Highly Active Oxygen Evolution Integrating with Highly Selective CO2-to-CO Reduction
Corresponding Author: Yingpu Bi
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 184
Abstract
Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation. However, the sluggish kinetics of oxygen evolution reaction (OER) and poor selectivity of CO2 reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels. Herein, we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode. More specifically, the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes, resulting in one of the highest OER activities of 6.51 mA cm−2 (1.23 VRHE, AM 1.5G). Additionally, single-atom cobalt (II) phthalocyanine anchoring on the N-rich carbon substrates to increase Co–N coordination number remarkably promotes CO2 adsorption and activation for high selective CO production. Their integration achieved a record activity of 109.4 μmol cm−2 h−1 for CO production with a faradaic efficiency of > 90%, and an outstanding solar conversion efficiency of 5.41% has been achieved by further integrating a photovoltaic utilizing the sunlight (> 500 nm).
Highlights:
1 Rational regulation of the coordination environment of surface-active sites on both photoanode and cathode has been demonstrated.
2 Reducing the coordination of FeNi catalysts decorated on BiVO4 photoanodes achieves excellent water oxidation activities of 6.51 mA cm−2 (1.23 VRHE, AM 1.5G).
3 Single-atom cobalt anchoring on N-rich carbon with increased Co–N coordination remarkably promotes CO2 reduction to CO.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
- S.J. Davis, K. Caldeira, H. Damon Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010). https://doi.org/10.1126/science.1188566
- M.M. Faruque Hasan, L.M. Rossi, D.P. Debecker, K.C. Leonard, Z. Li et al., Can CO2 and renewable carbon be primary resources for sustainable fuels and chemicals? ACS Sustain. Chem. Eng. 9, 12427–12430 (2021). https://doi.org/10.1021/acssuschemeng.1c06008
- M. He, Y. Sun, B. Han, Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022). https://doi.org/10.1002/anie.202112835
- Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16, 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
- F. Urbain, P. Tang, N.M. Carretero, T. Andreu, L.G. Gerling et al., A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 10, 2256–2266 (2017). https://doi.org/10.1039/C7EE01747B
- V. Andrei, B. Reuillard, E. Reisner, Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2020). https://doi.org/10.1038/s41563-019-0501-6
- D. Li, K. Yang, J. Lian, J. Yan, S. Liu, Powering the world with solar fuels from photoelectrochemical CO2 reduction: basic principles and recent advances. Adv. Energy Mater. 12, 2201070 (2022). https://doi.org/10.1002/aenm.202201070
- Y. Pan, H. Zhang, B. Zhang, F. Gong, J. Feng et al., Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat. Commun. 14, 1013 (2023). https://doi.org/10.1038/s41467-023-36726-3
- B. Chandran, J.-K. Oh, S.-W. Lee, D.-Y. Um, S.-U. Kim et al., Solar-driven sustainability: III–V semiconductor for green energy production technologies. Nano-Micro Lett. 16, 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
- X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao et al., Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem. Int. Ed. 55, 8840–8845 (2016). https://doi.org/10.1002/anie.201602973
- C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nano-Micro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
- I. Roh, S. Yu, C.-K. Lin, S. Louisia, S. Cestellos-Blanco et al., Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with copper nanops. J. Am. Chem. Soc. 144, 8002–8006 (2022). https://doi.org/10.1021/jacs.2c03702
- W. Lin, J. Lin, X. Zhang, L. Zhang, R.A. Borse et al., Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO4 photoelectrochemical device. J. Am. Chem. Soc. 145, 18141–18147 (2023). https://doi.org/10.1021/jacs.3c06687
- Y. Li, S. Li, H. Huang, Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chem. Eng. J. 457, 141179 (2023). https://doi.org/10.1016/j.cej.2022.141179
- T. Zhou, S. Chen, L. Li, J. Wang, Y. Zhang et al., Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Appl. Catal. B Environ. 269, 118776 (2020). https://doi.org/10.1016/j.apcatb.2020.118776
- T. Zhou, J. Wang, Y. Zhang, C. Zhou, J. Bai et al., Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chem. Eng. J. 431, 133414 (2022). https://doi.org/10.1016/j.cej.2021.133414
- J. Cui, M. Daboczi, M. Regue, Y.-C. Chin, K. Pagano et al., 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes. Adv. Funct. Mater. 32, 2207136 (2022). https://doi.org/10.1002/adfm.202207136
- H. Wu, L. Zhang, A. Du, R. Irani, R. van de Krol et al., Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 13, 6231 (2022). https://doi.org/10.1038/s41467-022-33905-6
- T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
- X. Li, J. Wu, C. Dong, Y. Kou, C. Hu et al., Boosting photoelectrocatalytic oxygen evolution activity of BiVO4 photoanodes via caffeic acid bridged to NiFeOOH. Appl. Catal. B Environ. Energy 353, 124096 (2024). https://doi.org/10.1016/j.apcatb.2024.124096
- T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014). https://doi.org/10.1126/science.1246913
- Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo et al., A front-illuminated nanostructured transparent BiVO4 photoanode for. Adv. Energy Mater. 6, 1501645 (2016). https://doi.org/10.1002/aenm.201501645
- B. Zhang, X. Huang, Y. Zhang, G. Lu, L. Chou et al., Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution. Angew. Chem. Int. Ed. 59, 18990–18995 (2020). https://doi.org/10.1002/anie.202008198
- Y. Chen, J. Wei, M.S. Duyar, V.V. Ordomsky, A.Y. Khodakov et al., Carbon-based catalysts for Fischer-Tropsch synthesis. Chem. Soc. Rev. 50, 2337–2366 (2021). https://doi.org/10.1039/d0cs00905a
- T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
- L. Liu, Z. Lin, S. Lin, Y. Chen, L. Zhang et al., Conversion of syngas to methanol and DME on highly selective Pd/ZnAl2O4 catalyst. J. Energy Chem. 58, 564–572 (2021). https://doi.org/10.1016/j.jechem.2020.10.003
- L.-X. Liu, J. Fu, L.-P. Jiang, J.-R. Zhang, W. Zhu et al., Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes. ACS Appl. Mater. Interfaces 11, 26024–26031 (2019). https://doi.org/10.1021/acsami.9b08144
- B. Liu, T. Wang, S. Wang, G. Zhang, D. Zhong et al., Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nat. Commun. 13, 7111 (2022). https://doi.org/10.1038/s41467-022-34926-x
- M. Zhang, A. Cao, Y. Xiang, C. Ban, G. Han et al., Strongly coupled Ag/Sn-SnO2 nanosheets toward CO2 electroreduction to pure HCOOH solutions at ampere-level current. Nano-Micro Lett. 16, 50 (2023). https://doi.org/10.1007/s40820-023-01264-6
- Z. Zhang, X. Huang, Y. Bi, High-efficiency and stable syngas production by coupling NiFe-BiVO4 photoanodes with AgOx/Ag cathodes. Appl. Catal. B Environ. Energy 349, 123894 (2024). https://doi.org/10.1016/j.apcatb.2024.123894
- M. Li, P. Li, K. Chang, H. Liu, X. Hai et al., Design of a photoelectrochemical device for the selective conversion of aqueous CO2 to CO: using mesoporous palladium–copper bimetallic cathode and hierarchical ZnO-based nanowire array photoanode. Chem. Commun. 52, 8235–8238 (2016). https://doi.org/10.1039/C6CC03960J
- B. Zhao, X. Huang, Y. Ding, Y. Bi, Bias-free solar-driven syngas production: a Fe2O3 photoanode featuring single-atom cobalt integrated with a silver-palladium cathode. Angew. Chem. Int. Ed. 62, e202213067 (2023). https://doi.org/10.1002/anie.202213067
- X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
- J.-D. Yi, D.-H. Si, R. Xie, Q. Yin, M.-D. Zhang et al., Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 60, 17108–17114 (2021). https://doi.org/10.1002/anie.202104564
- X. Ren, J. Zhao, X. Li, J. Shao, B. Pan et al., In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023). https://doi.org/10.1038/s41467-023-39153-6
- X.-F. Qiu, J.-R. Huang, C. Yu, Z.-H. Zhao, H.-L. Zhu et al., A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem. Int. Ed. 61, e202206470 (2022). https://doi.org/10.1002/anie.202206470
- M. Zhu, R. Ye, K. Jin, N. Lazouski, K. Manthiram, Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018). https://doi.org/10.1021/acsenergylett.8b00519
- X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li et al., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
- C. Wang, Y. Chen, D. Su, W.-L. Man, K.-C. Lau et al., In situ electropolymerized 3D microporous cobalt-porphyrin nanofilm for highly effective molecular electrocatalytic reduction of carbon dioxide. Adv. Mater. 35, 2303179 (2023). https://doi.org/10.1002/adma.202303179
- J. Choi, P. Wagner, S. Gambhir, R. Jalili, D.R. MacFarlane et al., Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 4, 666–672 (2019). https://doi.org/10.1021/acsenergylett.8b02355
- Y. Chen, X.-Y. Li, Z. Chen, A. Ozden, J.E. Huang et al., Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2024). https://doi.org/10.1038/s41565-023-01543-8
- D.K. Lee, K.-S. Choi, Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2017). https://doi.org/10.1038/s41560-017-0057-0
- Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
- H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
- W. Shi, B. Yin, Y. Yang, M.B. Sullivan, J. Wang et al., Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano 15, 1273–1281 (2021). https://doi.org/10.1021/acsnano.0c08432
- R. Bal, B.B. Tope, T.K. Das, S.G. Hegde, S. Sivasanker, Alkali-loaded silica, a solid base: investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J. Catal. 204, 358–363 (2001). https://doi.org/10.1006/jcat.2001.3402
References
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
S.J. Davis, K. Caldeira, H. Damon Matthews, Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010). https://doi.org/10.1126/science.1188566
M.M. Faruque Hasan, L.M. Rossi, D.P. Debecker, K.C. Leonard, Z. Li et al., Can CO2 and renewable carbon be primary resources for sustainable fuels and chemicals? ACS Sustain. Chem. Eng. 9, 12427–12430 (2021). https://doi.org/10.1021/acssuschemeng.1c06008
M. He, Y. Sun, B. Han, Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022). https://doi.org/10.1002/anie.202112835
Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16, 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
F. Urbain, P. Tang, N.M. Carretero, T. Andreu, L.G. Gerling et al., A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 10, 2256–2266 (2017). https://doi.org/10.1039/C7EE01747B
V. Andrei, B. Reuillard, E. Reisner, Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems. Nat. Mater. 19, 189–194 (2020). https://doi.org/10.1038/s41563-019-0501-6
D. Li, K. Yang, J. Lian, J. Yan, S. Liu, Powering the world with solar fuels from photoelectrochemical CO2 reduction: basic principles and recent advances. Adv. Energy Mater. 12, 2201070 (2022). https://doi.org/10.1002/aenm.202201070
Y. Pan, H. Zhang, B. Zhang, F. Gong, J. Feng et al., Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell. Nat. Commun. 14, 1013 (2023). https://doi.org/10.1038/s41467-023-36726-3
B. Chandran, J.-K. Oh, S.-W. Lee, D.-Y. Um, S.-U. Kim et al., Solar-driven sustainability: III–V semiconductor for green energy production technologies. Nano-Micro Lett. 16, 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao et al., Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem. Int. Ed. 55, 8840–8845 (2016). https://doi.org/10.1002/anie.201602973
C. Xia, Y. Li, M. Je, J. Kim, S.M. Cho et al., Nanocrystalline iron pyrophosphate-regulated amorphous phosphate overlayer for enhancing solar water oxidation. Nano-Micro Lett. 14, 209 (2022). https://doi.org/10.1007/s40820-022-00955-w
I. Roh, S. Yu, C.-K. Lin, S. Louisia, S. Cestellos-Blanco et al., Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with copper nanops. J. Am. Chem. Soc. 144, 8002–8006 (2022). https://doi.org/10.1021/jacs.2c03702
W. Lin, J. Lin, X. Zhang, L. Zhang, R.A. Borse et al., Decoupled artificial photosynthesis via a catalysis-redox coupled COF||BiVO4 photoelectrochemical device. J. Am. Chem. Soc. 145, 18141–18147 (2023). https://doi.org/10.1021/jacs.3c06687
Y. Li, S. Li, H. Huang, Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chem. Eng. J. 457, 141179 (2023). https://doi.org/10.1016/j.cej.2022.141179
T. Zhou, S. Chen, L. Li, J. Wang, Y. Zhang et al., Carbon quantum dots modified anatase/rutile TiO2 photoanode with dramatically enhanced photoelectrochemical performance. Appl. Catal. B Environ. 269, 118776 (2020). https://doi.org/10.1016/j.apcatb.2020.118776
T. Zhou, J. Wang, Y. Zhang, C. Zhou, J. Bai et al., Oxygen vacancy-abundant carbon quantum dots as superfast hole transport channel for vastly improving surface charge transfer efficiency of BiVO4 photoanode. Chem. Eng. J. 431, 133414 (2022). https://doi.org/10.1016/j.cej.2021.133414
J. Cui, M. Daboczi, M. Regue, Y.-C. Chin, K. Pagano et al., 2D bismuthene as a functional interlayer between BiVO4 and NiFeOOH for enhanced oxygen-evolution photoanodes. Adv. Funct. Mater. 32, 2207136 (2022). https://doi.org/10.1002/adfm.202207136
H. Wu, L. Zhang, A. Du, R. Irani, R. van de Krol et al., Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping. Nat. Commun. 13, 6231 (2022). https://doi.org/10.1038/s41467-022-33905-6
T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li et al., Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 403, 126350 (2021). https://doi.org/10.1016/j.cej.2020.126350
X. Li, J. Wu, C. Dong, Y. Kou, C. Hu et al., Boosting photoelectrocatalytic oxygen evolution activity of BiVO4 photoanodes via caffeic acid bridged to NiFeOOH. Appl. Catal. B Environ. Energy 353, 124096 (2024). https://doi.org/10.1016/j.apcatb.2024.124096
T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014). https://doi.org/10.1126/science.1246913
Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo et al., A front-illuminated nanostructured transparent BiVO4 photoanode for. Adv. Energy Mater. 6, 1501645 (2016). https://doi.org/10.1002/aenm.201501645
B. Zhang, X. Huang, Y. Zhang, G. Lu, L. Chou et al., Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution. Angew. Chem. Int. Ed. 59, 18990–18995 (2020). https://doi.org/10.1002/anie.202008198
Y. Chen, J. Wei, M.S. Duyar, V.V. Ordomsky, A.Y. Khodakov et al., Carbon-based catalysts for Fischer-Tropsch synthesis. Chem. Soc. Rev. 50, 2337–2366 (2021). https://doi.org/10.1039/d0cs00905a
T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
L. Liu, Z. Lin, S. Lin, Y. Chen, L. Zhang et al., Conversion of syngas to methanol and DME on highly selective Pd/ZnAl2O4 catalyst. J. Energy Chem. 58, 564–572 (2021). https://doi.org/10.1016/j.jechem.2020.10.003
L.-X. Liu, J. Fu, L.-P. Jiang, J.-R. Zhang, W. Zhu et al., Highly efficient photoelectrochemical reduction of CO2 at low applied voltage using 3D Co-Pi/BiVO4/SnO2 nanosheet array photoanodes. ACS Appl. Mater. Interfaces 11, 26024–26031 (2019). https://doi.org/10.1021/acsami.9b08144
B. Liu, T. Wang, S. Wang, G. Zhang, D. Zhong et al., Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nat. Commun. 13, 7111 (2022). https://doi.org/10.1038/s41467-022-34926-x
M. Zhang, A. Cao, Y. Xiang, C. Ban, G. Han et al., Strongly coupled Ag/Sn-SnO2 nanosheets toward CO2 electroreduction to pure HCOOH solutions at ampere-level current. Nano-Micro Lett. 16, 50 (2023). https://doi.org/10.1007/s40820-023-01264-6
Z. Zhang, X. Huang, Y. Bi, High-efficiency and stable syngas production by coupling NiFe-BiVO4 photoanodes with AgOx/Ag cathodes. Appl. Catal. B Environ. Energy 349, 123894 (2024). https://doi.org/10.1016/j.apcatb.2024.123894
M. Li, P. Li, K. Chang, H. Liu, X. Hai et al., Design of a photoelectrochemical device for the selective conversion of aqueous CO2 to CO: using mesoporous palladium–copper bimetallic cathode and hierarchical ZnO-based nanowire array photoanode. Chem. Commun. 52, 8235–8238 (2016). https://doi.org/10.1039/C6CC03960J
B. Zhao, X. Huang, Y. Ding, Y. Bi, Bias-free solar-driven syngas production: a Fe2O3 photoanode featuring single-atom cobalt integrated with a silver-palladium cathode. Angew. Chem. Int. Ed. 62, e202213067 (2023). https://doi.org/10.1002/anie.202213067
X. Zhang, Y. Wang, M. Gu, M. Wang, Z. Zhang et al., Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020). https://doi.org/10.1038/s41560-020-0667-9
J.-D. Yi, D.-H. Si, R. Xie, Q. Yin, M.-D. Zhang et al., Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 60, 17108–17114 (2021). https://doi.org/10.1002/anie.202104564
X. Ren, J. Zhao, X. Li, J. Shao, B. Pan et al., In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023). https://doi.org/10.1038/s41467-023-39153-6
X.-F. Qiu, J.-R. Huang, C. Yu, Z.-H. Zhao, H.-L. Zhu et al., A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem. Int. Ed. 61, e202206470 (2022). https://doi.org/10.1002/anie.202206470
M. Zhu, R. Ye, K. Jin, N. Lazouski, K. Manthiram, Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018). https://doi.org/10.1021/acsenergylett.8b00519
X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li et al., Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
C. Wang, Y. Chen, D. Su, W.-L. Man, K.-C. Lau et al., In situ electropolymerized 3D microporous cobalt-porphyrin nanofilm for highly effective molecular electrocatalytic reduction of carbon dioxide. Adv. Mater. 35, 2303179 (2023). https://doi.org/10.1002/adma.202303179
J. Choi, P. Wagner, S. Gambhir, R. Jalili, D.R. MacFarlane et al., Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 4, 666–672 (2019). https://doi.org/10.1021/acsenergylett.8b02355
Y. Chen, X.-Y. Li, Z. Chen, A. Ozden, J.E. Huang et al., Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2024). https://doi.org/10.1038/s41565-023-01543-8
D.K. Lee, K.-S. Choi, Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2017). https://doi.org/10.1038/s41560-017-0057-0
Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu et al., Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814
H. Zhang, J. Li, S. Xi, Y. Du, X. Hai et al., A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 58, 14871–14876 (2019). https://doi.org/10.1002/anie.201906079
W. Shi, B. Yin, Y. Yang, M.B. Sullivan, J. Wang et al., Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano 15, 1273–1281 (2021). https://doi.org/10.1021/acsnano.0c08432
R. Bal, B.B. Tope, T.K. Das, S.G. Hegde, S. Sivasanker, Alkali-loaded silica, a solid base: investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J. Catal. 204, 358–363 (2001). https://doi.org/10.1006/jcat.2001.3402