang, J. Zhao, L. Liu, Multistage smart radiator with gradient emittance based on phase change materials VO2/GST/IST. Appl. Phys. Lett. 124, 011701 (2024). https://doi.org/10.1063/5.0185406
S. Liu, Y. Li, Y. Wang, K. Yu, B. Huang et al., Near-infrared-activated thermochromic perovskite smart windows. Adv. Sci. 9(14), 2106090 (2022). https://doi.org/10.1002/advs.202106090
S. Liu, Y. Du, C. Tso, H. Lee, R. Cheng et al., Organic hybrid perovskite (MAPbI3-xClx) for thermochromic smart window with strong optical regulation ability, low transition temperature, and narrow hysteresis width. Adv. Funct. Mater. 31(26), 2010426 (2021). https://doi.org/10.1002/adfm.202010426
X. Li, C. Liu, S. Feng, N. Fang, Broadband light management with thermochromic hydrogel microps for smart windows. Joule 3(1), 290–302 (2019). https://doi.org/10.1016/j.joule.2018.10.019
M. Huang, C. Xue, Z. Bai, J. Cheng, Y. Wu et al., Bioinspired smart dual-layer hydrogels system with synchronous solar and thermal radiation modulation for energy-saving all-season temperature regulation. J. Energy Chem. 101, 175–190 (2025). https://doi.org/10.1016/j.jechem.2024.09.051
L. Hu, C. Wang, H. Zhu, Y. Zhou, H. Li et al., Adaptive thermal management radiative cooling smart window with perfect near-infrared shielding. Small 20(30), 2306823 (2024). https://doi.org/10.1002/smll.202306823
X. Mei, T. Wang, M. Chen, L. Wu, A self-adaptive film for passive radiative cooling and solar heating regulation. J. Mater. Chem. A 10, 11092–11100 (2022). https://doi.org/10.1039/D2TA01291J
M. Dai, J. Zhao, Y. Zhang, H. Li, L. Zhang et al., Dual-responsive hydrogels with three-stage optical modulation for smart windows. ACS Appl. Mater. Interfaces 14(47), 53314–53322 (2022). https://doi.org/10.1021/acsami.2c16319
C. Hong, B. Li, J. Zhang, Y. Li, J. Sun, Supramolecular polymer-based ionogels enable large-scale fabrication of stable smart windows with room-temperature closed-loop recyclability and self-healing capability. Adv. Funct. Mater. 34(23), 2313781 (2024). https://doi.org/10.1002/adfm.202313781
Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
Z. Cheng, L. Lei, B. Zhao, Y. Zhu, T. Yu et al., High performance reversible thermochromic composite films with wide thermochromic range and multiple colors based on micro/nanoencapsulated phase change materials for temperature indicators. Compos. Sci. Technol. 240, 110091 (2023). https://doi.org/10.1016/j.compscitech.2023.110091
Y. Liu, Y. Wu, Y. Ma, P. Wang, B. Yu et al., Reversible thermochromic and heat storage coating for adaptive de/anti-icing and thermal regulation. Chem. Eng. J. 482, 148837 (2024). https://doi.org/10.1016/j.cej.2024.148837
S. Saju, A. Puthirath, S. Wang, T. Tsafack, L. Beagle et al., Thermochromic polymer blends. Joule 8(9), 2696–2714 (2024). https://doi.org/10.1016/j.joule.2024.07.020
C. Cao, B. Hu, G. Tu, X. Ji, Z. Li et al., Sputtering flexible VO2 films for effective thermal modulation. ACS Appl. Mater. Interfaces 14(24), 28105–28113 (2022). https://doi.org/10.1021/acsami.2c05482
N. Shen, S. Chen, R. Huang, J. Huang, J. Li et al., Vanadium dioxide for thermochromic smart windows in ambient conditions. Mater. Today Energy 21, 100827 (2021). https://doi.org/10.1016/j.mtener.2021.100827
M. Ono, K. Chen, W. Li, S. Fan, Self-adaptive radiative cooling based on phase change materials. Opt. Express 26(18), A777–A787 (2018). https://doi.org/10.1364/OE.26.00A777
L. Mai, W. Chen, Q. Xu, J. Peng, Q. Zhu, Mo doped vanadium oxide nanotubes: microstructure and electrochemistry. Chem. Phys. Lett. 382(3–4), 307–312 (2003). https://doi.org/10.1016/j.cplett.2003.10.067
C. Jiang, L. He, Q. Xuan, Y. Liao, J. Dai et al., Phase-change VO2-based thermochromic smart windows. Light Sci. Appl. 13, 255 (2024). https://doi.org/10.1038/s41377-024-01560-9
G. Ulpiani, G. Ranzi, K. Shah, J. Feng, M. Santamouris, On the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcooling. Sol. Energy 209, 278–301 (2020). https://doi.org/10.1016/j.solener.2020.08.077
M. Kats, S. Byrnes, R. Blanchard, M. Kolle, P. Genevet et al., Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings. Appl. Phys. Lett. 103, 101104 (2013). https://doi.org/10.1063/1.4820147
K. Tang, K. Dong, J. Li, M. Gordon, F. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
M. Liu, X. Li, L. Li, L. Li, S. Zhao et al., Continuous photothermal and radiative cooling energy harvesting by VO2 smart coatings with switchable broadband infrared emission. ACS Nano 17(10), 9501–9509 (2023). https://doi.org/10.1021/acsnano.3c01755
D. Kang, Y. Kim, M. Lee, Laser dynamic control of the thermal emissivity of a planar cavity structure based on a phase-change material. ACS Appl. Mater. Interfaces 16(4), 4925–4933 (2024). https://doi.org/10.1021/acsami.3c16162
Y. Zhao, D. Fan, Q. Li, Flexible perovskite-based photonic stack device for adaptive thermal management. Mater. Des. 219, 110719 (2022). https://doi.org/10.1016/j.matdes.2022.110719
S. Liu, Y. Li, Y. Wang, Y. Du, K. Yu et al., Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows. Nat. Commun. 15, 876 (2024). https://doi.org/10.1038/s41467-024-45047-y
S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
G. Chen, K. Wang, J. Yang, J. Huang, Z. Chen et al., Printable thermochromic hydrogel-based smart window for all-weather building temperature regulation in diverse climates. Adv. Mater. 35(20), 2211716 (2023). https://doi.org/10.1002/adma.202211716
A. Tittl, A. Michel, M. Schäferling, X. Yin, B. Gholipour et al., Plasmonic absorbers: a switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27(31), 4526 (2015). https://doi.org/10.1002/adma.201570207
Y. Zhou, H. Feng, X. Li, P. Sun, L. Su et al., Tunable mid-infrared selective emitter with thermal management for infrared camouflage. Plasmonics 18, 2465–2473 (2023). https://doi.org/10.1007/s11468-023-01955-1
Z. Tan, M. Wen, J. Guo, J. Chen, X. Wu et al., Ruthenium doped Ge2Sb2Te5 nanomaterial as fast speed phase-change materials with good thermal stability. Solid State Electron. 186, 108176 (2021). https://doi.org/10.1016/j.sse.2021.108176
M. Hao, J. Li, S. Park, S. Moura, C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat. Energy 3, 899–906 (2018). https://doi.org/10.1038/s41560-018-0243-8
J. Wang, G. Li, D. Zhao, Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving. Energy 288, 129798 (2024). https://doi.org/10.1016/j.energy.2023.129798
D. Fan, Q. Li, Y. Xuan, H. Tan, J. Fang, Radiative properties of thermochromic material with solar reflection films. Sol. Energy Mater. Sol. Cells 112, 52 (2013). https://doi.org/10.1016/j.solmat.2013.01.018
Z. Fang, L. Ding, L. Li, K. Shuai, B. Cao et al., Thermal homeostasis enabled by dynamically regulating the passive radiative cooling and solar heating based on a thermochromic hydrogel. ACS Photonics 8(9), 2781–2790 (2021). https://doi.org/10.1021/acsphotonics.1c00967
G. Xu, H. Xia, P. Chen, W. She, H. Zhang et al., Thermochromic hydrogels with dynamic solar modulation and regulatable critical response temperature for energy-saving smart windows. Adv. Funct. Mater. 32(5), 2109597 (2022). https://doi.org/10.1002/adfm.202109597
K. Huang, Z. Huang, Y. Du, Y. Liang, J. Liu et al., Advances in radiative cooling materials for building energy efficiency: a decade of progress. J. Mater. Chem. A 12, 28682–28710 (2024). https://doi.org/10.1039/D4TA04942J
M. Fu, Y. Yuan, X. Liu, Z. Sun, F. Hu et al., A thermosensitive ionic hydrogel for thermotropic smart windows with integrated thermoelectric energy harvesting capability. Adv. Funct. Mater. 35(1), 2412081 (2024). https://doi.org/10.1002/adfm.202412081
C. Zhao, M. Guo, J. Mao, Y. Li, Y. Wu et al., Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chin. J. Polym. Sci. 41, 334–344 (2023). https://doi.org/10.1007/s10118-022-2854-6
G. Li, J. Chen, Z. Yan, S. Wang, Y. Ke et al., Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance. Mater. Horiz. 10, 2004–2012 (2023). https://doi.org/10.1039/D3MH00057E
Y. Zhou, X. Dong, Y. Mi, F. Fan, Q. Xu et al., Hydrogel smart windows. J. Mater. Chem. A 8, 10007–10025 (2020). https://doi.org/10.1039/D0TA00849D
Y. Li, M. Xu, D. Wang, Z. Liu, W. Mao et al., Phase-changing NIPAM-AM/ATO hydrogels for thermochromic smart windows with highly adaptive solar modulation. Chem. Eng. J. 499, 156394 (2024). https://doi.org/10.1016/j.cej.2024.156394
Q. Lei, W. Yu, G. Xie, Y. Li, C. Wu et al., Novel photothermochromic smart window based on PNIPAm-glass-MXene/PAM with high shield, fast response, and excellent stability. Sol. RRL 7(7), 2200990 (2023). https://doi.org/10.1002/solr.202200990
Z. Yu, Y. Ma, L. Mao, Y. Lian, Y. Xiao et al., Bidirectional optical response hydrogel with adjustable human comfort temperature for smart windows. Mater. Horiz. 11, 207–216 (2024). https://doi.org/10.1039/D3MH01376F
Z. Wang, J. Liang, D. Lei, C. Jiang, Z. Yang et al., Temperature-adaptive smart windows with passive transmittance and radiative cooling regulation. Appl. Energy 369, 123619 (2024). https://doi.org/10.1016/j.apenergy.2024.123619
R. Sala, R. Gonçalves, E. Camargo, E. Leite, Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Sol. Energy Mater. Sol. Cells 186, 266 (2018). https://doi.org/10.1016/j.solmat.2018.06.037
Q. Chang, Z. Shen, Z. Guo, C. Xue, N. Li et al., Hydroxypropylmethyl cellulose modified with carbon dots exhibits light-responsive and reversible optical switching. ACS Appl. Mater. Interfaces 13(10), 12375–12382 (2021). https://doi.org/10.1021/acsami.0c22300
L. Zhang, H. Xia, F. Xia, Y. Du, Y. Wu et al., Energy-saving smart windows with HPC/PAA hybrid hydrogels as thermochromic materials. ACS Appl. Energy Mater. 4(9), 9783–9791 (2021). https://doi.org/10.1021/acsaem.1c01854
N. Mohammad, Y. Zhang, W. Xu, S. Aranke, D. Carne et al., Highly tunable cellulosic hydrogels with dynamic solar modulation for energy-efficient windows. Small 20(27), 2303706 (2024). https://doi.org/10.1002/smll.202303706
F. Chen, X. Wu, G. Lu, J. Nie, X. Zhu, Thermochromic hydrogels with adjustable transition behavior for smart windows. ACS Appl. Mater. Interfaces 16(16), 21013–21023 (2024). https://doi.org/10.1021/acsami.3c19272
Z. Lin, Z. Yang, L. Gao, Engineering a polyvinyl butyral hydrogel as a thermochromic interlayer for energy-saving windows. Mater. Horiz. 11, 3127–3142 (2024). https://doi.org/10.1039/D4MH00158C
T. Ho, B. Febriansyah, N. Yantara, S. Pethe, D. Accoto et al., Inducing thermoreversible optical transitions in urethane-acrylate systems via ionic liquid incorporation for stretchable smart devices. J. Mater. Chem. A 9, 13615–13624 (2021). https://doi.org/10.1039/D1TA02635F
Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), 2008486 (2021). https://doi.org/10.1002/adma.202008486
L. Chen, C. Zhao, X. Duan, J. Zhou, M. Liu, Finely tuning the lower critical solution temperature of ionogels by regulating the polarity of polymer networks and ionic liquids. CCS Chem. 4(4), 1386–1396 (2022). https://doi.org/10.31635/ccschem.021.202100855
Y. Liu, Y. Zhang, T. Chen, Z. Jin, W. Feng et al., A stable and Self-Healing thermochromic polymer coating for all weather thermal regulation. Adv. Funct. Mater. 33(49), 2307240 (2023). https://doi.org/10.1002/adfm.202307240
B. Li, F. Xu, T. Guan, Y. Li, J. Sun, Self-adhesive self-healing thermochromic ionogels for smart windows with excellent environmental and mechanical stability, solar modulation, and antifogging capabilities. Adv. Mater. 35(20), 2211456 (2023). https://doi.org/10.1002/adma.202211456
B. Liu, J. Wu, C. Xue, Y. Zeng, J. Liang et al., Bioinspired superhydrophobic all-in-one coating for adaptive thermoregulation. Adv. Mater. 36(31), 2400745 (2024). https://doi.org/10.1002/adma.202400745
H. Zhang, J. Huang, D. Fan, Switchable radiative cooling from temperature-responsive thermal resistance modulation. ACS Appl. Energy Mater. 5(5), 6003–6010 (2022). https://doi.org/10.1021/acsaem.2c00421
W. Meng, A. Kragt, Y. Gao, E. Brembilla, X. Hu et al., Scalable photochromic film for solar heat and daylight management. Adv. Mater. 36(5), 2304910 (2024). https://doi.org/10.1002/adma.202304910
X. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
Z. Zhao, H. Li, Y. Peng, J. Hu, F. Sun, Hierarchically programmed meta-louver fabric for adaptive personal thermal management. Adv. Funct. Mater. 34(14), 2404721 (2024). https://doi.org/10.1002/adfm.202404721
Y. Wu, Y. Wang, S. Zhang, S. Wu, Artificial chameleon skin with super-sensitive thermal and mechanochromic response. ACS Nano 15(10), 15720–15729 (2021). https://doi.org/10.1021/acsnano.1c05612
R. Ligon, K. Mcgraw, A chorus of color: hierarchical and graded information content of rapid color change signals in chameleons. Behav. Ecol. 29(5), 1075–1087 (2018). https://doi.org/10.1093/beheco/ary076
L. Xie, X. Wang, S. Liang, X. Zou, S. Sun et al., “Change according to the situation”–color-accommodative nature-skin-derived thermochromic membrane for active all-season thermal management. Adv. Funct. Mater. 34(45), 2405582 (2024). https://doi.org/10.1002/adfm.202405582
Q. Zhang, Y. Wang, Y. Lv, S. Yu, R. Ma, Bioinspired zero-energy thermal-management device based on visible and infrared thermochromism for all-season energy saving. Proc. Natl. Acad. Sci. U. S. A. 119(38), e2207353119 (2022). https://doi.org/10.1073/pnas.2207353119
Y. Yin, P. Sun, Y. Zeng, M. Yang, S. Gao et al., A colored temperature-adaptive cloak for year-round building energy saving. Adv. Energy Mater. 14(37), 2402202 (2024). https://doi.org/10.1002/aenm.202402202
P. Aklujkar, B. Kandasubramanian, A review of microencapsulated thermochromic coatings for sustainable building applications. J. Coat. Technol. Res. 18, 19–37 (2021). https://doi.org/10.1007/s11998-020-00396-3
W. Cai, L. Qi, T. Cui, B. Lin, M. Rahman et al., Chameleon-inspired, dipole moment-increasing, fire-retardant strategies toward promoting the practical application of radiative cooling materials. Adv. Funct. Mater. 35(2), 2412902 (2024). https://doi.org/10.1002/adfm.202412902
J. Chai, Z. Kang, Y. Yan, L. Lou, Y. Zhou et al., Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation. Cell Rep. Phys. Sci. 3(7), 100958 (2022). https://doi.org/10.1016/j.xcrp.2022.100958
J. Li, X. Lu, Y. Zhang, X. Wen, K. Yao et al., Dynamic refractive index-matching for adaptive thermoresponsive smart windows. Small 18(28), 2201322 (2022). https://doi.org/10.1002/smll.202201322
Q. Zhang, Y. Lv, Y. Wang, S. Yu, C. Li et al., Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving. Nat. Commun. 13, 4874 (2022). https://doi.org/10.1038/s41467-022-32528-1
M. Yang, H. Zhong, T. Li, B. Wu, Z. Wang et al., Phase change material enhanced radiative cooler for temperature-adaptive thermal regulation. ACS Nano 17(2), 1693–1700 (2023). https://doi.org/10.1021/acsnano.2c11916
P. Li, Y. Liu, X. Liu, A. Wang, W. Liu et al., Reversed yolk–shell dielectric scatterers for advanced radiative cooling. Adv. Funct. Mater. 34(23), 2315658 (2024). https://doi.org/10.1002/adfm.202315658
M. Qin, K. Jia, A. Usman, S. Han, F. Xiong et al., High-efficiency thermal-shock resistance enabled by radiative cooling and latent heat storage. Adv. Mater. 36(25), 2314130 (2024). https://doi.org/10.1002/adma.202314130
M. Qin, F. Xiong, W. Aftab, J. Shi, H. Han et al., Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling. iScience 25(7), 104584 (2022). https://doi.org/10.1016/j.isci.2022.104584
Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhan et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202416111
P. Zhang, Y. Hao, H. Shi, J. Lu, Y. Liu et al., Highly thermally conductive and structurally ultra-stable graphitic films with seamless heterointerfaces for extreme thermal management. Nano-Micro Lett. 16, 58 (2024). https://doi.org/10.1007/s40820-023-01277-1
H. Liu, M. Jiang, S. Geng, X. Liu, Modulation of an Si-O-Si structure in uniformly photochromic microcapsules for solar heat and daylight management. Chem. Eng. J. 490, 151545 (2024). https://doi.org/10.1016/j.cej.2024.151545
H. Zhao, X. Qi, Y. Ma, X. Sun, X. Liu et al., Wearable sunlight-triggered bimorph textile actuators. Nano Lett. 21(19), 8126–8134 (2021). https://doi.org/10.1021/acs.nanolett.1c02578
T. Ube, J. Imai, M. Yoshida, T. Fujisawa, H. Hasebe et al., Sunlight-driven smart windows with polymer/liquid crystal composites for autonomous control of optical properties. J. Mater. Chem. C 10, 12789–12794 (2022). https://doi.org/10.1039/D2TC02754B
Q. Gong, H. Wong, J. Chen, P. Li, L. Lu, Solar-driven adaptive radiative cooling coating with polymer carbon dots-enhanced photoluminescence for urban skin. Chem. Eng. J. 494, 153262 (2024). https://doi.org/10.1016/j.cej.2024.153262
Y. Yang, J. Wang, D. Li, J. Yang, M. Fang et al., Tunable photoresponsive behaviors based on triphenylamine derivatives: the pivotal role of π-conjugated structure and corresponding application. Adv. Mater. 33(43), 2104002 (2021). https://doi.org/10.1002/adma.202104002
X. Li, M. Liu, K. Chen, L. Li, G. Pei et al., Adaptive fabric with emissivity regulation for thermal management of humans. Nanophotonics 13(17), 3067–3075 (2024). https://doi.org/10.1515/nanoph-2023-0930
X. Li, B. Ma, J. Dai, C. Sui, D. Pande et al., Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Sci. Adv. 7(51), eabj7906 (2021). https://doi.org/10.1126/sciadv.abj7906
J. Mu, G. Wang, H. Yan, H. Li, X. Wang et al., Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 9, 590 (2018). https://doi.org/10.1038/s41467-018-03032-2
Z. Szelényi, S. Komoly, Thermoregulation: from basic neuroscience to clinical neurology, part 2. Temperature 6(1), 7–10 (2019). https://doi.org/10.1080/23328940.2018.1541680
M. He, B. Zhao, X. Yue, Y. Chen, F. Qiu et al., Infrared radiative modulating textiles for personal thermal management: principle, design and application. Nano Energy 116, 108821 (2023). https://doi.org/10.1016/j.nanoen.2023.108821
M. Morabito, A. Messeri, A. Crisci, L. Pratali, M. Bonafede et al., Heat warning and public and workers’ health at the time of COVID-19 pandemic. Sci. Total. Environ. 738, 140347 (2020). https://doi.org/10.1016/j.scitotenv.2020.140347
X. Han, Y. Huang, J. Wang, G. Zhang, T. Li et al., Flexible hierarchical ZnO/AgNWs/carbon cloth-based film for efficient microwave absorption, high thermal conductivity and strong electro-thermal effect. Compos. Part B Eng. 229, 109458 (2022). https://doi.org/10.1016/j.compositesb.2021.109458
H. Li, W. Zhang, Q. Ding, X. Jin, Q. Ke et al., Facile strategy for fabrication of flexible, breathable, and washable piezoelectric sensors via welding of nanofibers with multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 11(41), 38023–38030 (2019). https://doi.org/10.1021/acsami.9b10886
Q. Zhang, H. Cheng, S. Zhang, Y. Li, Z. Li et al., Advancements and challenges in thermoregulating textiles: smart clothing for enhanced personal thermal management. Chem. Eng. J. 488, 151040 (2024). https://doi.org/10.1016/j.cej.2024.151040
R. Liu, Y. Wang, W. Fan, J. Zou, X. Yu et al., Adaptive dynamic smart textiles for personal thermal-moisture management. Eur. Polym. J. 206, 112777 (2024). https://doi.org/10.1016/j.eurpolymj.2024.112777
M. Chen, Y. Liu, X. Zhao, Emerging passive thermoregulatory textiles through tailoring different heat transfer routes. Text. Res. J. 93(13–14), 3414 (2023). https://doi.org/10.1177/00405175231154018
P. Wang, G. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all-nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat 7(1), e12629 (2024). https://doi.org/10.1002/inf2.12629
T. Xue, X. Chen, C. Wang, Y. Yin, Dual-Mode cellulose acetate@Al2O3/MWCNTs Janus fabric with radiative cooling and solar heating for personal thermal management. Chem. Eng. J. 500, 156713 (2024). https://doi.org/10.1016/j.cej.2024.156713
Y. Liu, L. Chen, W. Li, J. Pu, Z. Wang et al., Scalable production of functional fibers with nanoscale features for smart textiles. ACS Nano 18(43), 29394–29420 (2024). https://doi.org/10.1021/acsnano.4c10111
N. Cheng, Z. Wang, Y. Lin, X. Li, Y. Zhang et al., Breathable dual-mode leather-like nanotextile for efficient daytime radiative cooling and heating. Adv. Mater. 36(33), 2403223 (2024). https://doi.org/10.1002/adma.202403223
K. Zhu, H. Yao, J. Song, Q. Liao, S. He et al., Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 10(41), eadr2062 (2024). https://doi.org/10.1126/sciadv.adr2062
Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
H. Yuan, R. Liu, S. Cheng, W. Li, M. Ma et al., Scalable fabrication of dual-function fabric for zero-energy thermal environmental management through multiband, synergistic, and asymmetric optical modulations. Adv. Mater. 35(18), 2209897 (2023). https://doi.org/10.1002/adma.202209897
Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in Winter and Cool in Summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
X. Li, W. Xie, C. Sui, P. Hsu, Multispectral thermal management designs for net-zero energy buildings. ACS Mater. Lett. 2(12), 1624–1643 (2020). https://doi.org/10.1021/acsmaterialslett.0c00322
M. Aliyariyan, D. Fathi, M. Eskandari, M. Mohammadi, Simulation and investigation of perovskite/nano-pyramidal GeSe solar cell: realizing high efficiency by controllable light trapping. Sol. Energy 214, 310–318 (2021). https://doi.org/10.1016/j.solener.2020.11.063
X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
Z. Ruan, Y. Zhu, Y. Yuan, H. Tan, A theoretical approach on estimating temperature-dependent optical properties of two typical molten alkali chloride salts (KCl and NaCl). Int. J. Therm. Sci. 187, 108153 (2023). https://doi.org/10.1016/j.ijthermalsci.2023.108153
L. Zhao, X. Lee, R. Smith, K. Oleson, Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014). https://doi.org/10.1038/nature13462
Q. Wang, Z. Na, L. Yu, S. Dai, M. Nazeeruddin et al., Smart photovoltaic windows for next-generation energy-saving buildings. Adv. Sci. 11(44), 2407177 (2024). https://doi.org/10.1002/advs.202407177
D. Cao, K. Xu, Q. Huang, C. Tam, S. Chen et al., Exceptionally prolonged extreme heat waves over South China in early summer 2020: the role of warming in the tropical Indian Ocean. Atmos. Res. 278, 106335 (2022). https://doi.org/10.1016/j.atmosres.2022.106335
E. Bozonnet, M. Doya, F. Allard, Cool roofs impact on building thermal response: a French case study. Energy Build. 43(11), 3006–3012 (2011). https://doi.org/10.1016/j.enbuild.2011.07.017
G. Xiao, H. Li, Z. Yu, H. Niu, Y. Yao, Highly Thermoconductive, strong graphene-based composite films by eliminating nanosheets wrinkles. Nano-Micro Lett. 16, 17 (2024). https://doi.org/10.1007/s40820-023-01252-w
X. Cao, X. Dai, J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 128, 198–213 (2016). https://doi.org/10.1016/j.enbuild.2016.06.089
J. Testa, M. Krarti, A review of benefits and limitations of static and switchable cool roof systems. Renew. Sust. Energ. Rev. 77, 451–460 (2017). https://doi.org/10.1016/j.rser.2017.04.030
F. Favoino, M. Overend, Q. Jin, The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies. Appl. Energy 156, 1–15 (2015). https://doi.org/10.1016/j.apenergy.2015.05.065
A. Butt, S. De Vries, R. Loonen, J. Hensen, A. Stuiver et al., Investigating the energy saving potential of thermochromic coatings on building envelopes. Appl. Energy 291, 116788 (2021). https://doi.org/10.1016/j.apenergy.2021.116788
Z. Xiao, C. Chen, S. Liu, C. Liu, W. Liu et al., Endowing durable icephobicity by combination of a rough powder coating and a superamph