Manipulating Interfacial Stability via Preferential Absorption for Highly Stable and Safe 4.6 V LiCoO2 Cathode
Corresponding Author: Zhongxue Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 181
Abstract
Elevating the upper cutoff voltage to 4.6 V could effectively increase the reversible capacity of LiCoO2 (LCO) cathode, whereas the irreversible structural transition, unstable electrode/electrolyte interface and potentially induced safety hazards severely hinder its industrial application. Building a robust cathode/electrolyte interface film by electrolyte engineering is one of the efficient approaches to boost the performance of high-voltage LCO (HV-LCO); however, the elusive interfacial chemistry poses substantial challenges to the rational design of highly compatible electrolytes. Herein, we propose a novel electrolyte design strategy and screen proper solvents based on two factors: highest occupied molecular orbital energy level and LCO absorption energy. Tris (2, 2, 2-trifluoroethyl) phosphate is determined as the optimal solvent, whose low defluorination energy barrier significantly promotes the construction of LiF-rich cathode/electrolyte interface layer on the surface of LCO, thereby eventually suppresses the phase transition and enhances Li+ diffusion kinetics. The rationally designed electrolyte endows graphite||HV-LCO pouch cells with long cycle life (85.3% capacity retention after 700 cycles), wide-temperature adaptability (− 60–80 °C) and high safety (pass nail penetration). This work provides new insights into the electrolyte screening and rational design to constructing stable interface for high-energy lithium-ion batteries.
Highlights:
1 A novel electrolyte design strategy for high voltage and high safe LiCoO2 (LCO) cathode based on highest occupied molecular orbital and LCO absorption energy descriptor was proposed.
2 The irreversible phase transformation was restricted by the LiF rich LCO/electrolyte interface.
3 The well designed tris 2, 2, 2-trifluoroethyl phosphate electrolyte endows Ah grade Gr||LCO pouch cell with excellent electrochemical performance (85.3% capacity retention after 700 cycles), low-temperature adaptability (−60 °C retention: 53%) and greatly improved thermal safety (pass nail penetration).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Huang, J. Li, Q. Zhao, S. Li, M. Ge et al., Mechanochemically robust LiCoO2 with ultrahigh capacity and prolonged cyclability. Adv. Mater. 36, e2405519 (2024). https://doi.org/10.1002/adma.202405519
- J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021). https://doi.org/10.1038/s41565-021-00855-x
- X. Pu, S. Zhang, D. Zhao, Z.-L. Xu, Z. Chen et al., Building the robust fluorinated electrode–electrolyte interface in rechargeable batteries: from fundamentals to applications. Electrochem. Energy Rev. 7, 21 (2024). https://doi.org/10.1007/s41918-024-00226-9
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu et al., Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017). https://doi.org/10.1002/aenm.201602888
- Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
- H. Zhang, Y. Huang, Y. Wang, L. Wang, Z. Song et al., In-situ constructed protective bilayer enabling stable cycling of LiCoO2 cathode at high-voltage. Energy Storage Mater. 62, 102951 (2023). https://doi.org/10.1016/j.ensm.2023.102951
- K. Zhang, J. Chen, W. Feng, C. Wang, Y.-N. Zhou et al., Constructing solid electrode-electrolyte interfaces in high-voltage Li|LiCoO2 batteries under dual-additive electrolyte synergistic effect. J. Power Sources 553, 232311 (2023). https://doi.org/10.1016/j.jpowsour.2022.232311
- J.L. Tebbe, T.F. Fuerst, C.B. Musgrave, Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8, 26664–26674 (2016). https://doi.org/10.1021/acsami.6b06157
- X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang et al., Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 30, 2004664 (2020). https://doi.org/10.1002/adfm.202004664
- J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
- G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 83, 167–173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
- Y. Xu, E. Hu, K. Zhang, X. Wang, V. Borzenets et al., In situ visualization of state-of-charge heterogeneity within a LiCoO2 p that evolves upon cycling at different rates. ACS Energy Lett. 2, 1240–1245 (2017). https://doi.org/10.1021/acsenergylett.7b00263
- X. Hu, W. Yang, Z. Jiang, Z. Huang, Y. Wang et al., Improving diffusion kinetics and phase stability of LiCoO2 via surface modification at elevated voltage. Electrochim. Acta 380, 138227 (2021). https://doi.org/10.1016/j.electacta.2021.138227
- S. Mao, Z. Shen, W. Zhang, Q. Wu, Z. Wang et al., Outside-In nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. 9, e2104841 (2022). https://doi.org/10.1002/advs.202104841
- J.-H. Shim, K.-S. Lee, A. Missyul, J. Lee, B. Linn et al., Characterization of spinel LixCo2O4-coated LiCoO2 prepared with post-thermal treatment as a cathode material for lithium ion batteries. Chem. Mater. 27, 3273–3279 (2015). https://doi.org/10.1021/acs.chemmater.5b00159
- H. Ren, J. Hu, H. Ji, Y. Huang, W. Zhao et al., Densification of cathode/electrolyte interphase to enhance reversibility of LiCoO2 at 4.65 V. Adv. Mater. 36, e2408875 (2024). https://doi.org/10.1002/adma.202408875
- Y.-S. Hong, X. Huang, C. Wei, J. Wang, J.-N. Zhang et al., Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6, 2759–2769 (2020). https://doi.org/10.1016/j.chempr.2020.07.017
- Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu et al., Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew. Chem. Int. Ed. 60, 4682–4688 (2021). https://doi.org/10.1002/anie.202014226
- J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34, 2200912 (2022). https://doi.org/10.1002/adma.202200912
- J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
- X.-M. Fan, Z. Zhang, G.-Q. Mao, Y.-J. Tong, K.-B. Lin et al., Reducing structural degradation of high-voltage single-crystal Ni-rich cathode through in situ doping strategy. Rare Met. 42, 2993–3003 (2023). https://doi.org/10.1007/s12598-023-02288-y
- S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong et al., Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017). https://doi.org/10.1002/aenm.201601507
- L. Chen, X. Shen, H. Chen, T. Wen, R. Rao et al., High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries. Energy Storage Mater. 55, 836–846 (2023). https://doi.org/10.1016/j.ensm.2022.12.044
- L. Chen, J. Wang, M. Chen, Z. Pan, Y. Ding et al., “Dragging effect” induced fast desolvation kinetics and −50 °C workable high-safe lithium batteries. Energy Storage Mater. 65, 103098 (2024). https://doi.org/10.1016/j.ensm.2023.103098
- X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
- B. Tong, Z. Song, H. Wan, W. Feng, M. Armand et al., Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 3, 1364–1392 (2021). https://doi.org/10.1002/inf2.12235
- E. Spencer Williams, J. Panko, D.J. Paustenbach, The European union’s REACH regulation: a review of its history and requirements. Crit. Rev. Toxicol. 39, 553–575 (2009). https://doi.org/10.1080/10408440903036056
- S. Chen, G. Zheng, X. Yao, J. Xiao, W. Zhao et al., Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries. ACS Nano 18, 6600–6611 (2024). https://doi.org/10.1021/acsnano.3c12823
- Y. Huang, Y. Ji, G. Zheng, H. Cao, H. Xue et al., Tailored interphases construction for enhanced Si Anode and Ni-rich cathode performance in lithium-ion batteries. CCS Chem. 7, 429–439 (2025). https://doi.org/10.31635/ccschem.024.202404120
- L. Chen, M. Chen, Q. Meng, J. Zhang, G. Feng et al., Reconstructing Helmholtz plane enables robust F-rich interface for long-life and high-safe sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202407717 (2024). https://doi.org/10.1002/anie.202407717
- H. Wang, X. Li, F. Li, X. Liu, S. Yang et al., Formation and modification of cathode electrolyte interphase: a mini review. Electrochem. Commun. 122, 106870 (2021). https://doi.org/10.1016/j.elecom.2020.106870
- M. Ma, R. Huang, M. Ling, Y.-S. Hu, H. Pan, Towards stable electrode–electrolyte interphases: regulating solvation structures in electrolytes for rechargeable batteries. Interdiscip. Mater. 2, 833–854 (2023). https://doi.org/10.1002/idm2.12131
- M. Wang, L. Yin, M. Zheng, X. Liu, C. Yang et al., Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries. Nat. Commun. 15, 8866 (2024). https://doi.org/10.1038/s41467-024-53259-5
- X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou et al., Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144, 17140–17148 (2022). https://doi.org/10.1021/jacs.2c07178
- X. Zhao, Y. Liu, Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020). https://doi.org/10.1021/jacs.9b13872
- H. Huang, Z. Li, S. Gu, J. Bian, Y. Li et al., Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 11, 2101864 (2021). https://doi.org/10.1002/aenm.202101864
- F. Zhang, N. Qin, Y. Li, H. Guo, Q. Gan et al., Phytate lithium as a multifunctional additive stabilizes LiCoO2 to 4.6 V. Energy Environ. Sci. 16, 4345–4355 (2023). https://doi.org/10.1039/D3EE01209C
- M. Cai, Y. Dong, M. Xie, W. Dong, C. Dong et al., Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat. Energy 8, 159–168 (2023). https://doi.org/10.1038/s41560-022-01179-3
- J. Cheng, W. Lin, J. Hou, Y. Liao, Y. Huang, Uniform Al doping in LiCoO2 for 4.55 V lithium-ion pouch cells. ACS Appl. Mater. Interfaces 16, 7243–7251 (2024). https://doi.org/10.1021/acsami.3c17471
- W. Huang, Q. Zhao, M. Zhang, S. Xu, H. Xue et al., Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2. Adv. Energy Mater. 12, 2200813 (2022). https://doi.org/10.1002/aenm.202200813
- X. Lin, F. Zeng, J. Lin, W. Zhang, X. Zhou et al., B-/ Si-containing electrolyte additive efficiently establish a stable interface for high-voltage LiCoO2 cathode and its synergistic effect on LiCoO2/graphite pouch cells. J. Colloid Interface Sci. 642, 292–303 (2023). https://doi.org/10.1016/j.jcis.2023.03.156
- L. Luo, K. Chen, R. Cao, H. Chen, M. Xia et al., Ethyl fluoroacetate with weak Li+ interaction and high oxidation resistant induced low-temperature and high-voltage graphite// LiCoO2 batteries. Energy Storage Mater. 70, 103438 (2024). https://doi.org/10.1016/j.ensm.2024.103438
- G.K. Mishra, M. Gautam, K. Bhawana, J. Ghosh, S. Mitra, High energy density lithium-ion pouch cell with modified high voltage lithium cobalt oxide cathode and graphite anode: Prototype stabilization, electrochemical and thermal study. J. Power Sources 580, 233395 (2023). https://doi.org/10.1016/j.jpowsour.2023.233395
- C. Tang, Y. Chen, Z. Zhang, W. Li, J. Jian et al., Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Res. 16, 3864–3871 (2023). https://doi.org/10.1007/s12274-022-4955-5
- C. Yang, X. Zhou, R. Sun, W. Hu, M. Wang et al., A safe electrolyte enriched with flame-retardant solvents for high-voltage LiCoO2|| Graphite pouch cells. ACS Energy Lett. 9, 5364–5372 (2024). https://doi.org/10.1021/acsenergylett.4c02466
- J. Zhang, P.-F. Wang, P. Bai, H. Wan, S. Liu et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 34, e2108353 (2022). https://doi.org/10.1002/adma.202108353
- T. Zhou, J. Wang, L. Lv, R. Li, L. Chen et al., Anion–π interaction and solvent dehydrogenation control enable high-voltage lithium-ion batteries. Energy Environ. Sci. 17, 9185–9194 (2024). https://doi.org/10.1039/d4ee03027c
- Z. Zhuang, J. Wang, K. Jia, G. Ji, J. Ma et al., Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification. Adv. Mater. 35, e2212059 (2023). https://doi.org/10.1002/adma.202212059
References
W. Huang, J. Li, Q. Zhao, S. Li, M. Ge et al., Mechanochemically robust LiCoO2 with ultrahigh capacity and prolonged cyclability. Adv. Mater. 36, e2405519 (2024). https://doi.org/10.1002/adma.202405519
J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021). https://doi.org/10.1038/s41565-021-00855-x
X. Pu, S. Zhang, D. Zhao, Z.-L. Xu, Z. Chen et al., Building the robust fluorinated electrode–electrolyte interface in rechargeable batteries: from fundamentals to applications. Electrochem. Energy Rev. 7, 21 (2024). https://doi.org/10.1007/s41918-024-00226-9
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu et al., Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017). https://doi.org/10.1002/aenm.201602888
Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023). https://doi.org/10.1007/s40820-023-01269-1
H. Zhang, Y. Huang, Y. Wang, L. Wang, Z. Song et al., In-situ constructed protective bilayer enabling stable cycling of LiCoO2 cathode at high-voltage. Energy Storage Mater. 62, 102951 (2023). https://doi.org/10.1016/j.ensm.2023.102951
K. Zhang, J. Chen, W. Feng, C. Wang, Y.-N. Zhou et al., Constructing solid electrode-electrolyte interfaces in high-voltage Li|LiCoO2 batteries under dual-additive electrolyte synergistic effect. J. Power Sources 553, 232311 (2023). https://doi.org/10.1016/j.jpowsour.2022.232311
J.L. Tebbe, T.F. Fuerst, C.B. Musgrave, Degradation of ethylene carbonate electrolytes of lithium ion batteries via ring opening activated by LiCoO2 cathode surfaces and electrolyte species. ACS Appl. Mater. Interfaces 8, 26664–26674 (2016). https://doi.org/10.1021/acsami.6b06157
X. Yang, M. Lin, G. Zheng, J. Wu, X. Wang et al., Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 30, 2004664 (2020). https://doi.org/10.1002/adfm.202004664
J. Zhang, H. Zhang, S. Weng, R. Li, D. Lu et al., Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023). https://doi.org/10.1038/s41467-023-37999-4
G.G. Amatucci, J.M. Tarascon, L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 83, 167–173 (1996). https://doi.org/10.1016/0167-2738(95)00231-6
Y. Xu, E. Hu, K. Zhang, X. Wang, V. Borzenets et al., In situ visualization of state-of-charge heterogeneity within a LiCoO2 p that evolves upon cycling at different rates. ACS Energy Lett. 2, 1240–1245 (2017). https://doi.org/10.1021/acsenergylett.7b00263
X. Hu, W. Yang, Z. Jiang, Z. Huang, Y. Wang et al., Improving diffusion kinetics and phase stability of LiCoO2 via surface modification at elevated voltage. Electrochim. Acta 380, 138227 (2021). https://doi.org/10.1016/j.electacta.2021.138227
S. Mao, Z. Shen, W. Zhang, Q. Wu, Z. Wang et al., Outside-In nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. 9, e2104841 (2022). https://doi.org/10.1002/advs.202104841
J.-H. Shim, K.-S. Lee, A. Missyul, J. Lee, B. Linn et al., Characterization of spinel LixCo2O4-coated LiCoO2 prepared with post-thermal treatment as a cathode material for lithium ion batteries. Chem. Mater. 27, 3273–3279 (2015). https://doi.org/10.1021/acs.chemmater.5b00159
H. Ren, J. Hu, H. Ji, Y. Huang, W. Zhao et al., Densification of cathode/electrolyte interphase to enhance reversibility of LiCoO2 at 4.65 V. Adv. Mater. 36, e2408875 (2024). https://doi.org/10.1002/adma.202408875
Y.-S. Hong, X. Huang, C. Wei, J. Wang, J.-N. Zhang et al., Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping. Chem 6, 2759–2769 (2020). https://doi.org/10.1016/j.chempr.2020.07.017
Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu et al., Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew. Chem. Int. Ed. 60, 4682–4688 (2021). https://doi.org/10.1002/anie.202014226
J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng et al., Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 34, 2200912 (2022). https://doi.org/10.1002/adma.202200912
J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge et al., Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019). https://doi.org/10.1038/s41560-019-0409-z
X.-M. Fan, Z. Zhang, G.-Q. Mao, Y.-J. Tong, K.-B. Lin et al., Reducing structural degradation of high-voltage single-crystal Ni-rich cathode through in situ doping strategy. Rare Met. 42, 2993–3003 (2023). https://doi.org/10.1007/s12598-023-02288-y
S. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong et al., Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017). https://doi.org/10.1002/aenm.201601507
L. Chen, X. Shen, H. Chen, T. Wen, R. Rao et al., High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries. Energy Storage Mater. 55, 836–846 (2023). https://doi.org/10.1016/j.ensm.2022.12.044
L. Chen, J. Wang, M. Chen, Z. Pan, Y. Ding et al., “Dragging effect” induced fast desolvation kinetics and −50 °C workable high-safe lithium batteries. Energy Storage Mater. 65, 103098 (2024). https://doi.org/10.1016/j.ensm.2023.103098
X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018). https://doi.org/10.1038/s41565-018-0183-2
B. Tong, Z. Song, H. Wan, W. Feng, M. Armand et al., Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 3, 1364–1392 (2021). https://doi.org/10.1002/inf2.12235
E. Spencer Williams, J. Panko, D.J. Paustenbach, The European union’s REACH regulation: a review of its history and requirements. Crit. Rev. Toxicol. 39, 553–575 (2009). https://doi.org/10.1080/10408440903036056
S. Chen, G. Zheng, X. Yao, J. Xiao, W. Zhao et al., Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries. ACS Nano 18, 6600–6611 (2024). https://doi.org/10.1021/acsnano.3c12823
Y. Huang, Y. Ji, G. Zheng, H. Cao, H. Xue et al., Tailored interphases construction for enhanced Si Anode and Ni-rich cathode performance in lithium-ion batteries. CCS Chem. 7, 429–439 (2025). https://doi.org/10.31635/ccschem.024.202404120
L. Chen, M. Chen, Q. Meng, J. Zhang, G. Feng et al., Reconstructing Helmholtz plane enables robust F-rich interface for long-life and high-safe sodium-ion batteries. Angew. Chem. Int. Ed. 63, e202407717 (2024). https://doi.org/10.1002/anie.202407717
H. Wang, X. Li, F. Li, X. Liu, S. Yang et al., Formation and modification of cathode electrolyte interphase: a mini review. Electrochem. Commun. 122, 106870 (2021). https://doi.org/10.1016/j.elecom.2020.106870
M. Ma, R. Huang, M. Ling, Y.-S. Hu, H. Pan, Towards stable electrode–electrolyte interphases: regulating solvation structures in electrolytes for rechargeable batteries. Interdiscip. Mater. 2, 833–854 (2023). https://doi.org/10.1002/idm2.12131
M. Wang, L. Yin, M. Zheng, X. Liu, C. Yang et al., Temperature-responsive solvation enabled by dipole-dipole interactions towards wide-temperature sodium-ion batteries. Nat. Commun. 15, 8866 (2024). https://doi.org/10.1038/s41467-024-53259-5
X. Bai, X. Zhao, Y. Zhang, C. Ling, Y. Zhou et al., Dynamic stability of copper single-atom catalysts under working conditions. J. Am. Chem. Soc. 144, 17140–17148 (2022). https://doi.org/10.1021/jacs.2c07178
X. Zhao, Y. Liu, Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020). https://doi.org/10.1021/jacs.9b13872
H. Huang, Z. Li, S. Gu, J. Bian, Y. Li et al., Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 11, 2101864 (2021). https://doi.org/10.1002/aenm.202101864
F. Zhang, N. Qin, Y. Li, H. Guo, Q. Gan et al., Phytate lithium as a multifunctional additive stabilizes LiCoO2 to 4.6 V. Energy Environ. Sci. 16, 4345–4355 (2023). https://doi.org/10.1039/D3EE01209C
M. Cai, Y. Dong, M. Xie, W. Dong, C. Dong et al., Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nat. Energy 8, 159–168 (2023). https://doi.org/10.1038/s41560-022-01179-3
J. Cheng, W. Lin, J. Hou, Y. Liao, Y. Huang, Uniform Al doping in LiCoO2 for 4.55 V lithium-ion pouch cells. ACS Appl. Mater. Interfaces 16, 7243–7251 (2024). https://doi.org/10.1021/acsami.3c17471
W. Huang, Q. Zhao, M. Zhang, S. Xu, H. Xue et al., Surface design with cation and anion dual gradient stabilizes high-voltage LiCoO2. Adv. Energy Mater. 12, 2200813 (2022). https://doi.org/10.1002/aenm.202200813
X. Lin, F. Zeng, J. Lin, W. Zhang, X. Zhou et al., B-/ Si-containing electrolyte additive efficiently establish a stable interface for high-voltage LiCoO2 cathode and its synergistic effect on LiCoO2/graphite pouch cells. J. Colloid Interface Sci. 642, 292–303 (2023). https://doi.org/10.1016/j.jcis.2023.03.156
L. Luo, K. Chen, R. Cao, H. Chen, M. Xia et al., Ethyl fluoroacetate with weak Li+ interaction and high oxidation resistant induced low-temperature and high-voltage graphite// LiCoO2 batteries. Energy Storage Mater. 70, 103438 (2024). https://doi.org/10.1016/j.ensm.2024.103438
G.K. Mishra, M. Gautam, K. Bhawana, J. Ghosh, S. Mitra, High energy density lithium-ion pouch cell with modified high voltage lithium cobalt oxide cathode and graphite anode: Prototype stabilization, electrochemical and thermal study. J. Power Sources 580, 233395 (2023). https://doi.org/10.1016/j.jpowsour.2023.233395
C. Tang, Y. Chen, Z. Zhang, W. Li, J. Jian et al., Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Res. 16, 3864–3871 (2023). https://doi.org/10.1007/s12274-022-4955-5
C. Yang, X. Zhou, R. Sun, W. Hu, M. Wang et al., A safe electrolyte enriched with flame-retardant solvents for high-voltage LiCoO2|| Graphite pouch cells. ACS Energy Lett. 9, 5364–5372 (2024). https://doi.org/10.1021/acsenergylett.4c02466
J. Zhang, P.-F. Wang, P. Bai, H. Wan, S. Liu et al., Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 34, e2108353 (2022). https://doi.org/10.1002/adma.202108353
T. Zhou, J. Wang, L. Lv, R. Li, L. Chen et al., Anion–π interaction and solvent dehydrogenation control enable high-voltage lithium-ion batteries. Energy Environ. Sci. 17, 9185–9194 (2024). https://doi.org/10.1039/d4ee03027c
Z. Zhuang, J. Wang, K. Jia, G. Ji, J. Ma et al., Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification. Adv. Mater. 35, e2212059 (2023). https://doi.org/10.1002/adma.202212059