An Ultra-Thin Wearable Thermoelectric Paster Based on Structured Organic Ion Gel Electrolyte
Corresponding Author: Guozhen Shen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 204
Abstract
Thermoelectric technology that utilizes thermodynamic effects to convert thermal energy into electrical energy has greatly expanded wearable health monitoring, personalized detecting, and communicating applications. Encouragingly, thermoelectric technology assisted by artificial intelligence exerts great development potential in wearable electronic devices that rely on the self-sustainable operation of human body heat. Ionic thermoelectric (i-TE) devices that possess high Seebeck coefficients and a constant and stable electrical output are expected to achieve an effective conversation of thermal energy harvesting. Herein, we developed an i-TE paster for thermal chargeable energy storage, temperature-triggered material recognition, contact/non-contact temperature detection, and photo thermoelectric conversion applications. An all-solid-state organic ionic gel electrolyte (PVDF-HFP-PEO gel) with onion epidermal cells-like structure was sandwiched between two electrodes, which take full advantage of a synergy between the Soret effect and the polymer thermal expansion effect, thus achieving the enhanced ZT value up to 900% compared with the PEO-free electrolyte. The i-TE device delivers a Seebeck coefficient of 28 mV K−1, a maximum energy conversion efficiency of 1.3% in performance, and ultra-thin and skin-attachable properties in wearability, which demonstrate the great potential and application prospect of the i-TE paster in self-sustainable wearable electronics.
Highlights:
1 All-solid-state organic ion gel electrolyte with superior thermal tolerance capability and environmental stability can well penetrate into the electrodes of thermoelectric paster to ensure an excellent interfacial contact.
2 Inspired by the “onion epidermal cells” structure, the organic ion gel electrolyte supported by a porous polymer skeleton offers a considerable ZT figure according to the thermal expansion effect.
3 Considering the compatibility between electrode and electrolyte, an ultrathin and skin-attachable i-TE paster was assembled to acquire a satisfactory Seebeck coefficient and used in various applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi et al., Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 3(3), 501–507 (2018). https://doi.org/10.1021/acsenergylett.7b01237
- L. Miao, S. Zhu, C. Liu, J. Gao, Z. Zhang et al., Comfortable wearable thermoelectric generator with high output power. Nat. Commun. 15(1), 8516 (2024). https://doi.org/10.1038/s41467-024-52841-1
- R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10(1), 1765 (2019). https://doi.org/10.1038/s41467-019-09707-8
- B. Grocholski, Lower-cost thermoelectrics. Science 365(6460), 1414 (2019). https://doi.org/10.1126/science.365.6460.1414-b
- C.V. Hoang, K. Hayashi, Y. Ito, N. Gorai, G. Allison et al., Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 8(1), 771 (2017). https://doi.org/10.1038/s41467-017-00815-x
- Y. Hao, X. He, L. Wang, X. Qin, G. Chen et al., Stretchable thermoelectrics: strategies, performances, and applications. Adv. Funct. Mater. 32(13), 2109790 (2022). https://doi.org/10.1002/adfm.202109790
- Y. Li, W. Wang, X. Cui, N. Li, X. Ma et al., Self-powered machine-learning-assisted material identification enabled by a thermogalvanic dual-network hydrogel with a high thermopower. Small 21(1), e2405911 (2025). https://doi.org/10.1002/smll.202405911
- X. Luo, C. Chen, Z. He, M. Wang, K. Pan et al., A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15(1), 3086 (2024). https://doi.org/10.1038/s41467-024-47374-6
- K.S. L, L.H. T, C. Yu, Thermally chargeable solid-state supercapacitor. Adv. Energy Mater. 6(18), 1600546 (2016). https://doi.org/10.1002/aenm.201600546
- C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
- Q. Jiang, H. Sun, D. Zhao, F. Zhang, D. Hu et al., High thermoelectric performance in n-type perylene bisimide induced by the soret effect. Adv. Mater. 32(45), e2002752 (2020). https://doi.org/10.1002/adma.202002752
- D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9(4), 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
- D. Zhang, Y. Mao, F. Ye, Q. Li, P. Bai et al., Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 15(7), 2974–2982 (2022). https://doi.org/10.1039/D2EE00738J
- X. Li, J.P. Gong, Design principles for strong and tough hydrogels. Nat. Rev. Mater. 9(6), 380–398 (2024). https://doi.org/10.1038/s41578-024-00672-3
- K. Wu, Q. Yang, L. Zhang, P. Xu, X. Wu et al., An injectable curcumin-releasing organohydrogel with non-drying property and high mechanical stability at low-temperature for expedited skin wound care. J. Mater. Sci. Technol. 133, 123–134 (2023). https://doi.org/10.1016/j.jmst.2022.06.002
- D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
- W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
- M.N. Cramer, D. Gagnon, O. Laitano, C.G. Crandall, Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102(4), 1907–1989 (2022). https://doi.org/10.1152/physrev.00047.2021
- X. Liu, Z. Jin, S. Summers, D. Derous, M. Li et al., Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep. 39(7), 110835 (2022). https://doi.org/10.1016/j.celrep.2022.110835
- T.H. Park, B. Kim, S. Yu, Y. Park, J.W. Oh et al., Ionoelastomer electrolytes for stretchable ionic thermoelectric supercapacitors. Nano Energy 114, 108643 (2023). https://doi.org/10.1016/j.nanoen.2023.108643
- B. Grocholski, Improving ionic thermoelectrics. Science 368, 10762 (2020). https://doi.org/10.1126/science.368.6495.1076-b
- S. Jia, W. Qian, P. Yu, K. Li, M. Li et al., Ionic thermoelectric materials: innovations and challenges. Mater. Today Phys. 42, 101375 (2024). https://doi.org/10.1016/j.mtphys.2024.101375
- G. Palácio, S.H. Pulcinelli, C.V. Santilli, Fingerprint of semi-crystalline structure memory in the thermal and ionic conduction properties of amorphous ureasil-polyether hybrid solid electrolytes. RSC Adv. 12, 5225 (2022). https://doi.org/10.1039/D1RA09138G
- L. Wang, Z. Dong, S. Tan, J. Zhang, W. Zhang et al., Discovery of a Slater–Pauling semiconductor ZrRu1.5Sb with promising thermoelectric properties. Adv. Funct. Mater. 32(25), 2200438 (2022). https://doi.org/10.1002/adfm.202200438
- M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33(27), 2301421 (2023). https://doi.org/10.1002/adfm.202301421
- X. Li, R. Li, S. Li, Z.L. Wang, D. Wei, Triboiontronics with temporal control of electrical double layer formation. Nat. Commun. 15(1), 6182 (2024). https://doi.org/10.1038/s41467-024-50518-3
- A. Tortajada, E. Hevia, Stable organolithium gels. Nat. Chem. 15(3), 299–300 (2023). https://doi.org/10.1038/s41557-023-01143-y
- A. Ermantraut, V. Radtke, N. Gebel, D. Himmel, T. Koslowski et al., The ideal ionic liquid salt bridge for direct determination of Gibbs energies of transfer of single ions, part II: evaluation of the role of ion solvation and ion mobilities. Angew. Chem. Int. Ed. 57(9), 2348–2352 (2018). https://doi.org/10.1002/anie.201707334
- R. Ghosh, A.K. Mora, S. Nath, Disentangling time scales of vibrational cooling, solvation, and hydrogen bond reorganization dynamics using ultrafast transient infrared spectroscopy of formylperylene. J. Phys. Chem. B 123(20), 4408–4414 (2019). https://doi.org/10.1021/acs.jpcb.9b01920
- G.H. Chen, F. Zhang, Z.M. Zhou, J.R. Li, Y.B. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
- B. Wu, H. Meng, X. Chen, Y. Guo, L. Jiang et al., Structural modulation of nanographenes enabled by defects, size and doping for oxygen reduction reaction. Angew. Chem. Int. Ed. 64(2), e202415071 (2025). https://doi.org/10.1002/anie.202415071
- H. Zhang, Y. Lin, C. Qiao, L. Wang, C. Cai et al., Construction of the Au nanop/graphene oxide/Au nanotube (AuNP/GO/AuNT) sandwich membrane for surface-enhanced Raman scattering sensing. Langmuir 40(13), 6806–6815 (2024). https://doi.org/10.1021/acs.langmuir.3c03670
- C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
- C. Liu, B. Shan, N. Chen, J. Liu, Z. Zhou et al., A material recognition method for underwater application based on Micro Thermoelectric Generator. Sens. Actuat. A Phys. 339, 113503 (2022). https://doi.org/10.1016/j.sna.2022.113503
- S. Saito, C.T. Saito, T. Igawa, N. Takeda, S. Komaki et al., Evolutionary tuning of transient receptor potential ankyrin 1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches. Mol. Biol. Evol. 39, msac180 (2022). https://doi.org/10.1093/molbev/msac180
- X. Guo, X. Lu, P. Jiang, X. Bao, Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv. Mater. 36(23), e2313911 (2024). https://doi.org/10.1002/adma.202313911
- X. Jing, H. Chen, X. Shang, L. Zhang, S. Zhao et al., Photothermal-electric excited droplet multibehavioral manipulation. Adv. Funct. Mater. 35(7), 2410612 (2025). https://doi.org/10.1002/adfm.202410612
- X. Ma, J. Zhao, D. Shou, Y. Liu, A highly-flexible and breathable photo-thermo-electric membrane for energy harvesting. Adv. Energy Mater. 14(15), 2304032 (2024). https://doi.org/10.1002/aenm.202304032
References
C.S. Kim, H.M. Yang, J. Lee, G.S. Lee, H. Choi et al., Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 3(3), 501–507 (2018). https://doi.org/10.1021/acsenergylett.7b01237
L. Miao, S. Zhu, C. Liu, J. Gao, Z. Zhang et al., Comfortable wearable thermoelectric generator with high output power. Nat. Commun. 15(1), 8516 (2024). https://doi.org/10.1038/s41467-024-52841-1
R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 10(1), 1765 (2019). https://doi.org/10.1038/s41467-019-09707-8
B. Grocholski, Lower-cost thermoelectrics. Science 365(6460), 1414 (2019). https://doi.org/10.1126/science.365.6460.1414-b
C.V. Hoang, K. Hayashi, Y. Ito, N. Gorai, G. Allison et al., Interplay of hot electrons from localized and propagating plasmons. Nat. Commun. 8(1), 771 (2017). https://doi.org/10.1038/s41467-017-00815-x
Y. Hao, X. He, L. Wang, X. Qin, G. Chen et al., Stretchable thermoelectrics: strategies, performances, and applications. Adv. Funct. Mater. 32(13), 2109790 (2022). https://doi.org/10.1002/adfm.202109790
Y. Li, W. Wang, X. Cui, N. Li, X. Ma et al., Self-powered machine-learning-assisted material identification enabled by a thermogalvanic dual-network hydrogel with a high thermopower. Small 21(1), e2405911 (2025). https://doi.org/10.1002/smll.202405911
X. Luo, C. Chen, Z. He, M. Wang, K. Pan et al., A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15(1), 3086 (2024). https://doi.org/10.1038/s41467-024-47374-6
K.S. L, L.H. T, C. Yu, Thermally chargeable solid-state supercapacitor. Adv. Energy Mater. 6(18), 1600546 (2016). https://doi.org/10.1002/aenm.201600546
C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu et al., Giant thermopower of ionic gelatin near room temperature. Science 368(6495), 1091–1098 (2020). https://doi.org/10.1126/science.aaz5045
Q. Jiang, H. Sun, D. Zhao, F. Zhang, D. Hu et al., High thermoelectric performance in n-type perylene bisimide induced by the soret effect. Adv. Mater. 32(45), e2002752 (2020). https://doi.org/10.1002/adma.202002752
D. Zhao, H. Wang, Z.U. Khan, J.C. Chen, R. Gabrielsson et al., Ionic thermoelectric supercapacitors. Energy Environ. Sci. 9(4), 1450–1457 (2016). https://doi.org/10.1039/c6ee00121a
D. Zhang, Y. Mao, F. Ye, Q. Li, P. Bai et al., Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 15(7), 2974–2982 (2022). https://doi.org/10.1039/D2EE00738J
X. Li, J.P. Gong, Design principles for strong and tough hydrogels. Nat. Rev. Mater. 9(6), 380–398 (2024). https://doi.org/10.1038/s41578-024-00672-3
K. Wu, Q. Yang, L. Zhang, P. Xu, X. Wu et al., An injectable curcumin-releasing organohydrogel with non-drying property and high mechanical stability at low-temperature for expedited skin wound care. J. Mater. Sci. Technol. 133, 123–134 (2023). https://doi.org/10.1016/j.jmst.2022.06.002
D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
W. Liu, Z. Du, Z. Duan, L. Li, G. Shen, Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure. Nat. Commun. 15(1), 5635 (2024). https://doi.org/10.1038/s41467-024-49907-5
M.N. Cramer, D. Gagnon, O. Laitano, C.G. Crandall, Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102(4), 1907–1989 (2022). https://doi.org/10.1152/physrev.00047.2021
X. Liu, Z. Jin, S. Summers, D. Derous, M. Li et al., Calorie restriction and calorie dilution have different impacts on body fat, metabolism, behavior, and hypothalamic gene expression. Cell Rep. 39(7), 110835 (2022). https://doi.org/10.1016/j.celrep.2022.110835
T.H. Park, B. Kim, S. Yu, Y. Park, J.W. Oh et al., Ionoelastomer electrolytes for stretchable ionic thermoelectric supercapacitors. Nano Energy 114, 108643 (2023). https://doi.org/10.1016/j.nanoen.2023.108643
B. Grocholski, Improving ionic thermoelectrics. Science 368, 10762 (2020). https://doi.org/10.1126/science.368.6495.1076-b
S. Jia, W. Qian, P. Yu, K. Li, M. Li et al., Ionic thermoelectric materials: innovations and challenges. Mater. Today Phys. 42, 101375 (2024). https://doi.org/10.1016/j.mtphys.2024.101375
G. Palácio, S.H. Pulcinelli, C.V. Santilli, Fingerprint of semi-crystalline structure memory in the thermal and ionic conduction properties of amorphous ureasil-polyether hybrid solid electrolytes. RSC Adv. 12, 5225 (2022). https://doi.org/10.1039/D1RA09138G
L. Wang, Z. Dong, S. Tan, J. Zhang, W. Zhang et al., Discovery of a Slater–Pauling semiconductor ZrRu1.5Sb with promising thermoelectric properties. Adv. Funct. Mater. 32(25), 2200438 (2022). https://doi.org/10.1002/adfm.202200438
M.A. Kuzina, D.D. Kartsev, A.V. Stratonovich, P.A. Levkin, Organogels versus hydrogels: advantages, challenges, and applications. Adv. Funct. Mater. 33(27), 2301421 (2023). https://doi.org/10.1002/adfm.202301421
X. Li, R. Li, S. Li, Z.L. Wang, D. Wei, Triboiontronics with temporal control of electrical double layer formation. Nat. Commun. 15(1), 6182 (2024). https://doi.org/10.1038/s41467-024-50518-3
A. Tortajada, E. Hevia, Stable organolithium gels. Nat. Chem. 15(3), 299–300 (2023). https://doi.org/10.1038/s41557-023-01143-y
A. Ermantraut, V. Radtke, N. Gebel, D. Himmel, T. Koslowski et al., The ideal ionic liquid salt bridge for direct determination of Gibbs energies of transfer of single ions, part II: evaluation of the role of ion solvation and ion mobilities. Angew. Chem. Int. Ed. 57(9), 2348–2352 (2018). https://doi.org/10.1002/anie.201707334
R. Ghosh, A.K. Mora, S. Nath, Disentangling time scales of vibrational cooling, solvation, and hydrogen bond reorganization dynamics using ultrafast transient infrared spectroscopy of formylperylene. J. Phys. Chem. B 123(20), 4408–4414 (2019). https://doi.org/10.1021/acs.jpcb.9b01920
G.H. Chen, F. Zhang, Z.M. Zhou, J.R. Li, Y.B. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8(25), 1801219 (2018). https://doi.org/10.1002/aenm.201801219
B. Wu, H. Meng, X. Chen, Y. Guo, L. Jiang et al., Structural modulation of nanographenes enabled by defects, size and doping for oxygen reduction reaction. Angew. Chem. Int. Ed. 64(2), e202415071 (2025). https://doi.org/10.1002/anie.202415071
H. Zhang, Y. Lin, C. Qiao, L. Wang, C. Cai et al., Construction of the Au nanop/graphene oxide/Au nanotube (AuNP/GO/AuNT) sandwich membrane for surface-enhanced Raman scattering sensing. Langmuir 40(13), 6806–6815 (2024). https://doi.org/10.1021/acs.langmuir.3c03670
C. Du, M. Cao, G. Li, Y. Hu, Y. Zhang et al., Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Mater. 32(36), 2206083 (2022). https://doi.org/10.1002/adfm.202206083
C. Liu, B. Shan, N. Chen, J. Liu, Z. Zhou et al., A material recognition method for underwater application based on Micro Thermoelectric Generator. Sens. Actuat. A Phys. 339, 113503 (2022). https://doi.org/10.1016/j.sna.2022.113503
S. Saito, C.T. Saito, T. Igawa, N. Takeda, S. Komaki et al., Evolutionary tuning of transient receptor potential ankyrin 1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches. Mol. Biol. Evol. 39, msac180 (2022). https://doi.org/10.1093/molbev/msac180
X. Guo, X. Lu, P. Jiang, X. Bao, Touchless thermosensation enabled by flexible infrared photothermoelectric detector for temperature prewarning function of electronic skin. Adv. Mater. 36(23), e2313911 (2024). https://doi.org/10.1002/adma.202313911
X. Jing, H. Chen, X. Shang, L. Zhang, S. Zhao et al., Photothermal-electric excited droplet multibehavioral manipulation. Adv. Funct. Mater. 35(7), 2410612 (2025). https://doi.org/10.1002/adfm.202410612
X. Ma, J. Zhao, D. Shou, Y. Liu, A highly-flexible and breathable photo-thermo-electric membrane for energy harvesting. Adv. Energy Mater. 14(15), 2304032 (2024). https://doi.org/10.1002/aenm.202304032