Multifunctional and Scalable Nanoparticles for Bimodal Image-Guided Phototherapy in Bladder Cancer Treatment
Corresponding Author: Tzu‑Yin Lin
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 222
Abstract
Rational design of multifunctional nanoplatforms capable of combining therapeutic effects with real-time monitoring of drug distribution and tumor status is emerging as a promising approach in cancer nanomedicine. Here, we introduce pyropheophorbide a–bisaminoquinoline conjugate lipid nanoparticles (PPBC LNPs) as a bimodal system for image-guided phototherapy in bladder cancer treatment. PPBC LNPs not only demonstrate both powerful photodynamic and photothermal effects upon light activation, but also exhibit potent autophagy blockage, effectively inducing bladder cancer cell death. Furthermore, PPBC LNPs possess remarkable photoacoustic (PA) and fluorescence (FL) imaging capabilities, enabling imaging with high-resolution, deep tissue penetration and high sensitivity for tracking drug biodistribution and phototherapy efficacy. Specifically, PA imaging confirms the efficient accumulation of PPBC LNPs within tumor and predicts therapeutic outcomes of photodynamic therapy, while FL imaging confirms their prolonged retention at the tumor site for up to 6 days. PPBC LNPs significantly suppress bladder tumor growth, with several tumors completely ablated following just two doses of the nanoparticles and laser treatment. Additionally, PPBC LNPs were formulated with lipid-based excipients and assembled using microfluidic technology to enhance biocompatibility, stability, and scalability, showing potential for clinical translation. This versatile nanoparticle represents a promising candidate for further development in bladder cancer therapy.
Highlights:
1 Pyropheophorbide a–bisaminoquinoline conjugate lipid nanoparticles (PPBC LNPs), formulated with lipid-based excipients and assembled using microfluidics, exhibit excellent biocompatibility and stability, indicating promise for clinical applications.
2 PPBC LNPs possess remarkable photoacoustic and fluorescence imaging capabilities, enabling high-resolution, deep tissue penetration and high sensitivity imaging for tracking drug biodistribution and phototherapy efficacy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Dong, C. Hu, Z. Ma, Y. Huang, G. Shelley et al., Urinary extracellular vesicle-derived miR-126-3p predicts lymph node invasion in patients with high-risk prostate cancer. Med. Oncol. 41(7), 169 (2024). https://doi.org/10.1007/s12032-024-02400-x
- J. Dobruch, M. Oszczudłowski, Bladder cancer: current challenges and future directions. Medicina 57(8), 749 (2021). https://doi.org/10.3390/medicina57080749
- Y.-H. Jin, X.-T. Zeng, T.-Z. Liu, Z.-M. Bai, Z.-L. Dou et al., Treatment and surveillance for non-muscle-invasive bladder cancer: a clinical practice guideline (2021 edition). Mil. Med. Res. 9(1), 44 (2022). https://doi.org/10.1186/s40779-022-00406-y
- R.C. Md, M. Shelley, S. Selph, M. David, I. Buckley, K.S. Gustafson, J.C. Griffin et al., Treatment of muscle-invasive bladder cancer: a systematic review. Cancer 122(6), 842–851 (2016). https://doi.org/10.1002/cncr.29843
- R. Contieri, P.J. Hensley, W.S. Tan, V. Grajales, K. Bree et al., Oncological outcomes for patients with European association of urology very high-risk non-muscle-invasive bladder cancer treated with Bacillus calmette-guérin or early radical cystectomy. Eur. Urol. Oncol. 6(6), 590–596 (2023). https://doi.org/10.1016/j.euo.2023.07.012
- T.W. Flaig, P.E. Spiess, N. Agarwal, R. Bangs, S.A. Boorjian et al., Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 18(3), 329–354 (2020). https://doi.org/10.6004/jnccn.2020.0011
- J.Y. Teoh, A.M. Kamat, P.C. Black, P. Grivas, S.F. Shariat et al., Recurrence mechanisms of non-muscle-invasive bladder cancer - a clinical perspective. Nat. Rev. Urol. 19(5), 280–294 (2022). https://doi.org/10.1038/s41585-022-00578-1
- H.Y. Yoon, H.M. Yang, C.H. Kim, Y.T. Goo, M.J. Kang et al., Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin. Drug Deliv. 17(11), 1555–1572 (2020). https://doi.org/10.1080/17425247.2020.1810016
- J.-L. Lu, Q.-D. Xia, Y.-H. Lu, Z. Liu, P. Zhou et al., Efficacy of intravesical therapies on the prevention of recurrence and progression of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis. Cancer Med. 9(21), 7800–7809 (2020). https://doi.org/10.1002/cam4.3513
- T.Y. Lin, Y. Li, Q. Liu, J.L. Chen, H. Zhang et al., Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 104, 339–351 (2016). https://doi.org/10.1016/j.biomaterials.2016.07.026
- P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti et al., Photodynamic therapy of cancer: an update. CA A Cancer J. Clin. 61(4), 250–281 (2011). https://doi.org/10.3322/caac.20114
- D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003). https://doi.org/10.1038/nrc1071
- K.M.M. Rahman, P. Giram, B.A. Foster, Y. You, Photodynamic therapy for bladder cancers, a focused review. Photochem. Photobiol. 99(2), 420–436 (2023). https://doi.org/10.1111/php.13726
- L. Tran, J.-F. Xiao, N. Agarwal, J.E. Duex, D. Theodorescu, Advances in bladder cancer biology and therapy. Nat. Rev. Cancer 21(2), 104–121 (2021). https://doi.org/10.1038/s41568-020-00313-1
- D. van Straten, V. Mashayekhi, H.S. de Bruijn, S. Oliveira, D.J. Robinson, Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9(2), 19 (2017). https://doi.org/10.3390/cancers9020019
- J. Nam, S. Son, L.J. Ochyl, R. Kuai, A. Schwendeman et al., Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9(1), 1074 (2018). https://doi.org/10.1038/s41467-018-03473-9
- H.S. Han, K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines 9(3), 305 (2021). https://doi.org/10.3390/biomedicines9030305
- M. Overchuk, R.A. Weersink, B.C. Wilson, G. Zheng, Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 17(9), 7979–8003 (2023). https://doi.org/10.1021/acsnano.3c00891
- P.A. Sutton, M.A. van Dam, R.A. Cahill, S. Mieog, K. Polom et al., Fluorescence-guided surgery: comprehensive review. BJS Open (2023). https://doi.org/10.1093/bjsopen/zrad049
- M.T. Olson, Q.P. Ly, A.M. Mohs, Fluorescence guidance in surgical oncology: challenges, opportunities, and translation. Mol. Imag. Biol. 21(2), 200–218 (2019). https://doi.org/10.1007/s11307-018-1239-2
- X. Zhang, Y. Wu, L. Chen, J. Song, H. Yang, Optical and photoacoustic imaging in vivo: opportunities and challenges. Chem. Biomed. Imag. 1(2), 99–109 (2023). https://doi.org/10.1021/cbmi.3c00009
- M. Kim, K.P. Kubelick, D. Vanderlaan, D. Qin, J. Lee et al., Coupling gold nanospheres into nanochain constructs for high-contrast, longitudinal photoacoustic imaging. Nano Lett. 24(24), 7202–7210 (2024). https://doi.org/10.1021/acs.nanolett.4c00992
- P. Beard, Biomedical photoacoustic imaging. Interface Focus. 1(4), 602–631 (2011). https://doi.org/10.1098/rsfs.2011.0028
- M. Mehrmohammadi, S. Joon Yoon, D. Yeager, S.Y. Emelianov, Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imag. 2(1), 89–105 (2013). https://doi.org/10.2174/2211555211302010010
- M. Li, Y. Tang, J. Yao, Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10, 65–73 (2018). https://doi.org/10.1016/j.pacs.2018.05.001
- S. Jung, J. Lee, J. Lim, J. Suh, T. Kim et al., Polymeric nanops controlled by on-chip self-assembly enhance cancer treatment effectiveness. Adv. Healthc. Mater. 9(22), e2001633 (2020). https://doi.org/10.1002/adhm.202001633
- S.J. Shepherd, D. Issadore, M.J. Mitchell, Microfluidic formulation of nanops for biomedical applications. Biomaterials 274, 120826 (2021). https://doi.org/10.1016/j.biomaterials.2021.120826
- S. Gimondi, H. Ferreira, R.L. Reis, N.M. Neves, Microfluidic devices: a tool for nanop synthesis and performance evaluation. ACS Nano 17(15), 14205–14228 (2023). https://doi.org/10.1021/acsnano.3c01117
- Y. Liu, G. Yang, Y. Hui, S. Ranaweera, C.X. Zhao, Microfluidic nanops for drug delivery. Small 18(36), 2106580 (2022). https://doi.org/10.1002/smll.202106580
- Z. Ma, K. Lin, M. Tang, M. Ramachandran, R. Qiu et al., A pH-driven small-molecule nanotransformer hijacks lysosomes and overcomes autophagy-induced resistance in cancer. Angew. Chem. Int. Ed. 61(35), e202204567 (2022). https://doi.org/10.1002/anie.202204567
- H. Liao, Y. Chu, S. Liao, Y. He, Y. Ma et al., Double safety guarantees: Food-grade photothermal complex with a pH-triggered NIR absorption from zero to one. Fundam. Res. 4(5), 1157–1166 (2022). https://doi.org/10.1016/j.fmre.2022.06.004
- D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu et al., NIR light-driving barrier-free group rotation in nanops with an 88.3% photothermal conversion efficiency for photothermal therapy. Adv. Mater. 32(11), e1907855 (2020). https://doi.org/10.1002/adma.201907855
- W.-C. Luo, A.O. Beringhs, R. Kim, W. Zhang, S.M. Patel et al., Impact of formulation on the quality and stability of freeze-dried nanops. Eur. J. Pharm. Biopharm. 169, 256–267 (2021). https://doi.org/10.1016/j.ejpb.2021.10.014
- E. Trenkenschuh, W. Friess, Freeze-drying of nanops: how to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 165, 345–360 (2021). https://doi.org/10.1016/j.ejpb.2021.05.024
- N. Beniwal, A. Verma, C.L. Putta, A.K. Rengan, Recent trends in bio-nanomaterials and non-invasive combinatorial approaches of photothermal therapy against cancer. Nanotheranostics 8(2), 219–238 (2024). https://doi.org/10.7150/ntno.91356
- V. Raja Solomon, H. Lee, Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 625(1–3), 220–233 (2009). https://doi.org/10.1016/j.ejphar.2009.06.063
- Z. Ma, J. Li, K. Lin, M. Ramachandran, D. Zhang et al., Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat. Commun. 11(1), 4615 (2020). https://doi.org/10.1038/s41467-020-18399-4
- S. Sukseree, L. László, F. Gruber, S. Bergmann, M.S. Narzt et al., Filamentous aggregation of sequestosome-1/p62 in brain neurons and neuroepithelial cells upon Tyr-cre-mediated deletion of the autophagy gene Atg7. Mol. Neurobiol. 55(11), 8425–8437 (2018). https://doi.org/10.1007/s12035-018-0996-x
- T. Aki, K. Unuma, K. Noritake, N. Hirayama, T. Funakoshi et al., Formation of high molecular weight p62 by CORM-3. PLoS ONE 14(1), e0210474 (2019). https://doi.org/10.1371/journal.pone.0210474
- D.R. Mokoena, B.P. George, H. Abrahamse, Photodynamic therapy induced cell death mechanisms in breast cancer. Int. J. Mol. Sci. 22(19), 10506 (2021). https://doi.org/10.3390/ijms221910506
- K. Lin, Z. Ma, J. Li, M. Tang, A. Lindstrom et al., Single small molecule-assembled mitochondria targeting nanofibers for enhanced photodynamic cancer therapy in vivo. Adv. Funct. Mater. 31(10), 2008460 (2021). https://doi.org/10.1002/adfm.202008460
- H. Kurokawa, H. Ito, M. Terasaki, H. Matsui, Hyperthermia enhances photodynamic therapy by regulation of HCP1 and ABCG2 expressions via high level ROS generation. Sci. Rep. 9(1), 1638 (2019). https://doi.org/10.1038/s41598-018-38460-z
- M. Tang, K. Lin, M. Ramachandran, L. Li, H. Zou et al., A mitochondria-targeting lipid–small molecule hybrid nanop for imaging and therapy in an orthotopic glioma model. Acta Pharm. Sin. B 12(6), 2672–2682 (2022). https://doi.org/10.1016/j.apsb.2022.04.005
- M.-S. Hwang, C.T. Schwall, E. Pazarentzos, C. Datler, N.N. Alder et al., Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ. 21(11), 1733–1745 (2014). https://doi.org/10.1038/cdd.2014.84
- S. Romero-Garcia, H. Prado-Garcia, Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int. J. Oncol. 54(4), 1155–1167 (2019). https://doi.org/10.3892/ijo.2019.4696
- T. Rodrigues, S. Piccirillo, S. Magi, A. Preziuso, V. Dos Santos Ramos et al., Control of Ca2+ and metabolic homeostasis by the Na+/Ca2+ exchangers (NCXs) in health and disease. Biochem. Pharmacol. 203, 115163 (2022). https://doi.org/10.1016/j.bcp.2022.115163
- K. Siwawannapong, R. Zhang, H. Lei, Q. Jin, W. Tang et al., Ultra-small pyropheophorbide-a nanodots for near-infrared fluorescence/photoacoustic imaging-guided photodynamic therapy. Theranostics 10(1), 62–73 (2020). https://doi.org/10.7150/thno.35735
- D. Baimanov, Z. Song, Z. Zhang, L. Sun, Q. Yuan et al., Preferred lung accumulation of polystyrene nanoplastics with negative charges. Nano Lett. 24(41), 12857–12865 (2024). https://doi.org/10.1021/acs.nanolett.4c03245
- H. Huang, R. Hernandez, J. Geng, H. Sun, W. Song et al., A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 76, 25–32 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.049
- V. Agrahari, V. Agrahari, Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov. Today 23(5), 974–991 (2018). https://doi.org/10.1016/j.drudis.2018.01.047
- C.L. Saw, P.W. Heng, M. Olivo, Potentiation of the photodynamic action of hypericin. J. Environ. Pathol. Toxicol. Oncol. 27(1), 23–33 (2008). https://doi.org/10.1615/jenvironpatholtoxicoloncol.v27.i1.30
- B.W. Henderson, T.M. Busch, L.A. Vaughan, N.P. Frawley, D. Babich et al., Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate. Cancer Res. 60(3), 525–529 (2000) PMID: 10676629
- M.F. Wei, M.W. Chen, K.C. Chen, P.J. Lou, S.Y. Lin et al., Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10(7), 1179–1192 (2014). https://doi.org/10.4161/auto.28679
- B.Q. Spring, I. Rizvi, N. Xu, T. Hasan, The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 14(8), 1476–1491 (2015). https://doi.org/10.1039/c4pp00495g
- S. Shrivastava, J.J. Mansure, W. Almajed, F. Cury, G. Ferbeyre et al., The role of HMGB1 in radioresistance of bladder cancer. Mol. Cancer Ther. 15(3), 471–479 (2016). https://doi.org/10.1158/1535-7163.MCT-15-0581
- E. Konac, Y. Kurman, S. Baltaci, Contrast effects of autophagy in the treatment of bladder cancer. Exp. Biol. Med. 246(3), 354–367 (2021). https://doi.org/10.1177/1535370220959336
- P. Tan, H. Cai, Q. Wei, X. Tang, Q. Zhang et al., Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 277, 121061 (2021). https://doi.org/10.1016/j.biomaterials.2021.121061
- G. Li, S. Yuan, D. Deng, T. Ou, Y. Li et al., Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer-conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Adv. Funct. Mater. 29(40), 1901932 (2019). https://doi.org/10.1002/adfm.201901932
- A. Winnicka, J. Brzeszczyńska, J. Saluk, P. Wigner-Jeziorska, Nanomedicine in bladder cancer therapy. Int. J. Mol. Sci. 25(19), 10388 (2024). https://doi.org/10.3390/ijms251910388
- J. Zhou, J.V. Jokerst, Photoacoustic imaging with fiber optic technology: a review. Photoacoustics 20, 100211 (2020). https://doi.org/10.1016/j.pacs.2020.100211
- K. Kim, J.Y. Youm, E.H. Lee, O. Gulenko, M. Kim et al., Tapered catheter-based transurethral photoacoustic and ultrasonic endoscopy of the urinary system. Opt. Express 30(15), 26169–26181 (2022). https://doi.org/10.1364/OE.461855
- J. Park, S. Choi, F. Knieling, B. Clingman, S. Bohndiek et al., Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. (2024). https://doi.org/10.1038/s44222-024-00240-y
- J. Kim, D. Heo, S. Cho, M. Ha, J. Park et al., Enhanced dual-mode imaging: superior photoacoustic and ultrasound endoscopy in live pigs using a transparent ultrasound transducer. Sci. Adv. 10(47), eadq9960 (2024). https://doi.org/10.1126/sciadv.adq9960
- H. Nie, H. Luo, L. Chen, Q. Zhu, A coregistered ultrasound and photoacoustic imaging protocol for the transvaginal imaging of ovarian lesions. J. Vis. Exp. 193, e64864 (2023). https://doi.org/10.3791/64864
- D. Oh, H. Kim, M. Sung, C. Kim, Video-rate endocavity photoacoustic/harmonic ultrasound imaging with miniaturized light delivery. J. Biomed. Opt. 29(Suppl 1), S11528 (2024). https://doi.org/10.1117/1.JBO.29.S1.S11528
- G. Yang, E. Amidi, W. Chapman, S. Nandy, A. Mostafa et al., Co-registered photoacoustic and ultrasound imaging of human colorectal cancer. J. Biomed. Opt. 24(12), 1–13 (2019). https://doi.org/10.1117/1.JBO.24.12.121913
- S.R. Kothapalli, G.A. Sonn, J.W. Choe, A. Nikoozadeh, A. Bhuyan et al., Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci. Transl. Med. 11(507), eaav2169 (2019). https://doi.org/10.1126/scitranslmed.aav2169
- Y. Liang, W. Fu, Q. Li, X. Chen, H. Sun et al., Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat. Commun. 13(1), 7604 (2022). https://doi.org/10.1038/s41467-022-35259-5
References
L. Dong, C. Hu, Z. Ma, Y. Huang, G. Shelley et al., Urinary extracellular vesicle-derived miR-126-3p predicts lymph node invasion in patients with high-risk prostate cancer. Med. Oncol. 41(7), 169 (2024). https://doi.org/10.1007/s12032-024-02400-x
J. Dobruch, M. Oszczudłowski, Bladder cancer: current challenges and future directions. Medicina 57(8), 749 (2021). https://doi.org/10.3390/medicina57080749
Y.-H. Jin, X.-T. Zeng, T.-Z. Liu, Z.-M. Bai, Z.-L. Dou et al., Treatment and surveillance for non-muscle-invasive bladder cancer: a clinical practice guideline (2021 edition). Mil. Med. Res. 9(1), 44 (2022). https://doi.org/10.1186/s40779-022-00406-y
R.C. Md, M. Shelley, S. Selph, M. David, I. Buckley, K.S. Gustafson, J.C. Griffin et al., Treatment of muscle-invasive bladder cancer: a systematic review. Cancer 122(6), 842–851 (2016). https://doi.org/10.1002/cncr.29843
R. Contieri, P.J. Hensley, W.S. Tan, V. Grajales, K. Bree et al., Oncological outcomes for patients with European association of urology very high-risk non-muscle-invasive bladder cancer treated with Bacillus calmette-guérin or early radical cystectomy. Eur. Urol. Oncol. 6(6), 590–596 (2023). https://doi.org/10.1016/j.euo.2023.07.012
T.W. Flaig, P.E. Spiess, N. Agarwal, R. Bangs, S.A. Boorjian et al., Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 18(3), 329–354 (2020). https://doi.org/10.6004/jnccn.2020.0011
J.Y. Teoh, A.M. Kamat, P.C. Black, P. Grivas, S.F. Shariat et al., Recurrence mechanisms of non-muscle-invasive bladder cancer - a clinical perspective. Nat. Rev. Urol. 19(5), 280–294 (2022). https://doi.org/10.1038/s41585-022-00578-1
H.Y. Yoon, H.M. Yang, C.H. Kim, Y.T. Goo, M.J. Kang et al., Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin. Drug Deliv. 17(11), 1555–1572 (2020). https://doi.org/10.1080/17425247.2020.1810016
J.-L. Lu, Q.-D. Xia, Y.-H. Lu, Z. Liu, P. Zhou et al., Efficacy of intravesical therapies on the prevention of recurrence and progression of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis. Cancer Med. 9(21), 7800–7809 (2020). https://doi.org/10.1002/cam4.3513
T.Y. Lin, Y. Li, Q. Liu, J.L. Chen, H. Zhang et al., Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 104, 339–351 (2016). https://doi.org/10.1016/j.biomaterials.2016.07.026
P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti et al., Photodynamic therapy of cancer: an update. CA A Cancer J. Clin. 61(4), 250–281 (2011). https://doi.org/10.3322/caac.20114
D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003). https://doi.org/10.1038/nrc1071
K.M.M. Rahman, P. Giram, B.A. Foster, Y. You, Photodynamic therapy for bladder cancers, a focused review. Photochem. Photobiol. 99(2), 420–436 (2023). https://doi.org/10.1111/php.13726
L. Tran, J.-F. Xiao, N. Agarwal, J.E. Duex, D. Theodorescu, Advances in bladder cancer biology and therapy. Nat. Rev. Cancer 21(2), 104–121 (2021). https://doi.org/10.1038/s41568-020-00313-1
D. van Straten, V. Mashayekhi, H.S. de Bruijn, S. Oliveira, D.J. Robinson, Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9(2), 19 (2017). https://doi.org/10.3390/cancers9020019
J. Nam, S. Son, L.J. Ochyl, R. Kuai, A. Schwendeman et al., Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 9(1), 1074 (2018). https://doi.org/10.1038/s41467-018-03473-9
H.S. Han, K.Y. Choi, Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines 9(3), 305 (2021). https://doi.org/10.3390/biomedicines9030305
M. Overchuk, R.A. Weersink, B.C. Wilson, G. Zheng, Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano 17(9), 7979–8003 (2023). https://doi.org/10.1021/acsnano.3c00891
P.A. Sutton, M.A. van Dam, R.A. Cahill, S. Mieog, K. Polom et al., Fluorescence-guided surgery: comprehensive review. BJS Open (2023). https://doi.org/10.1093/bjsopen/zrad049
M.T. Olson, Q.P. Ly, A.M. Mohs, Fluorescence guidance in surgical oncology: challenges, opportunities, and translation. Mol. Imag. Biol. 21(2), 200–218 (2019). https://doi.org/10.1007/s11307-018-1239-2
X. Zhang, Y. Wu, L. Chen, J. Song, H. Yang, Optical and photoacoustic imaging in vivo: opportunities and challenges. Chem. Biomed. Imag. 1(2), 99–109 (2023). https://doi.org/10.1021/cbmi.3c00009
M. Kim, K.P. Kubelick, D. Vanderlaan, D. Qin, J. Lee et al., Coupling gold nanospheres into nanochain constructs for high-contrast, longitudinal photoacoustic imaging. Nano Lett. 24(24), 7202–7210 (2024). https://doi.org/10.1021/acs.nanolett.4c00992
P. Beard, Biomedical photoacoustic imaging. Interface Focus. 1(4), 602–631 (2011). https://doi.org/10.1098/rsfs.2011.0028
M. Mehrmohammadi, S. Joon Yoon, D. Yeager, S.Y. Emelianov, Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imag. 2(1), 89–105 (2013). https://doi.org/10.2174/2211555211302010010
M. Li, Y. Tang, J. Yao, Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10, 65–73 (2018). https://doi.org/10.1016/j.pacs.2018.05.001
S. Jung, J. Lee, J. Lim, J. Suh, T. Kim et al., Polymeric nanops controlled by on-chip self-assembly enhance cancer treatment effectiveness. Adv. Healthc. Mater. 9(22), e2001633 (2020). https://doi.org/10.1002/adhm.202001633
S.J. Shepherd, D. Issadore, M.J. Mitchell, Microfluidic formulation of nanops for biomedical applications. Biomaterials 274, 120826 (2021). https://doi.org/10.1016/j.biomaterials.2021.120826
S. Gimondi, H. Ferreira, R.L. Reis, N.M. Neves, Microfluidic devices: a tool for nanop synthesis and performance evaluation. ACS Nano 17(15), 14205–14228 (2023). https://doi.org/10.1021/acsnano.3c01117
Y. Liu, G. Yang, Y. Hui, S. Ranaweera, C.X. Zhao, Microfluidic nanops for drug delivery. Small 18(36), 2106580 (2022). https://doi.org/10.1002/smll.202106580
Z. Ma, K. Lin, M. Tang, M. Ramachandran, R. Qiu et al., A pH-driven small-molecule nanotransformer hijacks lysosomes and overcomes autophagy-induced resistance in cancer. Angew. Chem. Int. Ed. 61(35), e202204567 (2022). https://doi.org/10.1002/anie.202204567
H. Liao, Y. Chu, S. Liao, Y. He, Y. Ma et al., Double safety guarantees: Food-grade photothermal complex with a pH-triggered NIR absorption from zero to one. Fundam. Res. 4(5), 1157–1166 (2022). https://doi.org/10.1016/j.fmre.2022.06.004
D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu et al., NIR light-driving barrier-free group rotation in nanops with an 88.3% photothermal conversion efficiency for photothermal therapy. Adv. Mater. 32(11), e1907855 (2020). https://doi.org/10.1002/adma.201907855
W.-C. Luo, A.O. Beringhs, R. Kim, W. Zhang, S.M. Patel et al., Impact of formulation on the quality and stability of freeze-dried nanops. Eur. J. Pharm. Biopharm. 169, 256–267 (2021). https://doi.org/10.1016/j.ejpb.2021.10.014
E. Trenkenschuh, W. Friess, Freeze-drying of nanops: how to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 165, 345–360 (2021). https://doi.org/10.1016/j.ejpb.2021.05.024
N. Beniwal, A. Verma, C.L. Putta, A.K. Rengan, Recent trends in bio-nanomaterials and non-invasive combinatorial approaches of photothermal therapy against cancer. Nanotheranostics 8(2), 219–238 (2024). https://doi.org/10.7150/ntno.91356
V. Raja Solomon, H. Lee, Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol. 625(1–3), 220–233 (2009). https://doi.org/10.1016/j.ejphar.2009.06.063
Z. Ma, J. Li, K. Lin, M. Ramachandran, D. Zhang et al., Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat. Commun. 11(1), 4615 (2020). https://doi.org/10.1038/s41467-020-18399-4
S. Sukseree, L. László, F. Gruber, S. Bergmann, M.S. Narzt et al., Filamentous aggregation of sequestosome-1/p62 in brain neurons and neuroepithelial cells upon Tyr-cre-mediated deletion of the autophagy gene Atg7. Mol. Neurobiol. 55(11), 8425–8437 (2018). https://doi.org/10.1007/s12035-018-0996-x
T. Aki, K. Unuma, K. Noritake, N. Hirayama, T. Funakoshi et al., Formation of high molecular weight p62 by CORM-3. PLoS ONE 14(1), e0210474 (2019). https://doi.org/10.1371/journal.pone.0210474
D.R. Mokoena, B.P. George, H. Abrahamse, Photodynamic therapy induced cell death mechanisms in breast cancer. Int. J. Mol. Sci. 22(19), 10506 (2021). https://doi.org/10.3390/ijms221910506
K. Lin, Z. Ma, J. Li, M. Tang, A. Lindstrom et al., Single small molecule-assembled mitochondria targeting nanofibers for enhanced photodynamic cancer therapy in vivo. Adv. Funct. Mater. 31(10), 2008460 (2021). https://doi.org/10.1002/adfm.202008460
H. Kurokawa, H. Ito, M. Terasaki, H. Matsui, Hyperthermia enhances photodynamic therapy by regulation of HCP1 and ABCG2 expressions via high level ROS generation. Sci. Rep. 9(1), 1638 (2019). https://doi.org/10.1038/s41598-018-38460-z
M. Tang, K. Lin, M. Ramachandran, L. Li, H. Zou et al., A mitochondria-targeting lipid–small molecule hybrid nanop for imaging and therapy in an orthotopic glioma model. Acta Pharm. Sin. B 12(6), 2672–2682 (2022). https://doi.org/10.1016/j.apsb.2022.04.005
M.-S. Hwang, C.T. Schwall, E. Pazarentzos, C. Datler, N.N. Alder et al., Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction. Cell Death Differ. 21(11), 1733–1745 (2014). https://doi.org/10.1038/cdd.2014.84
S. Romero-Garcia, H. Prado-Garcia, Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int. J. Oncol. 54(4), 1155–1167 (2019). https://doi.org/10.3892/ijo.2019.4696
T. Rodrigues, S. Piccirillo, S. Magi, A. Preziuso, V. Dos Santos Ramos et al., Control of Ca2+ and metabolic homeostasis by the Na+/Ca2+ exchangers (NCXs) in health and disease. Biochem. Pharmacol. 203, 115163 (2022). https://doi.org/10.1016/j.bcp.2022.115163
K. Siwawannapong, R. Zhang, H. Lei, Q. Jin, W. Tang et al., Ultra-small pyropheophorbide-a nanodots for near-infrared fluorescence/photoacoustic imaging-guided photodynamic therapy. Theranostics 10(1), 62–73 (2020). https://doi.org/10.7150/thno.35735
D. Baimanov, Z. Song, Z. Zhang, L. Sun, Q. Yuan et al., Preferred lung accumulation of polystyrene nanoplastics with negative charges. Nano Lett. 24(41), 12857–12865 (2024). https://doi.org/10.1021/acs.nanolett.4c03245
H. Huang, R. Hernandez, J. Geng, H. Sun, W. Song et al., A porphyrin-PEG polymer with rapid renal clearance. Biomaterials 76, 25–32 (2016). https://doi.org/10.1016/j.biomaterials.2015.10.049
V. Agrahari, V. Agrahari, Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov. Today 23(5), 974–991 (2018). https://doi.org/10.1016/j.drudis.2018.01.047
C.L. Saw, P.W. Heng, M. Olivo, Potentiation of the photodynamic action of hypericin. J. Environ. Pathol. Toxicol. Oncol. 27(1), 23–33 (2008). https://doi.org/10.1615/jenvironpatholtoxicoloncol.v27.i1.30
B.W. Henderson, T.M. Busch, L.A. Vaughan, N.P. Frawley, D. Babich et al., Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate. Cancer Res. 60(3), 525–529 (2000) PMID: 10676629
M.F. Wei, M.W. Chen, K.C. Chen, P.J. Lou, S.Y. Lin et al., Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10(7), 1179–1192 (2014). https://doi.org/10.4161/auto.28679
B.Q. Spring, I. Rizvi, N. Xu, T. Hasan, The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 14(8), 1476–1491 (2015). https://doi.org/10.1039/c4pp00495g
S. Shrivastava, J.J. Mansure, W. Almajed, F. Cury, G. Ferbeyre et al., The role of HMGB1 in radioresistance of bladder cancer. Mol. Cancer Ther. 15(3), 471–479 (2016). https://doi.org/10.1158/1535-7163.MCT-15-0581
E. Konac, Y. Kurman, S. Baltaci, Contrast effects of autophagy in the treatment of bladder cancer. Exp. Biol. Med. 246(3), 354–367 (2021). https://doi.org/10.1177/1535370220959336
P. Tan, H. Cai, Q. Wei, X. Tang, Q. Zhang et al., Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 277, 121061 (2021). https://doi.org/10.1016/j.biomaterials.2021.121061
G. Li, S. Yuan, D. Deng, T. Ou, Y. Li et al., Fluorinated polyethylenimine to enable transmucosal delivery of photosensitizer-conjugated catalase for photodynamic therapy of orthotopic bladder tumors postintravesical instillation. Adv. Funct. Mater. 29(40), 1901932 (2019). https://doi.org/10.1002/adfm.201901932
A. Winnicka, J. Brzeszczyńska, J. Saluk, P. Wigner-Jeziorska, Nanomedicine in bladder cancer therapy. Int. J. Mol. Sci. 25(19), 10388 (2024). https://doi.org/10.3390/ijms251910388
J. Zhou, J.V. Jokerst, Photoacoustic imaging with fiber optic technology: a review. Photoacoustics 20, 100211 (2020). https://doi.org/10.1016/j.pacs.2020.100211
K. Kim, J.Y. Youm, E.H. Lee, O. Gulenko, M. Kim et al., Tapered catheter-based transurethral photoacoustic and ultrasonic endoscopy of the urinary system. Opt. Express 30(15), 26169–26181 (2022). https://doi.org/10.1364/OE.461855
J. Park, S. Choi, F. Knieling, B. Clingman, S. Bohndiek et al., Clinical translation of photoacoustic imaging. Nat. Rev. Bioeng. (2024). https://doi.org/10.1038/s44222-024-00240-y
J. Kim, D. Heo, S. Cho, M. Ha, J. Park et al., Enhanced dual-mode imaging: superior photoacoustic and ultrasound endoscopy in live pigs using a transparent ultrasound transducer. Sci. Adv. 10(47), eadq9960 (2024). https://doi.org/10.1126/sciadv.adq9960
H. Nie, H. Luo, L. Chen, Q. Zhu, A coregistered ultrasound and photoacoustic imaging protocol for the transvaginal imaging of ovarian lesions. J. Vis. Exp. 193, e64864 (2023). https://doi.org/10.3791/64864
D. Oh, H. Kim, M. Sung, C. Kim, Video-rate endocavity photoacoustic/harmonic ultrasound imaging with miniaturized light delivery. J. Biomed. Opt. 29(Suppl 1), S11528 (2024). https://doi.org/10.1117/1.JBO.29.S1.S11528
G. Yang, E. Amidi, W. Chapman, S. Nandy, A. Mostafa et al., Co-registered photoacoustic and ultrasound imaging of human colorectal cancer. J. Biomed. Opt. 24(12), 1–13 (2019). https://doi.org/10.1117/1.JBO.24.12.121913
S.R. Kothapalli, G.A. Sonn, J.W. Choe, A. Nikoozadeh, A. Bhuyan et al., Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci. Transl. Med. 11(507), eaav2169 (2019). https://doi.org/10.1126/scitranslmed.aav2169
Y. Liang, W. Fu, Q. Li, X. Chen, H. Sun et al., Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat. Commun. 13(1), 7604 (2022). https://doi.org/10.1038/s41467-022-35259-5