Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies
Corresponding Author: Younghoon Lee
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 180
Abstract
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors—such as photoreceptors, mechanoreceptors, and chemoreceptors—that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell. Inspired by the biological principles of sensory systems, recent advancements in electronics have led to a wide range of applications in artificial sensors. In the current review, we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials. The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties. The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, hearing, gustatory, olfactory, and proximity sensing. Lastly, we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
Highlights:
1 This review provides an overview of recent developments in soft ionic sensors inspired by biological sensory systems, focusing on their material properties and working principles.
2 The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, auditory, gustatory, olfactory, and proximity sensing.
3 The challenges encountered in developing soft ionic sensors and the future research directions to overcome these issues are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16, 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
- D. Lv, X. Li, X. Huang, C. Cao, L. Ai et al., Microphase-separated elastic and ultrastretchable ionogel for reliable ionic skin with multimodal sensation. Adv. Mater. 36, 2309821 (2024). https://doi.org/10.1002/adma.202309821
- F. He, S. Chen, R. Zhou, H. Diao, Y. Han et al., Bioinspired passive tactile sensors enabled by reversible polarization of conjugated polymers. Nano-Micro Lett. 17, 16 (2024). https://doi.org/10.1007/s40820-024-01532-z
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
- Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14, 62 (2022). https://doi.org/10.1007/s40820-022-00799-4
- J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27, 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
- Y. Tahara, K. Nakashi, K. Ji, A. Ikeda, K. Toko, Development of a portable taste sensor with a lipid/polymer membrane. Sensors 13, 1076–1084 (2013). https://doi.org/10.3390/s130101076
- Q. Liu, D. Zhang, F. Zhang, Y. Zhao, K.J. Hsia et al., Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens. Actuat. B Chem. 176, 497–504 (2013). https://doi.org/10.1016/j.snb.2012.08.074
- H.S. Lee, J. Chung, G.-T. Hwang, C.K. Jeong, Y. Jung et al., Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014). https://doi.org/10.1002/adfm.201402270
- D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner et al., Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. U.S.A. 110, 9267–9272 (2013). https://doi.org/10.1073/pnas.1219068110
- J.Y. Yu, S.E. Moon, J.H. Kim, S.M. Kang, Ultrasensitive and highly stretchable multiple-crosslinked ionic hydrogel sensors with long-term stability. Nano-Micro Lett. 15, 51 (2023). https://doi.org/10.1007/s40820-023-01015-7
- Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17, 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
- H. Zhang, J. Guo, Y. Wang, L. Sun, Y. Zhao, Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. 8, e2102156 (2021). https://doi.org/10.1002/advs.202102156
- H.-S. Shin, Z. Ott, L.G. Beuken, B.N. Ranganathan, J. Sean Humbert et al., Bio-inspired large-area soft sensing skins to measure UAV wing deformation in flight. Adv. Funct. Mater. 31, 2100679 (2021). https://doi.org/10.1002/adfm.202100679
- M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta et al., 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013). https://doi.org/10.1021/nl4007744
- R. Li, Y. Si, Z. Zhu, Y. Guo, Y. Zhang et al., Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29, 1700253 (2017). https://doi.org/10.1002/adma.201700253
- J. Hu, W. Wang, H. Yu, Endowing soft photo-actuators with intelligence. Adv. Intell. Syst. 1, 1900050 (2019). https://doi.org/10.1002/aisy.201900050
- Y. Park, J. Jung, Y. Lee, D. Lee, J.J. Vlassak et al., Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. npj Flex. Electron. 6, 81 (2022). https://doi.org/10.1038/s41528-022-00215-2
- D. Kim, C.B. Lee, K.K. Park, H. Bang, P.L. Truong et al., Highly reliable 3D channel memory and its application in a neuromorphic sensory system for hand gesture recognition. ACS Nano 17, 24826–24840 (2023). https://doi.org/10.1021/acsnano.3c05493
- Y. Lee, W.J. Song, J.Y. Sun, Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020). https://doi.org/10.1016/j.mtphys.2020.100258
- T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang et al., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019). https://doi.org/10.1038/s41467-018-07947-8
- S. Ku, B.-H. Song, T. Park, Y. Lee, Y.-L. Park, Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback. Int. J. Robot. Res. 43, 1128–1150 (2024). https://doi.org/10.1177/02783649241227249
- H. Kawakami, Polymeric membrane materials for artificial organs. J. Artif. Organs 11, 177–181 (2008). https://doi.org/10.1007/s10047-008-0427-2
- L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
- H. Ahmadi, H. Moradi, C.J. Pastras, S. Abolpour Moshizi, S. Wu et al., Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites. ACS Appl. Mater. Interfaces 13, 44904–44915 (2021). https://doi.org/10.1021/acsami.1c12515
- M.L. Jin, S. Park, Y. Lee, J.H. Lee, J. Chung et al., An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian merkel cells. Adv. Mater. 29, 1605973 (2017). https://doi.org/10.1002/adma.201605973
- J. Yeom, A. Choe, S. Lim, Y. Lee, S. Na, H. Ko, Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci. Adv. 6, eaba5785 (2020). https://doi.org/10.1126/sciadv.aba5785
- G. Wang, Y. Li, Z. Cai, X. Dou, A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, e1907043 (2020). https://doi.org/10.1002/adma.201907043
- Z. Long, X. Qiu, C.L.J. Chan, Z. Sun, Z. Yuan et al., A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14, 1972 (2023). https://doi.org/10.1038/s41467-023-37581-y
- Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
- Y. Sun, J. Huang, Y. Cheng, J. Zhang, Y. Shi et al., High-accuracy dynamic gesture recognition: a universal and self-adaptive deep-learning-assisted system leveraging high-performance ionogels-based strain sensors. SmartMat 5, e1269 (2024). https://doi.org/10.1002/smm2.1269
- R. Yang, A. Dutta, B. Li, N. Tiwari, W. Zhang et al., Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-Pyramids. Nat. Commun. 14, 2907 (2023). https://doi.org/10.1038/s41467-023-38274-2
- J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32, e1905527 (2020). https://doi.org/10.1002/adma.201905527
- Y. Yoon, P.L. Truong, D. Lee, S.H. Ko, Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au 2, 64–92 (2021). https://doi.org/10.1021/acsnanoscienceau.1c00029
- H.H. Chouhdry, D.H. Lee, A. Bag, N.E. Lee, A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023). https://doi.org/10.1038/s41467-023-36480-6
- K.O. Johnson, The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001). https://doi.org/10.1016/S0959-4388(00)00234-8
- X. Zhang, G. Zhang, X. Huang, J. He, Y. Bai et al., Antifreezing and nondrying sensors of ionic hydrogels with a double-layer structure for highly sensitive motion monitoring. ACS Appl. Mater. Interfaces 14, 30256–30267 (2022). https://doi.org/10.1021/acsami.2c08589
- P. Bhatnagar, J. Hong, M. Patel, J. Kim, Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 91, 106676 (2022). https://doi.org/10.1016/j.nanoen.2021.106676
- W.J. Song, Y. Lee, Y. Jung, Y.W. Kang, J. Kim et al., Soft artificial electroreceptors for noncontact spatial perception. Sci. Adv. 7, eabg9203 (2021). https://doi.org/10.1126/sciadv.abg9203
- Z.H. Guo, H.L. Wang, J. Shao, Y. Shao, L. Jia et al., Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 8, eabo5201 (2022). https://doi.org/10.1126/sciadv.abo5201
- C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15, 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
- C. Li, J. Liu, H. Peng, Y. Sui, J. Song et al., A camel nose-inspired highly durable neuromorphic humidity sensor with water source locating capability. ACS Nano 16, 1511–1522 (2022). https://doi.org/10.1021/acsnano.1c10004
- Y. Lee, S.H. Cha, Y.W. Kim, D. Choi, J.Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9, 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
- K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater. Sci. 54, 137–178 (2009). https://doi.org/10.1016/j.pmatsci.2008.07.003
- G. Carbone, L. Mangialardi, Hydrophobic properties of a wavy rough substrate. Eur. Phys. J. E Soft Matter 16, 67–76 (2005). https://doi.org/10.1140/epje/e2005-00008-y
- Y. Lee, W.J. Song, Y. Jung, H. Yoo, M.-Y. Kim, H.-Y. Kim, J.-Y. Sun, Ionic spiderwebs. Sci. Robot. 5, eaaz5405 (2020). https://doi.org/10.1126/scirobotics.aaz5405
- Y. Qin, X. Zhang, A. Zheng, Q. Xia, Bioinspired design of hill-ridge architecture-based iontronic sensor with high sensibility and piecewise linearity. Adv. Mater. Technol. 7, 2100510 (2022). https://doi.org/10.1002/admt.202100510
- D. Lunni, M. Cianchetti, C. Filippeschi, E. Sinibaldi, B. Mazzolai, Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7, 1901310 (2020). https://doi.org/10.1002/admi.201901310
- X. Liu, Y. Hu, Q. Wang, J. Lu, T. Bai et al., Top-down approach making anisotropic, stable and flexible wood-based ionogels for wearable sensors. Chem. Eng. J. 487, 150472 (2024). https://doi.org/10.1016/j.cej.2024.150472
- T. Kim, I. Hong, Y. Roh, D. Kim, S. Kim et al., Spider-inspired tunable mechanosensor for biomedical applications. npj Flex. Electron. 7, 12 (2023). https://doi.org/10.1038/s41528-023-00247-2
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- H. Ye, B. Wu, S. Sun, P. Wu, Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nat. Commun. 15, 885 (2024). https://doi.org/10.1038/s41467-024-45079-4
- Y. Wang, X. Cao, J. Cheng, B. Yao, Y. Zhao et al., Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 15, 3509–3521 (2021). https://doi.org/10.1021/acsnano.1c00181
- H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
- H. Jung, M.K. Kim, J.Y. Lee, S.W. Choi, J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 30, 2004407 (2020). https://doi.org/10.1002/adfm.202004407
- L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. npg Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
- H.J. Hwang, K.Y. Kim, J.S. Kim, T. Kim, D.H. Kim et al., Ionic liquid with hydrogen bonding reducing leakage charge for enhancing triboelectric performance. Nano Energy 125, 109535 (2024). https://doi.org/10.1016/j.nanoen.2024.109535
- C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
- J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
- D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33, e2002397 (2021). https://doi.org/10.1002/adma.202002397
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- C.S. Park, Y.-W. Kang, H. Na, J.-Y. Sun, Hydrogels for bioinspired soft robots. Prog. Polym. Sci. 150, 101791 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101791
- R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
- M. Park, T. Park, S. Park, S.J. Yoon, S.H. Koo et al., Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data. Nat. Commun. 15, 5821 (2024). https://doi.org/10.1038/s41467-024-50101-w
- Y. Lee, Z. Ren, Y.-H. Hsiao, S. Kim, W.J. Song et al., Liftoff of a soft-actuated micro-aerial-robot powered by triboelectric nanogenerators. Nano Energy 126, 109602 (2024). https://doi.org/10.1016/j.nanoen.2024.109602
- S. Kim, Y.-H. Hsiao, Y. Lee, W. Zhu, Z. Ren et al., Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci. Robot. 8, eadf4278 (2023). https://doi.org/10.1126/scirobotics.adf4278
- J. Shi, Y. Dai, Y. Cheng, S. Xie, G. Li et al., Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 9, eadf8831 (2023). https://doi.org/10.1126/sciadv.adf8831
- C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016). https://doi.org/10.1126/science.aaf8810
- J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26, 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
- G. Lee, D. Lee, G.-B. Im, Y. Lee, A review on soft ionic touch point sensors. Energy Environ. Mater. 7, e12794 (2024). https://doi.org/10.1002/eem2.12794
- A.M. O’Mahony, D.S. Silvester, L. Aldous, C. Hardacre, R.G. Compton, Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Data 53, 2884–2891 (2008). https://doi.org/10.1021/je800678e
- H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 32, 2208362 (2022). https://doi.org/10.1002/adfm.202208362
- B. Chen, W. Sun, J. Lu, J. Yang, Y. Chen et al., All-solid ionic eye. J. Appl. Mech. 88, 031016 (2021). https://doi.org/10.1115/1.4049198
- V. Amoli, J.S. Kim, E. Jee, Y.S. Chung, S.Y. Kim et al., A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 10, 4019 (2019). https://doi.org/10.1038/s41467-019-11973-5
- R.B. Webb, J.R. Lorenz, Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem. Photobiol. 12, 283–289 (1970). https://doi.org/10.1111/j.1751-1097.1970.tb06060.x
- C. Bushdid, M.O. Magnasco, L.B. Vosshall, A. Keller, Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014). https://doi.org/10.1126/science.1249168
- I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020). https://doi.org/10.1126/science.aba5132
- X. Wu, M. Ahmed, Y. Khan, M.E. Payne, J. Zhu et al., A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba1062
- J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
- J. Zhang, K. Yan, J. Huang, X. Sun, J. Li et al., Mechanically robust, flexible, fast responding temperature sensor and high-resolution array with ionically conductive double cross-linked hydrogel. Adv. Funct. Mater. 34, 2314433 (2024). https://doi.org/10.1002/adfm.202314433
- G. Li, S. Liu, L. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5, eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
- A. Khan, S. Ahmed, B.-Y. Sun, Y.-C. Chen, W.-T. Chuang et al., Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosens. Bioelectron. 198, 113811 (2022). https://doi.org/10.1016/j.bios.2021.113811
- B.R. Goldsmith, J.J. Mitala, J. Josue, A. Castro, M.B. Lerner et al., Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5, 5408–5416 (2011). https://doi.org/10.1021/nn200489j
- B. Xu, Z. Tian, J. Wang, H. Han, T. Lee et al., Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. Sci. Adv. 4, eaap8203 (2018). https://doi.org/10.1126/sciadv.aap8203
- G. Wang, R. Wang, W. Kong, J. Zhang, Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn. 12, 615–624 (2018). https://doi.org/10.1007/s11571-018-9490-4
- X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1, 2000029 (2020). https://doi.org/10.1002/sstr.202000029
- F. Hutmacher, Why is there so much more research on vision than on any other sensory modality? Front. Psychol. 10, 2246 (2019). https://doi.org/10.3389/fpsyg.2019.02246
- M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). https://doi.org/10.1002/adfm.201803807
- K. Zhang, Y.H. Jung, S. Mikael, J.H. Seo, M. Kim et al., Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017). https://doi.org/10.1038/s41467-017-01926-1
- Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
- H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008). https://doi.org/10.1038/nature07113
- J. Liang, D.R. Williams, Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14, 2873 (1997). https://doi.org/10.1364/josaa.14.002873
- T. Miyasaka, K. Koyama, I. Itoh, Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science 255, 342–344 (1992). https://doi.org/10.1126/science.255.5042.342
- K. Rayner, T.J. Smith, G.L. Malcolm, J.M. Henderson, Eye movements and visual encoding during scene perception. Psychol. Sci. 20, 6–10 (2009). https://doi.org/10.1111/j.1467-9280.2008.02243.x
- M.B. Johnston, Colour-selective photodiodes. Nat. Photonics 9, 634–636 (2015). https://doi.org/10.1038/nphoton.2015.180
- Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
- A. Armin, R.D. Jansen-van Vuuren, N. Kopidakis, P.L. Burn, P. Meredith, Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015). https://doi.org/10.1038/ncomms7343
- W. Kim, H. Kim, T.J. Yoo, J.Y. Lee, J.Y. Jo et al., Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nat. Commun. 13, 720 (2022). https://doi.org/10.1038/s41467-022-28374-w
- S. Kawamura, S. Tachibanaki, Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 150, 369–377 (2008). https://doi.org/10.1016/j.cbpa.2008.04.600
- Y. Shao, V. Hayward, Y. Visell, Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proc. Natl. Acad. Sci. U.S.A. 113, 4188–4193 (2016). https://doi.org/10.1073/pnas.1520866113
- Y.H. Jung, B. Park, J.U. Kim, T.-I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31, 1803637 (2019). https://doi.org/10.1002/adma.201803637
- D.R. McPherson, Sensory hair cells: an introduction to structure and physiology. Integr. Comp. Biol. 58, 282–300 (2018). https://doi.org/10.1093/icb/icy064
- A.J. Hudspeth, Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15, 600–614 (2014). https://doi.org/10.1038/nrn3786
- P.J. Atkinson, E. Huarcaya Najarro, Z.N. Sayyid, A.G. Cheng, Sensory hair cell development and regeneration: similarities and differences. Development 142, 1561–1571 (2015). https://doi.org/10.1242/dev.114926
- J. Wang, Y. Zheng, T. Cui, T. Huang, H. Liu et al., Bioinspired ultra-robust ionogels constructed with soft-rigid confinement space for multimodal monitoring electronics. Adv. Funct. Mater. 34, 2312383 (2024). https://doi.org/10.1002/adfm.202312383
- D. Deflorio, M. Di Luca, A.M. Wing, Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front. Hum. Neurosci. 16, 862344 (2022). https://doi.org/10.3389/fnhum.2022.862344
- J.A. Boulant, J.B. Dean, Temperature receptors in the central nervous system. Annu. Rev. Physiol. 48, 639–654 (1986). https://doi.org/10.1146/annurev.ph.48.030186.003231
- K. Park, H. Yuk, M. Yang, J. Cho, H. Lee et al., A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. Sci. Robot. (2022). https://doi.org/10.1126/scirobotics.abm7187
- S. Yin, D.R. Yao, Y. Song, W. Heng, X. Ma et al., Wearable and implantable soft robots. Chem. Rev. 124, 11585–11636 (2024). https://doi.org/10.1021/acs.chemrev.4c00513
- L.C. Biggs, C.S. Kim, Y.A. Miroshnikova, S.A. Wickström, Mechanical forces in the skin: roles in tissue architecture, stability, and function. J. Invest. Dermatol. 140, 284–290 (2020). https://doi.org/10.1016/j.jid.2019.06.137
- R. Wong, S. Geyer, W. Weninger, J.-C. Guimberteau, J.K. Wong, The dynamic anatomy and patterning of skin. Exp. Dermatol. 25, 92–98 (2016). https://doi.org/10.1111/exd.12832
- R. Arm, A. Shahidi, T. Dias, Mechanical behaviour of silicone membranes saturated with short strand, loose polyester fibres for prosthetic and rehabilitative surrogate skin applications. Materials 12, 3647 (2019). https://doi.org/10.3390/ma12223647
- Y. Hara, Y. Masuda, T. Hirao, N. Yoshikawa, The relationship between the Young’s modulus of the stratum corneum and age: a pilot study. Skin Res. Technol. 19, 339–345 (2013). https://doi.org/10.1111/srt.12054
- R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014). https://doi.org/10.1016/j.cell.2014.02.026
- Z. Tayeb, A. Dragomir, J.H. Lee, N.I. Abbasi, E. Dean et al., Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception. Sci. Rep. 12, 919 (2022). https://doi.org/10.1038/s41598-022-04831-w
- R.J. Schepers, M. Ringkamp, Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 34, 177–184 (2010). https://doi.org/10.1016/j.neubiorev.2009.10.003
- C. Zhang, Y. Zhou, H. Han, H. Zheng, W. Xu et al., Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors. ACS Nano 15, 1785–1794 (2021). https://doi.org/10.1021/acsnano.0c09577
- Y. Cha, B. Seo, M. Chung, B.S.Y. Kim, W. Choi et al., Skin-inspired thermometer enabling contact-independent temperature sensation via a seebeck-resistive bimodal system. ACS Appl. Mater. Interfaces 14, 17920–17926 (2022). https://doi.org/10.1021/acsami.1c24420
- S.-H. Shin, W. Lee, S.-M. Kim, M. Lee, J.M. Koo et al., Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem. Eng. J. 371, 452–460 (2019). https://doi.org/10.1016/j.cej.2019.04.077
- Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
- M. Petrowsky, R. Frech, Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation. J. Phys. Chem. B 114, 8600–8605 (2010). https://doi.org/10.1021/jp1020142
- J.R. Hulett, Deviations from the Arrhenius equation. Quarterly Rev. Chem. Soc. 18, 227 (1964). https://doi.org/10.1039/qr9641800227
- Y. Niimura, Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genomics 13, 103–114 (2012). https://doi.org/10.2174/138920212799860706
- W. Zhang, P. Chen, L. Zhou, Z. Qin, K. Gao et al., A biomimetic bioelectronic tongue: a switch for on- and off- response of acid sensations. Biosens. Bioelectron. 92, 523–528 (2017). https://doi.org/10.1016/j.bios.2016.10.069
- M. Son, D.G. Cho, J.H. Lim, J. Park, S. Hong et al., Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosens. Bioelectron. 74, 199–206 (2015). https://doi.org/10.1016/j.bios.2015.06.053
- M.L. Rodríguez-Méndez, J.A. De Saja, R. González-Antón, C. García-Hernández, C. Medina-Plaza et al., Electronic noses and tongues in wine industry. Front. Bioeng. Biotechnol. 4, 81 (2016). https://doi.org/10.3389/fbioe.2016.00081
- B. Lindemann, Taste reception. Physiol. Rev. 76, 719–766 (1996). https://doi.org/10.1152/physrev.1996.76.3.719
- S. Das, S. Bhadra, S. Bhattacharya, S. Chattopadhyay, Ionic polymer metal composite based smart tongue using machine learning. IEEE Sens. Lett. 7, 5500304 (2023). https://doi.org/10.1109/LSENS.2023.3238111
- S.A. Simon, I.E. de Araujo, R. Gutierrez, M.A.L. Nicolelis, The neural mechanisms of gustation: a distributed processing code. Nat. Rev. Neurosci. 7, 890–901 (2006). https://doi.org/10.1038/nrn2006
- E. Adler, M.A. Hoon, K.L. Mueller, J. Chandrashekar, N.J.P. Ryba et al., A novel family of mammalian taste receptors. Cell 100, 693–702 (2000). https://doi.org/10.1016/S0092-8674(00)80705-9
- M.W.J. Dodds, D.A. Johnson, C.-K. Yeh, Health benefits of saliva: a review. J. Dent. 33, 223–233 (2005). https://doi.org/10.1016/j.jdent.2004.10.009
- L. Zhuang, T. Guo, D. Cao, L. Ling, K. Su et al., Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens. Bioelectron. 67, 694–699 (2015). https://doi.org/10.1016/j.bios.2014.09.102
- Z. Qin, Z. Wu, Q. Sun, J. Sun, M. Zhang et al., Dog nose-inspired high-performance ammonia sensor based on biochar/SnO2 composite. Carbon 213, 118297 (2023). https://doi.org/10.1016/j.carbon.2023.118297
- Z. Chen, J. Wang, D. Pan, Y. Wang, R. Noetzel et al., Mimicking a dog’s nose: scrolling graphene nanosheets. ACS Nano 12, 2521–2530 (2018). https://doi.org/10.1021/acsnano.7b08294
- I. Gaillard, S. Rouquier, D. Giorgi, Olfactory receptors. Cell. Mol. Life Sci. CMLS 61, 456–469 (2004). https://doi.org/10.1007/s00018-003-3273-7
- L. Zhang, J. Wang, S. Wang, L. Wang, M. Wu, Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors. J. Mater. Chem. C 10, 4327–4335 (2022). https://doi.org/10.1039/d1tc05864a
- C. To, T. Hellebrekers, J. Jung, S.J. Yoon, Y.-L. Park, A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing. IEEE Robot. Autom. Lett. 3, 3821–3827 (2018). https://doi.org/10.1109/LRA.2018.2856937
- S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. (2019). https://doi.org/10.1126/scirobotics.aaw7797
- M. Son, D. Kim, H.J. Ko, S. Hong, T.H. Park, A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens. Bioelectron. 87, 901–907 (2017). https://doi.org/10.1016/j.bios.2016.09.040
- S.J. Park, O.S. Kwon, S.H. Lee, H.S. Song, T.H. Park et al., Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 12, 5082–5090 (2012). https://doi.org/10.1021/nl301714x
- L. Du, C. Wu, Q. Liu, L. Huang, P. Wang, Recent advances in olfactory receptor-basedbiosensors. Biosens. Bioelectron. 42, 570–580 (2013). https://doi.org/10.1016/j.bios.2012.09.001
- H. Breer, Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem. 377, 427–433 (2003). https://doi.org/10.1007/s00216-003-2113-9
- K. Nan, V.R. Feig, B. Ying, J.G. Howarth, Z. Kang et al., Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022). https://doi.org/10.1038/s41578-022-00477-2
- M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities: properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.001
- P.L. Searle, The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 109, 549–568 (1984). https://doi.org/10.1039/AN9840900549
- B. King, Y. Hu, J.A. Long, Electroreception in early vertebrates: survey, evidence and new information. Palaeontology 61, 325–358 (2018). https://doi.org/10.1111/pala.12346
- C.B. Grissom, Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95, 3–24 (1995). https://doi.org/10.1021/cr00033a001
- S.J. England, D. Robert, The ecology of electricity and electroreception. Biol. Rev. 97, 383–413 (2022). https://doi.org/10.1111/brv.12804
- B.E. Wueringer, Electroreception in elasmobranchs: sawfish as a case study. Brain Behav. Evol. 80, 97–107 (2012). https://doi.org/10.1159/000339873
- K.C. Newton, A.B. Gill, S.M. Kajiura, Electroreception in marine fishes: chondrichthyans. J. Fish Biol. 95, 135–154 (2019). https://doi.org/10.1111/jfb.14068
- S.-H. Jeong, Y. Lee, M.-G. Lee, W.J. Song, J.-U. Park et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
- D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17, 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
- K.J. Laidler, The development of the Arrhenius equation. J. Chem. Educ. 61, 494 (1984). https://doi.org/10.1021/ed061p494
- D.T. Cotfas, P.A. Cotfas, S. Kaplanis, Methods to determine the DC parameters of solar cells: a critical review. Renew. Sustain. Energy Rev. 28, 588–596 (2013). https://doi.org/10.1016/j.rser.2013.08.017
- G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090
- Y. Roh, Y. Lee, D. Lim, D. Gong, S. Hwang et al., Nature’s blueprint in bioinspired materials for robotics. Adv. Funct. Mater. 34, 2306079 (2024). https://doi.org/10.1002/adfm.202306079
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
- K.K. Kim, M. Kim, K. Pyun, J. Kim, J. Min et al., A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2022). https://doi.org/10.1038/s41928-022-00888-7
- M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
- D. Qinqing, W. Peiyi, S. Sun, Damage-tolerant stretchable ionic conductors. Fundam. Res. (2024). https://doi.org/10.1016/j.fmre.2024.05.008
- J.A. Tomko, A. Pena-Francesch, H. Jung, M. Tyagi, B.D. Allen et al., Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018). https://doi.org/10.1038/s41565-018-0227-7
- A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017). https://doi.org/10.1038/s41467-017-00685-3
- S. Baik, D.W. Kim, Y. Park, T.-J. Lee, S. Ho Bhang et al., A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–400 (2017). https://doi.org/10.1038/nature22382
- J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016). https://doi.org/10.1038/nature21002
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- J. Bang, S.H. Choi, K.R. Pyun, Y. Jung, S. Hong et al., Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 1, 597–613 (2024). https://doi.org/10.1038/s44287-024-00081-2
- S. Petsch, S. Schuhladen, L. Dreesen, H. Zappe, The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016). https://doi.org/10.1038/lsa.2016.68
- H. Zeng, O.M. Wani, P. Wasylczyk, R. Kaczmarek, A. Priimagi, Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017). https://doi.org/10.1002/adma.201701814
- Y. Zhang, Y. Wang, Y. Guan, Y. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat. Commun. 13, 6671 (2022). https://doi.org/10.1038/s41467-022-34522-z
- Y. Peng, H. Peng, Z. Chen, J. Zhang, Ultrasensitive soft sensor from anisotropic conductive biphasic liquid metal-polymer gels. Adv. Mater. 36, e2305707 (2024). https://doi.org/10.1002/adma.202305707
- Y. Gao, J. Song, S. Li, C. Elowsky, Y. Zhou et al., Hydrogel microphones for stealthy underwater listening. Nat. Commun. 7, 12316 (2016). https://doi.org/10.1038/ncomms12316
- S. Li, J. Zheng, J. Yan, Z. Wu, Q. Zhou et al., Gate-free hydrogel-graphene transistors as underwater microphones. ACS Appl. Mater. Interfaces 10, 42573–42582 (2018). https://doi.org/10.1021/acsami.8b14034
- M. Wang, L. Yang, J. Adamson, S. Li, Y. Huang et al., Ionogel microphones detect underwater sound with directivity and exceptional stability. ACS Appl. Electron. Mater. 2, 1295–1303 (2020). https://doi.org/10.1021/acsaelm.0c00086
- J. Ham, K. Lim, Y.-J. Kim, J.Y. Kim, J.-W. Oh et al., Colorimetric detection of ammonia using an adhesive, stretchable hydrogel patch. Chem. Eng. J. 479, 147596 (2024). https://doi.org/10.1016/j.cej.2023.147596
- Z. Miao, H. Tan, L. Gustavsson, Y. Zhou, Q. Xu et al., Gustation-inspired dual-responsive hydrogels for taste sensing enabled by machine learning. Small 20, e2305195 (2024). https://doi.org/10.1002/smll.202305195
- L. Yang, Z. Wang, S. Zhang, Y. Li, C. Jiang et al., Neuromorphic gustatory system with salt-taste perception, information processing, and excessive-intake warning capabilities. Nano Lett. 23, 8–16 (2023). https://doi.org/10.1021/acs.nanolett.2c02775
- J. Liu, Y.K. Cha, Y. Choi, S.E. Lee, G. Wang et al., Hydrogel-based bioelectronic tongue for the evaluation of umami taste in fermented fish. ACS Sens. 8, 2750–2760 (2023). https://doi.org/10.1021/acssensors.3c00646
- H. Zhi, X. Zhang, F. Wang, L. Feng, A pH-sensitive, stretchable, antibacterial artificial tongue based on MXene cross-linked ionogel. ACS Appl. Mater. Interfaces 14, 52422–52429 (2022). https://doi.org/10.1021/acsami.2c16866
- H.W. Song, D. Moon, Y. Won, Y.K. Cha, J. Yoo, T.H. Park, O. Joon Hak, A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10, eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
- T. Tanaka, Y. Hamanaka, T. Kato, K. Uchida, Simultaneous detection of mixed-gas components by ionic-gel sensors with multiple electrodes. ACS Sens. 7, 716–721 (2022). https://doi.org/10.1021/acssensors.1c02721
- B. Wang, D. Yang, Z. Chang, R. Zhang, J. Dai et al., Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter 5, 4347–4362 (2022). https://doi.org/10.1016/j.matt.2022.08.020
- T.C. Tricas, S.W. Michael, J.A. Sisneros, Electrosensory optimization to conspecific phasic signals for mating. Neurosci. Lett. 202, 129–132 (1995). https://doi.org/10.1016/0304-3940(95)12230-3
- A.P. Klimley, Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117, 1–22 (1993). https://doi.org/10.1007/BF00346421
- T. Hu, Y. Fei, QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9, 796–809 (2010). https://doi.org/10.1109/TMC.2010.28
- J.H. Koo, J.-K. Song, D.-H. Kim, D. Son, Soft implantable bioelectronics. ACS. Mater. Lett. 3, 1528–1540 (2021). https://doi.org/10.1021/acsmaterialslett.1c00438
- R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
- W.B. Han, G.J. Ko, K.G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
- A. Burton, S.M. Won, A.K. Sohrabi, T. Stuart, A. Amirhossein et al., Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. Microsyst. Nanoeng. 7, 62 (2021). https://doi.org/10.1038/s41378-021-00294-7
- Y.E. Cho, J.M. Park, W.J. Song, M.G. Lee, J.Y. Sun, Solvent engineering of thermo-responsive hydrogels facilitates strong and large contractile actuations. Adv. Mater. 36, e2406103 (2024). https://doi.org/10.1002/adma.202406103
- J.S. Lee, B.E. Kirkpatrick, A.P. Dhand, L.P. Hibbard, B.R. Nelson et al., Photodegradable polyacrylamide tanglemers enable spatiotemporal control over chain lengthening in high-strength and low-hysteresis hydrogels. J. Mater. Chem. B 13, 894–903 (2025). https://doi.org/10.1039/d4tb02149e
- S. Komatsu, M. Tago, Y. Ando, T.-A. Asoh, A. Kikuchi, Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release. J. Control. Release 331, 1–6 (2021). https://doi.org/10.1016/j.jconrel.2021.01.011
- Y. Lee, S. Lim, W.J. Song, S. Lee, S.J. Yoon et al., Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generators. Adv. Mater. 34, e2108586 (2022). https://doi.org/10.1002/adma.202108586
- Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
- Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
- P.A. Kallenberger, M. Fröba, Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun. Chem. 1, 28 (2018). https://doi.org/10.1038/s42004-018-0028-9
- S.-H. Jeong, J.-Y. Sun, H.-E. Kim, Dual-crosslinking of hyaluronic acid–calcium phosphate nanocomposite hydrogels for enhanced mechanical properties and biological performance. Macromol. Mater. Eng. 302, 1700160 (2017). https://doi.org/10.1002/mame.201700160
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021). https://doi.org/10.1126/science.abg6320
- N. Terasawa, K. Asaka, High performance polymer actuators based on single-walled carbon nanotube gel using ionic liquid with quaternary ammonium or phosphonium cations and with electrochemical window of 6V. Sens. Actuat. B Chem. 193, 851–856 (2014). https://doi.org/10.1016/j.snb.2013.12.051
- P. Li, W. Sun, J. Li, J.-P. Chen, X. Wang et al., N-type semiconducting hydrogel. Science 384, 557–563 (2024). https://doi.org/10.1126/science.adj4397
- H.-R. Lee, J. Woo, S.H. Han, S.-M. Lim, S. Lim et al., A stretchable ionic diode from copolyelectrolyte hydrogels with methacrylated polysaccharides. Adv. Funct. Mater. 29, 1806909 (2019). https://doi.org/10.1002/adfm.201806909
- O. Kim, S.J. Kim, M.J. Park, Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018). https://doi.org/10.1039/c8cc01670d
- S. Jang, S. Lee, S. Ali Shah, S. Cho, Y. Ra et al., Hydrogel-based droplet electricity generators: intrinsically stretchable and transparent for seamless integration in diverse environments. Adv. Funct. Mater. 35, 2411350 (2025). https://doi.org/10.1002/adfm.202411350
- H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
- H.-R. Lee, C.-C. Kim, J.-Y. Sun, Stretchable ionics–A promising candidate for upcoming wearable devices. Adv. Mater. 30, e1704403 (2018). https://doi.org/10.1002/adma.201704403
References
H. Liu, H. Chu, H. Yuan, D. Li, W. Deng et al., Bioinspired multifunctional self-sensing actuated gradient hydrogel for soft-hard robot remote interaction. Nano-Micro Lett. 16, 69 (2024). https://doi.org/10.1007/s40820-023-01287-z
D. Lv, X. Li, X. Huang, C. Cao, L. Ai et al., Microphase-separated elastic and ultrastretchable ionogel for reliable ionic skin with multimodal sensation. Adv. Mater. 36, 2309821 (2024). https://doi.org/10.1002/adma.202309821
F. He, S. Chen, R. Zhou, H. Diao, Y. Han et al., Bioinspired passive tactile sensors enabled by reversible polarization of conjugated polymers. Nano-Micro Lett. 17, 16 (2024). https://doi.org/10.1007/s40820-024-01532-z
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
W. Cao, Z. Wang, X. Liu, Z. Zhou, Y. Zhang et al., Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 14, 119 (2022). https://doi.org/10.1007/s40820-022-00838-0
Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14, 62 (2022). https://doi.org/10.1007/s40820-022-00799-4
J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li et al., Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 27, 1316–1326 (2015). https://doi.org/10.1002/adma.201404794
Y. Tahara, K. Nakashi, K. Ji, A. Ikeda, K. Toko, Development of a portable taste sensor with a lipid/polymer membrane. Sensors 13, 1076–1084 (2013). https://doi.org/10.3390/s130101076
Q. Liu, D. Zhang, F. Zhang, Y. Zhao, K.J. Hsia et al., Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens. Actuat. B Chem. 176, 497–504 (2013). https://doi.org/10.1016/j.snb.2012.08.074
H.S. Lee, J. Chung, G.-T. Hwang, C.K. Jeong, Y. Jung et al., Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014). https://doi.org/10.1002/adfm.201402270
D. Floreano, R. Pericet-Camara, S. Viollet, F. Ruffier, A. Brückner et al., Miniature curved artificial compound eyes. Proc. Natl. Acad. Sci. U.S.A. 110, 9267–9272 (2013). https://doi.org/10.1073/pnas.1219068110
J.Y. Yu, S.E. Moon, J.H. Kim, S.M. Kang, Ultrasensitive and highly stretchable multiple-crosslinked ionic hydrogel sensors with long-term stability. Nano-Micro Lett. 15, 51 (2023). https://doi.org/10.1007/s40820-023-01015-7
Q. Zhou, Q. Ding, Z. Geng, C. Hu, L. Yang et al., A flexible smart healthcare platform conjugated with artificial epidermis assembled by three-dimensionally conductive MOF network for gas and pressure sensing. Nano-Micro Lett. 17, 50 (2024). https://doi.org/10.1007/s40820-024-01548-5
H. Zhang, J. Guo, Y. Wang, L. Sun, Y. Zhao, Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. 8, e2102156 (2021). https://doi.org/10.1002/advs.202102156
H.-S. Shin, Z. Ott, L.G. Beuken, B.N. Ranganathan, J. Sean Humbert et al., Bio-inspired large-area soft sensing skins to measure UAV wing deformation in flight. Adv. Funct. Mater. 31, 2100679 (2021). https://doi.org/10.1002/adfm.202100679
M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta et al., 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013). https://doi.org/10.1021/nl4007744
R. Li, Y. Si, Z. Zhu, Y. Guo, Y. Zhang et al., Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29, 1700253 (2017). https://doi.org/10.1002/adma.201700253
J. Hu, W. Wang, H. Yu, Endowing soft photo-actuators with intelligence. Adv. Intell. Syst. 1, 1900050 (2019). https://doi.org/10.1002/aisy.201900050
Y. Park, J. Jung, Y. Lee, D. Lee, J.J. Vlassak et al., Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. npj Flex. Electron. 6, 81 (2022). https://doi.org/10.1038/s41528-022-00215-2
D. Kim, C.B. Lee, K.K. Park, H. Bang, P.L. Truong et al., Highly reliable 3D channel memory and its application in a neuromorphic sensory system for hand gesture recognition. ACS Nano 17, 24826–24840 (2023). https://doi.org/10.1021/acsnano.3c05493
Y. Lee, W.J. Song, J.Y. Sun, Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020). https://doi.org/10.1016/j.mtphys.2020.100258
T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang et al., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019). https://doi.org/10.1038/s41467-018-07947-8
S. Ku, B.-H. Song, T. Park, Y. Lee, Y.-L. Park, Soft modularized robotic arm for safe human–robot interaction based on visual and proprioceptive feedback. Int. J. Robot. Res. 43, 1128–1150 (2024). https://doi.org/10.1177/02783649241227249
H. Kawakami, Polymeric membrane materials for artificial organs. J. Artif. Organs 11, 177–181 (2008). https://doi.org/10.1007/s10047-008-0427-2
L. Gu, S. Poddar, Y. Lin, Z. Long, D. Zhang et al., A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020). https://doi.org/10.1038/s41586-020-2285-x
H. Ahmadi, H. Moradi, C.J. Pastras, S. Abolpour Moshizi, S. Wu et al., Development of ultrasensitive biomimetic auditory hair cells based on piezoresistive hydrogel nanocomposites. ACS Appl. Mater. Interfaces 13, 44904–44915 (2021). https://doi.org/10.1021/acsami.1c12515
M.L. Jin, S. Park, Y. Lee, J.H. Lee, J. Chung et al., An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian merkel cells. Adv. Mater. 29, 1605973 (2017). https://doi.org/10.1002/adma.201605973
J. Yeom, A. Choe, S. Lim, Y. Lee, S. Na, H. Ko, Soft and ion-conducting hydrogel artificial tongue for astringency perception. Sci. Adv. 6, eaba5785 (2020). https://doi.org/10.1126/sciadv.aba5785
G. Wang, Y. Li, Z. Cai, X. Dou, A colorimetric artificial olfactory system for airborne improvised explosive identification. Adv. Mater. 32, e1907043 (2020). https://doi.org/10.1002/adma.201907043
Z. Long, X. Qiu, C.L.J. Chan, Z. Sun, Z. Yuan et al., A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14, 1972 (2023). https://doi.org/10.1038/s41467-023-37581-y
Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
Y. Sun, J. Huang, Y. Cheng, J. Zhang, Y. Shi et al., High-accuracy dynamic gesture recognition: a universal and self-adaptive deep-learning-assisted system leveraging high-performance ionogels-based strain sensors. SmartMat 5, e1269 (2024). https://doi.org/10.1002/smm2.1269
R. Yang, A. Dutta, B. Li, N. Tiwari, W. Zhang et al., Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-Pyramids. Nat. Commun. 14, 2907 (2023). https://doi.org/10.1038/s41467-023-38274-2
J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32, e1905527 (2020). https://doi.org/10.1002/adma.201905527
Y. Yoon, P.L. Truong, D. Lee, S.H. Ko, Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au 2, 64–92 (2021). https://doi.org/10.1021/acsnanoscienceau.1c00029
H.H. Chouhdry, D.H. Lee, A. Bag, N.E. Lee, A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 14, 821 (2023). https://doi.org/10.1038/s41467-023-36480-6
K.O. Johnson, The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001). https://doi.org/10.1016/S0959-4388(00)00234-8
X. Zhang, G. Zhang, X. Huang, J. He, Y. Bai et al., Antifreezing and nondrying sensors of ionic hydrogels with a double-layer structure for highly sensitive motion monitoring. ACS Appl. Mater. Interfaces 14, 30256–30267 (2022). https://doi.org/10.1021/acsami.2c08589
P. Bhatnagar, J. Hong, M. Patel, J. Kim, Transparent photovoltaic skin for artificial thermoreceptor and nociceptor memory. Nano Energy 91, 106676 (2022). https://doi.org/10.1016/j.nanoen.2021.106676
W.J. Song, Y. Lee, Y. Jung, Y.W. Kang, J. Kim et al., Soft artificial electroreceptors for noncontact spatial perception. Sci. Adv. 7, eabg9203 (2021). https://doi.org/10.1126/sciadv.abg9203
Z.H. Guo, H.L. Wang, J. Shao, Y. Shao, L. Jia et al., Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci. Adv. 8, eabo5201 (2022). https://doi.org/10.1126/sciadv.abo5201
C. Jiang, H. Xu, L. Yang, J. Liu, Y. Li et al., Neuromorphic antennal sensory system. Nat. Commun. 15, 2109 (2024). https://doi.org/10.1038/s41467-024-46393-7
C. Li, J. Liu, H. Peng, Y. Sui, J. Song et al., A camel nose-inspired highly durable neuromorphic humidity sensor with water source locating capability. ACS Nano 16, 1511–1522 (2022). https://doi.org/10.1021/acsnano.1c10004
Y. Lee, S.H. Cha, Y.W. Kim, D. Choi, J.Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9, 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater. Sci. 54, 137–178 (2009). https://doi.org/10.1016/j.pmatsci.2008.07.003
G. Carbone, L. Mangialardi, Hydrophobic properties of a wavy rough substrate. Eur. Phys. J. E Soft Matter 16, 67–76 (2005). https://doi.org/10.1140/epje/e2005-00008-y
Y. Lee, W.J. Song, Y. Jung, H. Yoo, M.-Y. Kim, H.-Y. Kim, J.-Y. Sun, Ionic spiderwebs. Sci. Robot. 5, eaaz5405 (2020). https://doi.org/10.1126/scirobotics.aaz5405
Y. Qin, X. Zhang, A. Zheng, Q. Xia, Bioinspired design of hill-ridge architecture-based iontronic sensor with high sensibility and piecewise linearity. Adv. Mater. Technol. 7, 2100510 (2022). https://doi.org/10.1002/admt.202100510
D. Lunni, M. Cianchetti, C. Filippeschi, E. Sinibaldi, B. Mazzolai, Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7, 1901310 (2020). https://doi.org/10.1002/admi.201901310
X. Liu, Y. Hu, Q. Wang, J. Lu, T. Bai et al., Top-down approach making anisotropic, stable and flexible wood-based ionogels for wearable sensors. Chem. Eng. J. 487, 150472 (2024). https://doi.org/10.1016/j.cej.2024.150472
T. Kim, I. Hong, Y. Roh, D. Kim, S. Kim et al., Spider-inspired tunable mechanosensor for biomedical applications. npj Flex. Electron. 7, 12 (2023). https://doi.org/10.1038/s41528-023-00247-2
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
H. Ye, B. Wu, S. Sun, P. Wu, Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nat. Commun. 15, 885 (2024). https://doi.org/10.1038/s41467-024-45079-4
Y. Wang, X. Cao, J. Cheng, B. Yao, Y. Zhao et al., Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 15, 3509–3521 (2021). https://doi.org/10.1021/acsnano.1c00181
H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong et al., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, e1901924 (2020). https://doi.org/10.1002/adma.201901924
H. Jung, M.K. Kim, J.Y. Lee, S.W. Choi, J. Kim, Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 30, 2004407 (2020). https://doi.org/10.1002/adfm.202004407
L. Han, L. Yan, K. Wang, L. Fang, H. Zhang et al., Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. npg Asia Mater. 9, e372 (2017). https://doi.org/10.1038/am.2017.33
H.J. Hwang, K.Y. Kim, J.S. Kim, T. Kim, D.H. Kim et al., Ionic liquid with hydrogen bonding reducing leakage charge for enhancing triboelectric performance. Nano Energy 125, 109535 (2024). https://doi.org/10.1016/j.nanoen.2024.109535
C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33, e2002397 (2021). https://doi.org/10.1002/adma.202002397
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14, 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
C.S. Park, Y.-W. Kang, H. Na, J.-Y. Sun, Hydrogels for bioinspired soft robots. Prog. Polym. Sci. 150, 101791 (2024). https://doi.org/10.1016/j.progpolymsci.2024.101791
R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
M. Park, T. Park, S. Park, S.J. Yoon, S.H. Koo et al., Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data. Nat. Commun. 15, 5821 (2024). https://doi.org/10.1038/s41467-024-50101-w
Y. Lee, Z. Ren, Y.-H. Hsiao, S. Kim, W.J. Song et al., Liftoff of a soft-actuated micro-aerial-robot powered by triboelectric nanogenerators. Nano Energy 126, 109602 (2024). https://doi.org/10.1016/j.nanoen.2024.109602
S. Kim, Y.-H. Hsiao, Y. Lee, W. Zhu, Z. Ren et al., Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci. Robot. 8, eadf4278 (2023). https://doi.org/10.1126/scirobotics.adf4278
J. Shi, Y. Dai, Y. Cheng, S. Xie, G. Li et al., Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 9, eadf8831 (2023). https://doi.org/10.1126/sciadv.adf8831
C.C. Kim, H.H. Lee, K.H. Oh, J.Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353, 682–687 (2016). https://doi.org/10.1126/science.aaf8810
J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26, 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
G. Lee, D. Lee, G.-B. Im, Y. Lee, A review on soft ionic touch point sensors. Energy Environ. Mater. 7, e12794 (2024). https://doi.org/10.1002/eem2.12794
A.M. O’Mahony, D.S. Silvester, L. Aldous, C. Hardacre, R.G. Compton, Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Data 53, 2884–2891 (2008). https://doi.org/10.1021/je800678e
H. Zhang, H. Chen, J.-H. Lee, E. Kim, K.-Y. Chan et al., Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 32, 2208362 (2022). https://doi.org/10.1002/adfm.202208362
B. Chen, W. Sun, J. Lu, J. Yang, Y. Chen et al., All-solid ionic eye. J. Appl. Mech. 88, 031016 (2021). https://doi.org/10.1115/1.4049198
V. Amoli, J.S. Kim, E. Jee, Y.S. Chung, S.Y. Kim et al., A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 10, 4019 (2019). https://doi.org/10.1038/s41467-019-11973-5
R.B. Webb, J.R. Lorenz, Oxygen dependence and repair of lethal effects of near ultraviolet and visible light. Photochem. Photobiol. 12, 283–289 (1970). https://doi.org/10.1111/j.1751-1097.1970.tb06060.x
C. Bushdid, M.O. Magnasco, L.B. Vosshall, A. Keller, Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014). https://doi.org/10.1126/science.1249168
I. You, D.G. Mackanic, N. Matsuhisa, J. Kang, J. Kwon et al., Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020). https://doi.org/10.1126/science.aba5132
X. Wu, M. Ahmed, Y. Khan, M.E. Payne, J. Zhu et al., A potentiometric mechanotransduction mechanism for novel electronic skins. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba1062
J. Zhang, H. Yao, J. Mo, S. Chen, Y. Xie et al., Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 13, 5076 (2022). https://doi.org/10.1038/s41467-022-32827-7
J. Zhang, K. Yan, J. Huang, X. Sun, J. Li et al., Mechanically robust, flexible, fast responding temperature sensor and high-resolution array with ionically conductive double cross-linked hydrogel. Adv. Funct. Mater. 34, 2314433 (2024). https://doi.org/10.1002/adfm.202314433
G. Li, S. Liu, L. Wang, R. Zhu, Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5, eabc8134 (2020). https://doi.org/10.1126/scirobotics.abc8134
A. Khan, S. Ahmed, B.-Y. Sun, Y.-C. Chen, W.-T. Chuang et al., Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosens. Bioelectron. 198, 113811 (2022). https://doi.org/10.1016/j.bios.2021.113811
B.R. Goldsmith, J.J. Mitala, J. Josue, A. Castro, M.B. Lerner et al., Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5, 5408–5416 (2011). https://doi.org/10.1021/nn200489j
B. Xu, Z. Tian, J. Wang, H. Han, T. Lee et al., Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. Sci. Adv. 4, eaap8203 (2018). https://doi.org/10.1126/sciadv.aap8203
G. Wang, R. Wang, W. Kong, J. Zhang, Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn. 12, 615–624 (2018). https://doi.org/10.1007/s11571-018-9490-4
X. Han, Z. Xu, W. Wu, X. Liu, P. Yan et al., Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 1, 2000029 (2020). https://doi.org/10.1002/sstr.202000029
F. Hutmacher, Why is there so much more research on vision than on any other sensory modality? Front. Psychol. 10, 2246 (2019). https://doi.org/10.3389/fpsyg.2019.02246
M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). https://doi.org/10.1002/adfm.201803807
K. Zhang, Y.H. Jung, S. Mikael, J.H. Seo, M. Kim et al., Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017). https://doi.org/10.1038/s41467-017-01926-1
Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung et al., Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013). https://doi.org/10.1038/nature12083
H.C. Ko, M.P. Stoykovich, J. Song, V. Malyarchuk, W.M. Choi et al., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008). https://doi.org/10.1038/nature07113
J. Liang, D.R. Williams, Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14, 2873 (1997). https://doi.org/10.1364/josaa.14.002873
T. Miyasaka, K. Koyama, I. Itoh, Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science 255, 342–344 (1992). https://doi.org/10.1126/science.255.5042.342
K. Rayner, T.J. Smith, G.L. Malcolm, J.M. Henderson, Eye movements and visual encoding during scene perception. Psychol. Sci. 20, 6–10 (2009). https://doi.org/10.1111/j.1467-9280.2008.02243.x
M.B. Johnston, Colour-selective photodiodes. Nat. Photonics 9, 634–636 (2015). https://doi.org/10.1038/nphoton.2015.180
Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015). https://doi.org/10.1038/nphoton.2015.156
A. Armin, R.D. Jansen-van Vuuren, N. Kopidakis, P.L. Burn, P. Meredith, Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015). https://doi.org/10.1038/ncomms7343
W. Kim, H. Kim, T.J. Yoo, J.Y. Lee, J.Y. Jo et al., Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nat. Commun. 13, 720 (2022). https://doi.org/10.1038/s41467-022-28374-w
S. Kawamura, S. Tachibanaki, Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 150, 369–377 (2008). https://doi.org/10.1016/j.cbpa.2008.04.600
Y. Shao, V. Hayward, Y. Visell, Spatial patterns of cutaneous vibration during whole-hand haptic interactions. Proc. Natl. Acad. Sci. U.S.A. 113, 4188–4193 (2016). https://doi.org/10.1073/pnas.1520866113
Y.H. Jung, B. Park, J.U. Kim, T.-I. Kim, Bioinspired electronics for artificial sensory systems. Adv. Mater. 31, 1803637 (2019). https://doi.org/10.1002/adma.201803637
D.R. McPherson, Sensory hair cells: an introduction to structure and physiology. Integr. Comp. Biol. 58, 282–300 (2018). https://doi.org/10.1093/icb/icy064
A.J. Hudspeth, Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci. 15, 600–614 (2014). https://doi.org/10.1038/nrn3786
P.J. Atkinson, E. Huarcaya Najarro, Z.N. Sayyid, A.G. Cheng, Sensory hair cell development and regeneration: similarities and differences. Development 142, 1561–1571 (2015). https://doi.org/10.1242/dev.114926
J. Wang, Y. Zheng, T. Cui, T. Huang, H. Liu et al., Bioinspired ultra-robust ionogels constructed with soft-rigid confinement space for multimodal monitoring electronics. Adv. Funct. Mater. 34, 2312383 (2024). https://doi.org/10.1002/adfm.202312383
D. Deflorio, M. Di Luca, A.M. Wing, Skin and mechanoreceptor contribution to tactile input for perception: a review of simulation models. Front. Hum. Neurosci. 16, 862344 (2022). https://doi.org/10.3389/fnhum.2022.862344
J.A. Boulant, J.B. Dean, Temperature receptors in the central nervous system. Annu. Rev. Physiol. 48, 639–654 (1986). https://doi.org/10.1146/annurev.ph.48.030186.003231
K. Park, H. Yuk, M. Yang, J. Cho, H. Lee et al., A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. Sci. Robot. (2022). https://doi.org/10.1126/scirobotics.abm7187
S. Yin, D.R. Yao, Y. Song, W. Heng, X. Ma et al., Wearable and implantable soft robots. Chem. Rev. 124, 11585–11636 (2024). https://doi.org/10.1021/acs.chemrev.4c00513
L.C. Biggs, C.S. Kim, Y.A. Miroshnikova, S.A. Wickström, Mechanical forces in the skin: roles in tissue architecture, stability, and function. J. Invest. Dermatol. 140, 284–290 (2020). https://doi.org/10.1016/j.jid.2019.06.137
R. Wong, S. Geyer, W. Weninger, J.-C. Guimberteau, J.K. Wong, The dynamic anatomy and patterning of skin. Exp. Dermatol. 25, 92–98 (2016). https://doi.org/10.1111/exd.12832
R. Arm, A. Shahidi, T. Dias, Mechanical behaviour of silicone membranes saturated with short strand, loose polyester fibres for prosthetic and rehabilitative surrogate skin applications. Materials 12, 3647 (2019). https://doi.org/10.3390/ma12223647
Y. Hara, Y. Masuda, T. Hirao, N. Yoshikawa, The relationship between the Young’s modulus of the stratum corneum and age: a pilot study. Skin Res. Technol. 19, 339–345 (2013). https://doi.org/10.1111/srt.12054
R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157, 664–675 (2014). https://doi.org/10.1016/j.cell.2014.02.026
Z. Tayeb, A. Dragomir, J.H. Lee, N.I. Abbasi, E. Dean et al., Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception. Sci. Rep. 12, 919 (2022). https://doi.org/10.1038/s41598-022-04831-w
R.J. Schepers, M. Ringkamp, Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 34, 177–184 (2010). https://doi.org/10.1016/j.neubiorev.2009.10.003
C. Zhang, Y. Zhou, H. Han, H. Zheng, W. Xu et al., Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors. ACS Nano 15, 1785–1794 (2021). https://doi.org/10.1021/acsnano.0c09577
Y. Cha, B. Seo, M. Chung, B.S.Y. Kim, W. Choi et al., Skin-inspired thermometer enabling contact-independent temperature sensation via a seebeck-resistive bimodal system. ACS Appl. Mater. Interfaces 14, 17920–17926 (2022). https://doi.org/10.1021/acsami.1c24420
S.-H. Shin, W. Lee, S.-M. Kim, M. Lee, J.M. Koo et al., Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem. Eng. J. 371, 452–460 (2019). https://doi.org/10.1016/j.cej.2019.04.077
Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
M. Petrowsky, R. Frech, Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation. J. Phys. Chem. B 114, 8600–8605 (2010). https://doi.org/10.1021/jp1020142
J.R. Hulett, Deviations from the Arrhenius equation. Quarterly Rev. Chem. Soc. 18, 227 (1964). https://doi.org/10.1039/qr9641800227
Y. Niimura, Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genomics 13, 103–114 (2012). https://doi.org/10.2174/138920212799860706
W. Zhang, P. Chen, L. Zhou, Z. Qin, K. Gao et al., A biomimetic bioelectronic tongue: a switch for on- and off- response of acid sensations. Biosens. Bioelectron. 92, 523–528 (2017). https://doi.org/10.1016/j.bios.2016.10.069
M. Son, D.G. Cho, J.H. Lim, J. Park, S. Hong et al., Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosens. Bioelectron. 74, 199–206 (2015). https://doi.org/10.1016/j.bios.2015.06.053
M.L. Rodríguez-Méndez, J.A. De Saja, R. González-Antón, C. García-Hernández, C. Medina-Plaza et al., Electronic noses and tongues in wine industry. Front. Bioeng. Biotechnol. 4, 81 (2016). https://doi.org/10.3389/fbioe.2016.00081
B. Lindemann, Taste reception. Physiol. Rev. 76, 719–766 (1996). https://doi.org/10.1152/physrev.1996.76.3.719
S. Das, S. Bhadra, S. Bhattacharya, S. Chattopadhyay, Ionic polymer metal composite based smart tongue using machine learning. IEEE Sens. Lett. 7, 5500304 (2023). https://doi.org/10.1109/LSENS.2023.3238111
S.A. Simon, I.E. de Araujo, R. Gutierrez, M.A.L. Nicolelis, The neural mechanisms of gustation: a distributed processing code. Nat. Rev. Neurosci. 7, 890–901 (2006). https://doi.org/10.1038/nrn2006
E. Adler, M.A. Hoon, K.L. Mueller, J. Chandrashekar, N.J.P. Ryba et al., A novel family of mammalian taste receptors. Cell 100, 693–702 (2000). https://doi.org/10.1016/S0092-8674(00)80705-9
M.W.J. Dodds, D.A. Johnson, C.-K. Yeh, Health benefits of saliva: a review. J. Dent. 33, 223–233 (2005). https://doi.org/10.1016/j.jdent.2004.10.009
L. Zhuang, T. Guo, D. Cao, L. Ling, K. Su et al., Detection and classification of natural odors with an in vivo bioelectronic nose. Biosens. Bioelectron. 67, 694–699 (2015). https://doi.org/10.1016/j.bios.2014.09.102
Z. Qin, Z. Wu, Q. Sun, J. Sun, M. Zhang et al., Dog nose-inspired high-performance ammonia sensor based on biochar/SnO2 composite. Carbon 213, 118297 (2023). https://doi.org/10.1016/j.carbon.2023.118297
Z. Chen, J. Wang, D. Pan, Y. Wang, R. Noetzel et al., Mimicking a dog’s nose: scrolling graphene nanosheets. ACS Nano 12, 2521–2530 (2018). https://doi.org/10.1021/acsnano.7b08294
I. Gaillard, S. Rouquier, D. Giorgi, Olfactory receptors. Cell. Mol. Life Sci. CMLS 61, 456–469 (2004). https://doi.org/10.1007/s00018-003-3273-7
L. Zhang, J. Wang, S. Wang, L. Wang, M. Wu, Neuron-inspired multifunctional conductive hydrogels for flexible wearable sensors. J. Mater. Chem. C 10, 4327–4335 (2022). https://doi.org/10.1039/d1tc05864a
C. To, T. Hellebrekers, J. Jung, S.J. Yoon, Y.-L. Park, A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing. IEEE Robot. Autom. Lett. 3, 3821–3827 (2018). https://doi.org/10.1109/LRA.2018.2856937
S. Umrao, R. Tabassian, J. Kim, V.H. Nguyen, Q. Zhou et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. (2019). https://doi.org/10.1126/scirobotics.aaw7797
M. Son, D. Kim, H.J. Ko, S. Hong, T.H. Park, A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens. Bioelectron. 87, 901–907 (2017). https://doi.org/10.1016/j.bios.2016.09.040
S.J. Park, O.S. Kwon, S.H. Lee, H.S. Song, T.H. Park et al., Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 12, 5082–5090 (2012). https://doi.org/10.1021/nl301714x
L. Du, C. Wu, Q. Liu, L. Huang, P. Wang, Recent advances in olfactory receptor-basedbiosensors. Biosens. Bioelectron. 42, 570–580 (2013). https://doi.org/10.1016/j.bios.2012.09.001
H. Breer, Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem. 377, 427–433 (2003). https://doi.org/10.1007/s00216-003-2113-9
K. Nan, V.R. Feig, B. Ying, J.G. Howarth, Z. Kang et al., Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022). https://doi.org/10.1038/s41578-022-00477-2
M.P. Wolf, G.B. Salieb-Beugelaar, P. Hunziker, PDMS with designer functionalities: properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.001
P.L. Searle, The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst 109, 549–568 (1984). https://doi.org/10.1039/AN9840900549
B. King, Y. Hu, J.A. Long, Electroreception in early vertebrates: survey, evidence and new information. Palaeontology 61, 325–358 (2018). https://doi.org/10.1111/pala.12346
C.B. Grissom, Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95, 3–24 (1995). https://doi.org/10.1021/cr00033a001
S.J. England, D. Robert, The ecology of electricity and electroreception. Biol. Rev. 97, 383–413 (2022). https://doi.org/10.1111/brv.12804
B.E. Wueringer, Electroreception in elasmobranchs: sawfish as a case study. Brain Behav. Evol. 80, 97–107 (2012). https://doi.org/10.1159/000339873
K.C. Newton, A.B. Gill, S.M. Kajiura, Electroreception in marine fishes: chondrichthyans. J. Fish Biol. 95, 135–154 (2019). https://doi.org/10.1111/jfb.14068
S.-H. Jeong, Y. Lee, M.-G. Lee, W.J. Song, J.-U. Park et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17, 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
K.J. Laidler, The development of the Arrhenius equation. J. Chem. Educ. 61, 494 (1984). https://doi.org/10.1021/ed061p494
D.T. Cotfas, P.A. Cotfas, S. Kaplanis, Methods to determine the DC parameters of solar cells: a critical review. Renew. Sustain. Energy Rev. 28, 588–596 (2013). https://doi.org/10.1016/j.rser.2013.08.017
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090
Y. Roh, Y. Lee, D. Lim, D. Gong, S. Hwang et al., Nature’s blueprint in bioinspired materials for robotics. Adv. Funct. Mater. 34, 2306079 (2024). https://doi.org/10.1002/adfm.202306079
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
K.K. Kim, M. Kim, K. Pyun, J. Kim, J. Min et al., A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2022). https://doi.org/10.1038/s41928-022-00888-7
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, M. Sitti, Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022). https://doi.org/10.1038/s41578-021-00389-7
D. Qinqing, W. Peiyi, S. Sun, Damage-tolerant stretchable ionic conductors. Fundam. Res. (2024). https://doi.org/10.1016/j.fmre.2024.05.008
J.A. Tomko, A. Pena-Francesch, H. Jung, M. Tyagi, B.D. Allen et al., Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018). https://doi.org/10.1038/s41565-018-0227-7
A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8, 596 (2017). https://doi.org/10.1038/s41467-017-00685-3
S. Baik, D.W. Kim, Y. Park, T.-J. Lee, S. Ho Bhang et al., A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–400 (2017). https://doi.org/10.1038/nature22382
J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Polymers with autonomous life-cycle control. Nature 540, 363–370 (2016). https://doi.org/10.1038/nature21002
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
J. Bang, S.H. Choi, K.R. Pyun, Y. Jung, S. Hong et al., Bioinspired electronics for intelligent soft robots. Nat. Rev. Electr. Eng. 1, 597–613 (2024). https://doi.org/10.1038/s44287-024-00081-2
S. Petsch, S. Schuhladen, L. Dreesen, H. Zappe, The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016). https://doi.org/10.1038/lsa.2016.68
H. Zeng, O.M. Wani, P. Wasylczyk, R. Kaczmarek, A. Priimagi, Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017). https://doi.org/10.1002/adma.201701814
Y. Zhang, Y. Wang, Y. Guan, Y. Zhang, Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat. Commun. 13, 6671 (2022). https://doi.org/10.1038/s41467-022-34522-z
Y. Peng, H. Peng, Z. Chen, J. Zhang, Ultrasensitive soft sensor from anisotropic conductive biphasic liquid metal-polymer gels. Adv. Mater. 36, e2305707 (2024). https://doi.org/10.1002/adma.202305707
Y. Gao, J. Song, S. Li, C. Elowsky, Y. Zhou et al., Hydrogel microphones for stealthy underwater listening. Nat. Commun. 7, 12316 (2016). https://doi.org/10.1038/ncomms12316
S. Li, J. Zheng, J. Yan, Z. Wu, Q. Zhou et al., Gate-free hydrogel-graphene transistors as underwater microphones. ACS Appl. Mater. Interfaces 10, 42573–42582 (2018). https://doi.org/10.1021/acsami.8b14034
M. Wang, L. Yang, J. Adamson, S. Li, Y. Huang et al., Ionogel microphones detect underwater sound with directivity and exceptional stability. ACS Appl. Electron. Mater. 2, 1295–1303 (2020). https://doi.org/10.1021/acsaelm.0c00086
J. Ham, K. Lim, Y.-J. Kim, J.Y. Kim, J.-W. Oh et al., Colorimetric detection of ammonia using an adhesive, stretchable hydrogel patch. Chem. Eng. J. 479, 147596 (2024). https://doi.org/10.1016/j.cej.2023.147596
Z. Miao, H. Tan, L. Gustavsson, Y. Zhou, Q. Xu et al., Gustation-inspired dual-responsive hydrogels for taste sensing enabled by machine learning. Small 20, e2305195 (2024). https://doi.org/10.1002/smll.202305195
L. Yang, Z. Wang, S. Zhang, Y. Li, C. Jiang et al., Neuromorphic gustatory system with salt-taste perception, information processing, and excessive-intake warning capabilities. Nano Lett. 23, 8–16 (2023). https://doi.org/10.1021/acs.nanolett.2c02775
J. Liu, Y.K. Cha, Y. Choi, S.E. Lee, G. Wang et al., Hydrogel-based bioelectronic tongue for the evaluation of umami taste in fermented fish. ACS Sens. 8, 2750–2760 (2023). https://doi.org/10.1021/acssensors.3c00646
H. Zhi, X. Zhang, F. Wang, L. Feng, A pH-sensitive, stretchable, antibacterial artificial tongue based on MXene cross-linked ionogel. ACS Appl. Mater. Interfaces 14, 52422–52429 (2022). https://doi.org/10.1021/acsami.2c16866
H.W. Song, D. Moon, Y. Won, Y.K. Cha, J. Yoo, T.H. Park, O. Joon Hak, A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10, eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
T. Tanaka, Y. Hamanaka, T. Kato, K. Uchida, Simultaneous detection of mixed-gas components by ionic-gel sensors with multiple electrodes. ACS Sens. 7, 716–721 (2022). https://doi.org/10.1021/acssensors.1c02721
B. Wang, D. Yang, Z. Chang, R. Zhang, J. Dai et al., Wearable bioelectronic masks for wireless detection of respiratory infectious diseases by gaseous media. Matter 5, 4347–4362 (2022). https://doi.org/10.1016/j.matt.2022.08.020
T.C. Tricas, S.W. Michael, J.A. Sisneros, Electrosensory optimization to conspecific phasic signals for mating. Neurosci. Lett. 202, 129–132 (1995). https://doi.org/10.1016/0304-3940(95)12230-3
A.P. Klimley, Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar. Biol. 117, 1–22 (1993). https://doi.org/10.1007/BF00346421
T. Hu, Y. Fei, QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans. Mob. Comput. 9, 796–809 (2010). https://doi.org/10.1109/TMC.2010.28
J.H. Koo, J.-K. Song, D.-H. Kim, D. Son, Soft implantable bioelectronics. ACS. Mater. Lett. 3, 1528–1540 (2021). https://doi.org/10.1021/acsmaterialslett.1c00438
R. Herbert, H.-R. Lim, B. Rigo, W.-H. Yeo, Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022). https://doi.org/10.1126/sciadv.abm1175
W.B. Han, G.J. Ko, K.G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
A. Burton, S.M. Won, A.K. Sohrabi, T. Stuart, A. Amirhossein et al., Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. Microsyst. Nanoeng. 7, 62 (2021). https://doi.org/10.1038/s41378-021-00294-7
Y.E. Cho, J.M. Park, W.J. Song, M.G. Lee, J.Y. Sun, Solvent engineering of thermo-responsive hydrogels facilitates strong and large contractile actuations. Adv. Mater. 36, e2406103 (2024). https://doi.org/10.1002/adma.202406103
J.S. Lee, B.E. Kirkpatrick, A.P. Dhand, L.P. Hibbard, B.R. Nelson et al., Photodegradable polyacrylamide tanglemers enable spatiotemporal control over chain lengthening in high-strength and low-hysteresis hydrogels. J. Mater. Chem. B 13, 894–903 (2025). https://doi.org/10.1039/d4tb02149e
S. Komatsu, M. Tago, Y. Ando, T.-A. Asoh, A. Kikuchi, Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release. J. Control. Release 331, 1–6 (2021). https://doi.org/10.1016/j.jconrel.2021.01.011
Y. Lee, S. Lim, W.J. Song, S. Lee, S.J. Yoon et al., Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generators. Adv. Mater. 34, e2108586 (2022). https://doi.org/10.1002/adma.202108586
Y. Luo, J. Li, Q. Ding, H. Wang, C. Liu et al., Functionalized hydrogel-based wearable gas and humidity sensors. Nano-Micro Lett. 15, 136 (2023). https://doi.org/10.1007/s40820-023-01109-2
Z. Wu, W. Shi, H. Ding, B. Zhong, W. Huang et al., Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J. Mater. Chem. C 9, 13668–13679 (2021). https://doi.org/10.1039/D1TC02506F
P.A. Kallenberger, M. Fröba, Water harvesting from air with a hygroscopic salt in a hydrogel–derived matrix. Commun. Chem. 1, 28 (2018). https://doi.org/10.1038/s42004-018-0028-9
S.-H. Jeong, J.-Y. Sun, H.-E. Kim, Dual-crosslinking of hyaluronic acid–calcium phosphate nanocomposite hydrogels for enhanced mechanical properties and biological performance. Macromol. Mater. Eng. 302, 1700160 (2017). https://doi.org/10.1002/mame.201700160
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15, 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
J. Kim, G. Zhang, M. Shi, Z. Suo, Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021). https://doi.org/10.1126/science.abg6320
N. Terasawa, K. Asaka, High performance polymer actuators based on single-walled carbon nanotube gel using ionic liquid with quaternary ammonium or phosphonium cations and with electrochemical window of 6V. Sens. Actuat. B Chem. 193, 851–856 (2014). https://doi.org/10.1016/j.snb.2013.12.051
P. Li, W. Sun, J. Li, J.-P. Chen, X. Wang et al., N-type semiconducting hydrogel. Science 384, 557–563 (2024). https://doi.org/10.1126/science.adj4397
H.-R. Lee, J. Woo, S.H. Han, S.-M. Lim, S. Lim et al., A stretchable ionic diode from copolyelectrolyte hydrogels with methacrylated polysaccharides. Adv. Funct. Mater. 29, 1806909 (2019). https://doi.org/10.1002/adfm.201806909
O. Kim, S.J. Kim, M.J. Park, Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018). https://doi.org/10.1039/c8cc01670d
S. Jang, S. Lee, S. Ali Shah, S. Cho, Y. Ra et al., Hydrogel-based droplet electricity generators: intrinsically stretchable and transparent for seamless integration in diverse environments. Adv. Funct. Mater. 35, 2411350 (2025). https://doi.org/10.1002/adfm.202411350
H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016). https://doi.org/10.1038/ncomms12028
H.-R. Lee, C.-C. Kim, J.-Y. Sun, Stretchable ionics–A promising candidate for upcoming wearable devices. Adv. Mater. 30, e1704403 (2018). https://doi.org/10.1002/adma.201704403