Evolving Role of Conjugated Polymers in Nanoelectronics and Photonics
Corresponding Author: Ammar Nayfeh
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 230
Abstract
Conjugated polymers (CPs) have emerged as an interesting class of materials in modern electronics and photonics, characterized by their unique delocalized π-electron systems that confer high flexibility, tunable electronic properties, and solution processability. These organic polymers present a compelling alternative to traditional inorganic semiconductors, offering the potential for a new generation of optoelectronic devices. This review explores the evolving role of CPs, exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties. We highlight notable progress toward developing faster, more efficient, and environmentally friendly devices by analyzing recent advancements in CP-based devices, including organic photovoltaics, field-effect transistors, and nonvolatile memories. The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems. As ongoing research pushes the frontiers of molecular engineering and device architecture, CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance, sustainability, and adaptability.
Highlights:
1 This review offers an overview of recent advancements in conjugated polymers (CPs), with a thorough discussion of their molecular engineering. Key electronic properties are put forth that complement traditional inorganic semiconductor devices.
2 Key concepts and innovations in molecular engineering are discussed, highlighting advancements that improve device performance, with a particular focus on photovoltaics, organic field-effect transistors, and nonvolatile memory devices.
3 The current challenges in fabricating CP-based devices are explored, along with anticipated future developments and growing market demand.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Catacchio, M. Caputo, L. Sarcina, C. Scandurra, A. Tricase et al., Spiers memorial lecture: challenges and prospects in organic photonics and electronics. Faraday Discuss. 250, 9–42 (2024). https://doi.org/10.1039/d3fd00152k
- A.R. Murad, A. Iraqi, S.B. Aziz, S.N. Abdullah, M.A. Brza, Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12(11), 2627 (2020). https://doi.org/10.3390/polym12112627
- N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50(3), 1813–1845 (2021). https://doi.org/10.1039/d0cs00793e
- C. Liu, L. Shao, S. Chen, Z. Hu, H. Cai et al., Recent progress in π-conjugated polymers for organic photovoltaics: solar cells and photodetectors. Prog. Polym. Sci. 143, 101711 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101711
- Z.-F. Yao, J.-Y. Wang, J. Pei, High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem. Sci. 12, 1193–1205 (2021). https://doi.org/10.1039/D0SC06497A
- D. Burmeister, M.G. Trunk, M.J. Bojdys, Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem. Soc. Rev. 50(20), 11559–11576 (2021). https://doi.org/10.1039/d1cs00497b
- H. Kim, Y. Won, H.W. Song, Y. Kwon, M. Jun et al., Organic mixed ionic-electronic conductors for bioelectronic sensors: materials and operation mechanisms. Adv. Sci. 11(27), e2306191 (2024). https://doi.org/10.1002/advs.202306191
- Y. Liu, V.R. Feig, Z. Bao, Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 10(17), 2001916 (2021). https://doi.org/10.1002/adhm.202001916
- J. Wei, Y. Liu, J. Yu, L. Chen, M. Luo et al., Conjugated polymers: optical toolbox for bioimaging and cancer therapy. Small 17(43), 2103127 (2021). https://doi.org/10.1002/smll.202103127
- Q. Shen, G. Song, H. Lin, H. Bai, Y. Huang et al., Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv. Mater. 36(19), e2310032 (2024). https://doi.org/10.1002/adma.202310032
- Z. Wang, H. Lin, M. Zhang, W. Yu, C. Zhu et al., Water-soluble conjugated polymers for bioelectronic systems. Mater. Horiz. 10(4), 1210–1233 (2023). https://doi.org/10.1039/D2MH01520J
- N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- P.W.M. Blom, Polymer electronics: to be or not to be? Adv. Mater. Technol. 5(6), 2000144 (2020). https://doi.org/10.1002/admt.202000144
- S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007). https://doi.org/10.1021/cr050149z
- Y.-H. Tung, S.-W. Su, E.-J. Su, G.-H. Jiang, C.-C. Chen et al., Semiconducting carbon nanotubes with light-driven gating behaviors in phototransistor memory utilizing an N-type conjugated polymer sorting. Small Sci. 4(4), 2300268 (2024). https://doi.org/10.1002/smsc.202300268
- C.Y. Yang, M.A. Stoeckel, T.P. Ruoko, H.Y. Wu, X. Liu et al., A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 12(1), 2354 (2021). https://doi.org/10.1038/s41467-021-22528-y
- J. Barron, S. Attar, P. Bhattacharya, P. Yu, M. Al-Hashimi et al., Visualizing transport in thiazole flanked isoindigo-based donor–acceptor polymer field-effect transistors. J. Mater. Chem. C 10(39), 14653–14660 (2022). https://doi.org/10.1039/D2TC02748H
- K. Kaur, B. Johns, P. Bhatt, J. George, Controlling electron mobility of strongly coupled organic semiconductors in mirrorless cavities. Adv. Funct. Mater. 33(47), 2306058 (2023). https://doi.org/10.1002/adfm.202306058
- W. Lowrie, R.J.E. Westbrook, J. Guo, H.I. Gonev, J. Marin-Beloqui et al., Organic photovoltaics: the current challenges. J. Chem. Phys. 158, 110901–110901 (2023). https://doi.org/10.1063/5.0139457
- I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor. Energy Sci. Engin. 3, 2–26 (2015). https://doi.org/10.1002/ese3.50
- Y. Li, M. Liu, J. Wu, J. Li, X. Yu et al., Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. Front. Optoelectron. 15(1), 38 (2022). https://doi.org/10.1007/s12200-022-00032-5
- Z. Qiu, B.A.G. Hammer, K. Müllen, Conjugated polymers–problems and promises. Prog. Polym. Sci. 100, 101179 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101179
- K. Sambe, T. Takeda, N. Hoshino, W. Matsuda, K. Shimada et al., Carrier transport switching of ferroelectric BTBT derivative. J. Am. Chem. Soc. 146, 8557–8566 (2024). https://doi.org/10.1021/jacs.4c00514
- M. Wang, G. Wang, C. Naisa, Y. Fu, S.M. Gali et al., Poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated covalent organic framework for fast proton storage. Angew. Chem. Int. Ed. 62(46), e202310937 (2023). https://doi.org/10.1002/anie.202310937
- S. Zhang, A. Alesadi, M. Selivanova, Z. Cao, Z. Qian et al., Toward the prediction and control of glass transition temperature for donor–acceptor polymers. Adv. Funct. Mater. 30(27), 2002221 (2020). https://doi.org/10.1002/adfm.202002221
- S. Zhang, A. Alesadi, G.T. Mason, K.L. Chen, G. Freychet et al., Molecular origin of strain-induced chain alignment in PDPP-based semiconducting polymeric thin films. Adv. Funct. Mater. 31(21), 2100161 (2021). https://doi.org/10.1002/adfm.202100161
- A. Alesadi, Z. Cao, Z. Li, S. Zhang, H. Zhao et al., Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Rep. Phys. Sci. 3(6), 100911 (2022). https://doi.org/10.1016/j.xcrp.2022.100911
- A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016). https://doi.org/10.1126/science.aad4424
- I. Mathews, S.N. Kantareddy, T. Buonassisi, I.M. Peters, Technology and market perspective for indoor photovoltaic cells. Joule 3, 1415–1426 (2019). https://doi.org/10.1016/j.joule.2019.03.026
- B. Meng, J. Liu, L. Wang, Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 11(7), 1261–1270 (2020). https://doi.org/10.1039/C9PY01469A
- M. Li, J. Wang, W. Xu, L. Li, W. Pisula et al., Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Prog. Polym. Sci. 117, 101394 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101394
- C. Zhang, A. Song, Q. Huang, Y. Cao, Z. Zhong et al., All-polymer solar cells and photodetectors with improved stability enabled by terpolymers containing antioxidant side chains. Nano-Micro Lett. 15(1), 140 (2023). https://doi.org/10.1007/s40820-023-01114-5
- Y. Wang, Z. Zheng, J. Wang, P. Bi, Z. Chen et al., Organic laser power converter for efficient wireless micro power transfer. Nat. Commun. 14(1), 5511 (2023). https://doi.org/10.1038/s41467-023-41270-1
- E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao et al., A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 20(3), 833–858 (2017). https://doi.org/10.1016/j.jestch.2017.01.009
- Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
- J. Ouyang, Application of intrinsically conducting polymers in flexible electronics. SmartMat 2(3), 263–285 (2021). https://doi.org/10.1002/smm2.1059
- T. Zhang, S. Chen, P.S. Petkov, P. Zhang, H. Qi et al., Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature 638, 411–417 (2025). https://doi.org/10.1038/s41586-024-08387-9
- D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade et al., High electrical conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136(25), 8859–8862 (2014). https://doi.org/10.1021/ja502765n
- D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
- A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
- B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
- H. Bai, R. Ma, W. Su, T.A. Dela Peña, T. Li et al., Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Lett. 15(1), 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
- B. Liu, Y. Wang, H. Sun, S. Gámez-Valenzuela, Z. Yan et al., Backbone configuration and electronic property tuning of imide-functionalized ladder-type heteroarenes-based polymer acceptors for efficient all-polymer solar cells. Adv. Funct. Mater. 32(21), 2200065 (2022). https://doi.org/10.1002/adfm.202200065
- A.H. Malik, F. Habib, M.J. Qazi, M.A. Ganayee, Z. Ahmad et al., A short review on conjugated polymers. J. Polym. Res. 30(3), 115 (2023). https://doi.org/10.1007/s10965-023-03451-w
- K. Müllen, U. Scherf, Conjugated polymers: where we come from, where we stand, and where we might go. Macromol. Chem. Phys. 224(3), 2200337 (2023). https://doi.org/10.1002/macp.202200337
- A. Gusain, R.M. Faria, P.B. Miranda, Polymer solar cells-interfacial processes related to performance issues. Front. Chem. 7, 61 (2019). https://doi.org/10.3389/fchem.2019.00061
- Y. Zheng, G. Zhang, Z. Huan, Y. Zhang, G. Yuan et al., Wireless laser power transmission: recent progress and future challenges. Space Sol. Power Wirel. Transm. 1(1), 17–26 (2024). https://doi.org/10.1016/j.sspwt.2023.12.001
- Y. Yang, E. Lin, S. Wang, T. Wang, Z. Wang et al., Single-crystal one-dimensional porous ladder covalent polymers. J. Am. Chem. Soc. 146, 782–790 (2024). https://doi.org/10.1021/jacs.3c10812
- Y. Liu, S. Gao, X. Zhang, J.H. Xin, C. Zhang, Probing the nature of charge carriers in one-dimensional conjugated polymers: a review of the theoretical models, experimental trends, and thermoelectric applications. J. Mater. Chem. C 11(1), 12–47 (2023). https://doi.org/10.1039/D2TC03574J
- E. Jin, M. Asada, Q. Xu, S. Dalapati, M.A. Addicoat et al., Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357(6352), 673–676 (2017). https://doi.org/10.1126/science.aan0202
- C. Cojan, G.P. Agrawal, C. Flytzanis, Optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 15(2), 909–925 (1977). https://doi.org/10.1103/physrevb.15.909
- Y. Ren, Y. Xu, Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem. Soc. Rev. 53(4), 1823–1869 (2024). https://doi.org/10.1039/d3cs00782k
- M. Yu, R. Dong, X. Feng, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J. Am. Chem. Soc. 142(30), 12903–12915 (2020). https://doi.org/10.1021/jacs.0c05130
- M. Wang, R. Dong, X. Feng, Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50(4), 2764–2793 (2021). https://doi.org/10.1039/D0CS01160F
- M.S. Lohse, T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28(33), 1705553 (2018). https://doi.org/10.1002/adfm.201705553
- S. Kobayashi, M. Ashiya, T. Yamamoto, K. Tajima, Y. Yamamoto et al., Suzuki-miyaura catalyst-transfer polycondensation of triolborate-type carbazole monomers. Polymers 13(23), 4168 (2021). https://doi.org/10.3390/polym13234168
- M. Martínez-Abadía, C.T. Stoppiello, K. Strutynski, B. Lerma-Berlanga, C. Martí-Gastaldo et al., A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141(36), 14403–14410 (2019). https://doi.org/10.1021/jacs.9b07383
- K.A. Peterson, E.M. Thomas, M.L. Chabinyc, Thermoelectric properties of semiconducting polymers. Annu. Rev. Mater. Res. 50, 551–574 (2020). https://doi.org/10.1146/annurev-matsci-082219-024716
- Y. Lee, M. Choi, I. Park, I.-C. Hwang, S.A. Rahaman et al., Observation of ultrafast electrons in pendant-embedded conducting two-dimensional polymers. Chem 10(4), 1160–1174 (2024). https://doi.org/10.1016/j.chempr.2023.12.007
- R. Wang, H. Lyu, G.S.H. Poon Ho, H. Chen, Y. Yuan et al., Highly conductive covalent-organic framework films. Small 20(4), e2306634 (2024). https://doi.org/10.1002/smll.202306634
- B.D. Paulsen, S. Fabiano, J. Rivnay, Mixed ionic-electronic transport in polymers. Annu. Rev. Mater. Res. 51, 73–99 (2021). https://doi.org/10.1146/annurev-matsci-080619-101319
- E. Zeglio, Y. Wang, S. Jain, Y. Lin, A.E. Avila Ramirez et al., Mixing insulating commodity polymers with semiconducting n-type polymers enables high-performance electrochemical transistors. Adv. Mater. 36(23), e2302624 (2024). https://doi.org/10.1002/adma.202302624
- C. Cuadrado-Laborde, Applications of optical fibers for sensing. (IntechOpen, Rijeka, 2019). https://doi.org/10.5772/intechopen.78283
- S. Attar, R. Yang, Z. Chen, X. Ji, M. Comí et al., Thiazole fused S, N-heteroacene step-ladder polymeric semiconductors for organic transistors. Chem. Sci. 13(41), 12034–12044 (2022). https://doi.org/10.1039/d2sc04661j
- C. Schaack, A.M. Evans, F. Ng, M.L. Steigerwald, C. Nuckolls, High-performance organic electronic materials by contorting perylene diimides. J. Am. Chem. Soc. 144(1), 42–51 (2022). https://doi.org/10.1021/jacs.1c11544
- D. Kim, T.S. Nguyen, H. Lee, B. Bayarkhuu, V. Rozyyev et al., Covalent scrambling in porous polyarylthioethers through a stepwise SNAr for tunable bandgap and porosity. Angew. Chem. Int. Ed. 62(28), e202304378 (2023). https://doi.org/10.1002/anie.202304378
- S.W. Kim, H. Jung, M.S. Okyay, H.J. Noh, S. Chung et al., Hexaazatriphenylene-based two-dimensional conductive covalent organic framework with anisotropic charge transfer. Angew. Chem. Int. Ed. 62(42), e202310560 (2023). https://doi.org/10.1002/anie.202310560
- A. Puthukkudi, S. Nath, P. Shee, A. Dutta, C.V. Rajput et al., Terahertz conductivity of free-standing 3D covalent organic framework membranes fabricated via triple-layer-dual interfacial approach. Adv. Mater. 36(16), 2312960 (2024). https://doi.org/10.1002/adma.202312960
- H. Kim, J. Lee, T. Kim, M. Cho, T.-L. Choi, Precision synthesis of various low-bandgap donor-acceptor alternating conjugated polymers via living suzuki-miyaura catalyst-transfer polymerization. Angew. Chem. Int. Ed. 61(31), e202205828 (2022). https://doi.org/10.1002/anie.202205828
- D. Chen, S. Liu, J. Oh, B. Huang, R. Lv et al., Novel high-efficiency polymer acceptors via random ternary copolymerization engineering enables all-polymer solar cells with excellent performance and stability. ACS Appl. Mater. Interfaces 13(15), 17892–17901 (2021). https://doi.org/10.1021/acsami.1c03739
- Z. Li, Y. Liang, L. Ying, Y. Cao, Overcoming efficiency loss of large-area all-polymer solar cells via asymmetric alkyl side-chain engineering of naphthalene diimide-based n-type polymer. Chem. Eng. J. 448, 137554 (2022). https://doi.org/10.1016/j.cej.2022.137554
- S. Yoon, S. Park, S.H. Park, S. Nah, S. Lee et al., High-performance scalable organic photovoltaics with high thickness tolerance from 1 cm2 to above 50 cm2. Joule 6(10), 2406–2422 (2022). https://doi.org/10.1016/j.joule.2022.07.014
- X. Liu, C. Zhang, C. Duan, M. Li, Z. Hu et al., Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J. Am. Chem. Soc. 140(28), 8934–8943 (2018). https://doi.org/10.1021/jacs.8b05038
- Y. Yu, J. Wang, Y. Cui, Z. Chen, T. Zhang et al., Cost-effective cathode interlayer material for scalable organic photovoltaic cells. J. Am. Chem. Soc. 146(12), 8697–8705 (2024). https://doi.org/10.1021/jacs.4c01139
- Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
- Y. Li, Y. Zhang, B. Wu, S. Pang, X. Yuan et al., High-efficiency P3HT-based all-polymer solar cells with a thermodynamically miscible polymer acceptor. Sol. RRL 6(7), 2200073 (2022). https://doi.org/10.1002/solr.202200073
- X. Yuan, J. Yuan, B. Li, Y. Feng, Y. Maung Maung et al., Efficient wide bandgap all-polymer solar cells benefiting from a random n-type copolymers strategy. Chem. Eng. J. 417, 128000 (2021). https://doi.org/10.1016/j.cej.2020.128000
- D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
- D. Theunissen, S. Smeets, W. Maes, Single-component organic solar cells-Perspective on the importance of chemical precision in conjugated block copolymers. Front. Chem. 11, 1326131 (2023). https://doi.org/10.3389/fchem.2023.1326131
- X. Yang, Y. Gao, R. Sun, M. Chen, Y. Wang et al., The application of Y series acceptor-based double-cable polymers in single-material organic solar cells. Macromolecules 57(3), 1011–1020 (2024). https://doi.org/10.1021/acs.macromol.3c02277
- S. Li, B. Li, X. Yang, H. Wei, Z. Wu et al., Regioselectivity control of block copolymers for high-performance single-material organic solar cells. J. Mater. Chem. A 10(24), 12997–13004 (2022). https://doi.org/10.1039/D2TA02307E
- S. Liang, B. Liu, S. Karuthedath, J. Wang, Y. He et al., Double-cable conjugated polymers with pendent near-infrared electron acceptors for single-component organic solar cells. Angew. Chem. Int. Ed. 61(35), e202209316 (2022). https://doi.org/10.1002/anie.202209316
- Y. Wu, J. Guo, W. Wang, Z. Chen, Z. Chen et al., A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule 5(7), 1800–1815 (2021). https://doi.org/10.1016/j.joule.2021.05.002
- S. Liu, R. Duan, Z. Lin, Z. Xiao, M. Liu et al., Single-component organic solar cells with over 14% efficiency. ACS Appl. Mater. Interfaces 16(36), 47988–47995 (2024). https://doi.org/10.1021/acsami.4c09559
- Z. Zhang, Q. Chen, J. Wang, C. Xiao, Z. Tang et al., Correlating crystallinity and performance in single-component organic solar cells based on double-cable conjugated polymers. Giant 19, 100322 (2024). https://doi.org/10.1016/j.giant.2024.100322
- Y. Wang, Q. Chen, S. Liang, D. Xia, C. Zhao et al., Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chin. Chem. Lett. 35(4), 109164 (2024). https://doi.org/10.1016/j.cclet.2023.109164
- Y. Wu, Q. Fan, B. Fan, F. Qi, Z. Wu et al., Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells. ACS Energy Lett. 7(7), 2196–2202 (2022). https://doi.org/10.1021/acsenergylett.2c01082
- X. Yang, M. Chen, S. Wang, Y. Gao, Y. Shao et al., The application of chlorine substituted conjugated block copolymers in the single-component organic solar cells. Giant 16, 100191 (2023). https://doi.org/10.1016/j.giant.2023.100191
- W. Lai, S. Karuthedath, C. Xiao, L. Meng, F. Laquai et al., Alkyl-thiophene-alkyl linkers to construct double-cable conjugated polymers for single-component organic solar cells. Chin. Chem. Lett. 35(1), 108287 (2024). https://doi.org/10.1016/j.cclet.2023.108287
- K.C. Ranjeesh, A. Rezk, J.I. Martinez, S. Gaber, A. Merhi et al., A rational design of isoindigo-based conjugated microporous n-type semiconductors for high electron mobility and conductivity. Adv. Sci. 10(29), e2303562 (2023). https://doi.org/10.1002/advs.202303562
- M. Li, D.K. Mangalore, J. Zhao, J.H. Carpenter, H. Yan et al., Integrated circuits based on conjugated polymer monolayer. Nat. Commun. 9(1), 451 (2018). https://doi.org/10.1038/s41467-017-02805-5
- S. Ren, Z. Wang, J. Chen, S. Wang, Z. Yi, Organic transistors based on highly crystalline donor-acceptor π-conjugated polymer of pentathiophene and diketopyrrolopyrrole. Molecules 29(2), 457 (2024). https://doi.org/10.3390/molecules29020457
- Z.-F. Yao, Z.-Y. Wang, H.-T. Wu, Y. Lu, Q.-Y. Li et al., Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew. Chem. Int. Ed. 59(40), 17467–17471 (2020). https://doi.org/10.1002/anie.202007589
- Y.-Q. Zheng, T. Lei, J.-H. Dou, X. Xia, J.-Y. Wang et al., Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors. Adv. Mater. 28(33), 7213–7219 (2016). https://doi.org/10.1002/adma.201600541
- Z. Zhang, P. Li, M. Xiong, L. Zhang, J. Chen et al., Continuous production of ultratough semiconducting polymer fibers with high electronic performance. Sci. Adv (2024). https://doi.org/10.1126/sciadv.adk0647
- Y. Zhao, A. Gumyusenge, J. He, G. Qu, W.W. McNutt et al., Continuous melt-drawing of highly aligned flexible and stretchable semiconducting microfibers for organic electronics. Adv. Funct. Mater. 28(4), 1705584 (2018). https://doi.org/10.1002/adfm.201705584
- Q. Liu, W. He, Y. Shi, S. Otep, W.L. Tan et al., Directional carrier polarity tunability in ambipolar organic transistors based on diketopyrrolopyrrole and bithiophene imide dual-acceptor semiconducting polymers. Chem. Mater. 34(7), 3140–3151 (2022). https://doi.org/10.1021/acs.chemmater.1c04258
- H. Jiang, C.-Y. Yang, D. Tu, Z. Chen, W. Huang et al., Shear-enhanced liquid crystal spinning of conjugated polymer fibers. arXiv Preprint arXiv:2403.03088 (2024). https://doi.org/10.48550/arXiv.2403.03088
- P. Pal, H. Li, R. Al-Ajeil, A.K. Mohammed, A. Rezk et al., Energy efficient memristor based on green-synthesized 2D carbonyl-decorated organic polymer and application in image denoising and edge detection: toward sustainable AI. Adv. Sci. 11(45), 2408648 (2024). https://doi.org/10.1002/advs.202408648
- R. Al-Ajeil, A.K. Mohammed, P. Pal, M.A. Addicoat, S.S. Nair et al., A carbonyl-decorated two-dimensional polymer as a charge-trapping layer for non-volatile memory storage devices with a high endurance and wide memory window. Mater. Horiz. 11(16), 3878–3884 (2024). https://doi.org/10.1039/D4MH00201F
- A. Rezk, M.H.R. Ansari, K.C. Ranjeesh, S. Gaber, D. Kumar et al., Nano-scale charge trapping memory based on two-dimensional conjugated microporous polymer. Sci. Rep. 13(1), 18845 (2023). https://doi.org/10.1038/s41598-023-44232-1
- B. Zhang, W. Chen, J. Zeng, F. Fan, J. Gu et al., 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 12(1), 1984 (2021). https://doi.org/10.1038/s41467-021-22243-8
- Z. Zhao, W. Huan, C. Sun, M.E. El-Khouly, B. Zhang et al., Proton-responsive azulene-based conjugated polymer with nonvolatile memory effects. New J. Chem. 46(8), 3800–3805 (2022). https://doi.org/10.1039/D1NJ04769H
- S. Sharma, N. Kumari, S. Nagamatsu, M. Nakamura, S.S. Pandey, Bistable resistive memory switches fabricated by floating thin films of conjugated polymers. Mater. Today Electron. 4, 100043 (2023). https://doi.org/10.1016/j.mtelec.2023.100043
- Z. He, X. Chen, H. Yu, Y. Du, M. Gao et al., Quinoxaline-based donor-acceptor conjugated polymers for nonvolatile ternary memory devices. Chem. Eng. J. 457, 141365 (2023). https://doi.org/10.1016/j.cej.2023.141365
- Y. Cao, B. Zhang, X. Tian, M. Gu, Y. Chen, Direct covalent modification of black phosphorus quantum dots with conjugated polymers for information storage. Nanoscale 11(8), 3527–3533 (2019). https://doi.org/10.1039/C8NR09711A
- X.-F. Cheng, J. Li, X. Hou, J. Zhou, J.-H. He et al., One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Sci. China Chem. 62(6), 753–760 (2019). https://doi.org/10.1007/s11426-018-9447-4
- F. Sun, X. Wang, D. Wu, M. El-Khouly, T. Zheng et al., Conjugated polymer-functionalized 2D MXene nanosheets for nonvolatile memory devices with high environmental stability. ACS Appl. Nano Mater. 6(9), 7186–7195 (2023). https://doi.org/10.1021/acsanm.3c00220
- Q. Zhang, Q. Jiang, F. Fan, G. Liu, Y. Chen et al., MoS2 quantum dot-optimized conductive channels for a conjugated polymer-based synaptic memristor. ACS Appl. Mater. Interfaces 15(51), 59630–59642 (2023). https://doi.org/10.1021/acsami.3c12674
- C.-Y. Lee, C.-S. Tsao, H.-K. Lin, H.-C. Cha, T.-Y. Chung et al., Encapsulation improvement and stability of ambient roll-to-roll slot-die-coated organic photovoltaic modules. Sol. Energy 213, 136–144 (2021). https://doi.org/10.1016/j.solener.2020.11.021
- A.G.S. Al-Azzawi, S.B. Aziz, E.M.A. Dannoun, A. Iraqi, M.M. Nofal et al., A mini review on the development of conjugated polymers: steps towards the commercialization of organic solar cells. Polymers 15, 15010164 (2023). https://doi.org/10.3390/polym15010164
- V.M. Reports, Conjugated Polymer Market Size, SWOT, Industry Trends & Forecast—verifiedmarketreports.com, (n.d.). https://www.verifiedmarketreports.com/product/conjugated-polymer-market
References
M. Catacchio, M. Caputo, L. Sarcina, C. Scandurra, A. Tricase et al., Spiers memorial lecture: challenges and prospects in organic photonics and electronics. Faraday Discuss. 250, 9–42 (2024). https://doi.org/10.1039/d3fd00152k
A.R. Murad, A. Iraqi, S.B. Aziz, S.N. Abdullah, M.A. Brza, Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12(11), 2627 (2020). https://doi.org/10.3390/polym12112627
N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50(3), 1813–1845 (2021). https://doi.org/10.1039/d0cs00793e
C. Liu, L. Shao, S. Chen, Z. Hu, H. Cai et al., Recent progress in π-conjugated polymers for organic photovoltaics: solar cells and photodetectors. Prog. Polym. Sci. 143, 101711 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101711
Z.-F. Yao, J.-Y. Wang, J. Pei, High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem. Sci. 12, 1193–1205 (2021). https://doi.org/10.1039/D0SC06497A
D. Burmeister, M.G. Trunk, M.J. Bojdys, Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem. Soc. Rev. 50(20), 11559–11576 (2021). https://doi.org/10.1039/d1cs00497b
H. Kim, Y. Won, H.W. Song, Y. Kwon, M. Jun et al., Organic mixed ionic-electronic conductors for bioelectronic sensors: materials and operation mechanisms. Adv. Sci. 11(27), e2306191 (2024). https://doi.org/10.1002/advs.202306191
Y. Liu, V.R. Feig, Z. Bao, Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 10(17), 2001916 (2021). https://doi.org/10.1002/adhm.202001916
J. Wei, Y. Liu, J. Yu, L. Chen, M. Luo et al., Conjugated polymers: optical toolbox for bioimaging and cancer therapy. Small 17(43), 2103127 (2021). https://doi.org/10.1002/smll.202103127
Q. Shen, G. Song, H. Lin, H. Bai, Y. Huang et al., Sensing, imaging, and therapeutic strategies endowing by conjugate polymers for precision medicine. Adv. Mater. 36(19), e2310032 (2024). https://doi.org/10.1002/adma.202310032
Z. Wang, H. Lin, M. Zhang, W. Yu, C. Zhu et al., Water-soluble conjugated polymers for bioelectronic systems. Mater. Horiz. 10(4), 1210–1233 (2023). https://doi.org/10.1039/D2MH01520J
N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
P.W.M. Blom, Polymer electronics: to be or not to be? Adv. Mater. Technol. 5(6), 2000144 (2020). https://doi.org/10.1002/admt.202000144
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324–1338 (2007). https://doi.org/10.1021/cr050149z
Y.-H. Tung, S.-W. Su, E.-J. Su, G.-H. Jiang, C.-C. Chen et al., Semiconducting carbon nanotubes with light-driven gating behaviors in phototransistor memory utilizing an N-type conjugated polymer sorting. Small Sci. 4(4), 2300268 (2024). https://doi.org/10.1002/smsc.202300268
C.Y. Yang, M.A. Stoeckel, T.P. Ruoko, H.Y. Wu, X. Liu et al., A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 12(1), 2354 (2021). https://doi.org/10.1038/s41467-021-22528-y
J. Barron, S. Attar, P. Bhattacharya, P. Yu, M. Al-Hashimi et al., Visualizing transport in thiazole flanked isoindigo-based donor–acceptor polymer field-effect transistors. J. Mater. Chem. C 10(39), 14653–14660 (2022). https://doi.org/10.1039/D2TC02748H
K. Kaur, B. Johns, P. Bhatt, J. George, Controlling electron mobility of strongly coupled organic semiconductors in mirrorless cavities. Adv. Funct. Mater. 33(47), 2306058 (2023). https://doi.org/10.1002/adfm.202306058
W. Lowrie, R.J.E. Westbrook, J. Guo, H.I. Gonev, J. Marin-Beloqui et al., Organic photovoltaics: the current challenges. J. Chem. Phys. 158, 110901–110901 (2023). https://doi.org/10.1063/5.0139457
I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Conducting polymer-based flexible supercapacitor. Energy Sci. Engin. 3, 2–26 (2015). https://doi.org/10.1002/ese3.50
Y. Li, M. Liu, J. Wu, J. Li, X. Yu et al., Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. Front. Optoelectron. 15(1), 38 (2022). https://doi.org/10.1007/s12200-022-00032-5
Z. Qiu, B.A.G. Hammer, K. Müllen, Conjugated polymers–problems and promises. Prog. Polym. Sci. 100, 101179 (2020). https://doi.org/10.1016/j.progpolymsci.2019.101179
K. Sambe, T. Takeda, N. Hoshino, W. Matsuda, K. Shimada et al., Carrier transport switching of ferroelectric BTBT derivative. J. Am. Chem. Soc. 146, 8557–8566 (2024). https://doi.org/10.1021/jacs.4c00514
M. Wang, G. Wang, C. Naisa, Y. Fu, S.M. Gali et al., Poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated covalent organic framework for fast proton storage. Angew. Chem. Int. Ed. 62(46), e202310937 (2023). https://doi.org/10.1002/anie.202310937
S. Zhang, A. Alesadi, M. Selivanova, Z. Cao, Z. Qian et al., Toward the prediction and control of glass transition temperature for donor–acceptor polymers. Adv. Funct. Mater. 30(27), 2002221 (2020). https://doi.org/10.1002/adfm.202002221
S. Zhang, A. Alesadi, G.T. Mason, K.L. Chen, G. Freychet et al., Molecular origin of strain-induced chain alignment in PDPP-based semiconducting polymeric thin films. Adv. Funct. Mater. 31(21), 2100161 (2021). https://doi.org/10.1002/adfm.202100161
A. Alesadi, Z. Cao, Z. Li, S. Zhang, H. Zhao et al., Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Rep. Phys. Sci. 3(6), 100911 (2022). https://doi.org/10.1016/j.xcrp.2022.100911
A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016). https://doi.org/10.1126/science.aad4424
I. Mathews, S.N. Kantareddy, T. Buonassisi, I.M. Peters, Technology and market perspective for indoor photovoltaic cells. Joule 3, 1415–1426 (2019). https://doi.org/10.1016/j.joule.2019.03.026
B. Meng, J. Liu, L. Wang, Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 11(7), 1261–1270 (2020). https://doi.org/10.1039/C9PY01469A
M. Li, J. Wang, W. Xu, L. Li, W. Pisula et al., Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Prog. Polym. Sci. 117, 101394 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101394
C. Zhang, A. Song, Q. Huang, Y. Cao, Z. Zhong et al., All-polymer solar cells and photodetectors with improved stability enabled by terpolymers containing antioxidant side chains. Nano-Micro Lett. 15(1), 140 (2023). https://doi.org/10.1007/s40820-023-01114-5
Y. Wang, Z. Zheng, J. Wang, P. Bi, Z. Chen et al., Organic laser power converter for efficient wireless micro power transfer. Nat. Commun. 14(1), 5511 (2023). https://doi.org/10.1038/s41467-023-41270-1
E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao et al., A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 20(3), 833–858 (2017). https://doi.org/10.1016/j.jestch.2017.01.009
Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou et al., Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9(39), 1902066 (2019). https://doi.org/10.1002/aenm.201902066
J. Ouyang, Application of intrinsically conducting polymers in flexible electronics. SmartMat 2(3), 263–285 (2021). https://doi.org/10.1002/smm2.1059
T. Zhang, S. Chen, P.S. Petkov, P. Zhang, H. Qi et al., Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature 638, 411–417 (2025). https://doi.org/10.1038/s41586-024-08387-9
D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade et al., High electrical conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136(25), 8859–8862 (2014). https://doi.org/10.1021/ja502765n
D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang et al., Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018). https://doi.org/10.1038/s41560-017-0044-5
A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
H. Bai, R. Ma, W. Su, T.A. Dela Peña, T. Li et al., Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Lett. 15(1), 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
B. Liu, Y. Wang, H. Sun, S. Gámez-Valenzuela, Z. Yan et al., Backbone configuration and electronic property tuning of imide-functionalized ladder-type heteroarenes-based polymer acceptors for efficient all-polymer solar cells. Adv. Funct. Mater. 32(21), 2200065 (2022). https://doi.org/10.1002/adfm.202200065
A.H. Malik, F. Habib, M.J. Qazi, M.A. Ganayee, Z. Ahmad et al., A short review on conjugated polymers. J. Polym. Res. 30(3), 115 (2023). https://doi.org/10.1007/s10965-023-03451-w
K. Müllen, U. Scherf, Conjugated polymers: where we come from, where we stand, and where we might go. Macromol. Chem. Phys. 224(3), 2200337 (2023). https://doi.org/10.1002/macp.202200337
A. Gusain, R.M. Faria, P.B. Miranda, Polymer solar cells-interfacial processes related to performance issues. Front. Chem. 7, 61 (2019). https://doi.org/10.3389/fchem.2019.00061
Y. Zheng, G. Zhang, Z. Huan, Y. Zhang, G. Yuan et al., Wireless laser power transmission: recent progress and future challenges. Space Sol. Power Wirel. Transm. 1(1), 17–26 (2024). https://doi.org/10.1016/j.sspwt.2023.12.001
Y. Yang, E. Lin, S. Wang, T. Wang, Z. Wang et al., Single-crystal one-dimensional porous ladder covalent polymers. J. Am. Chem. Soc. 146, 782–790 (2024). https://doi.org/10.1021/jacs.3c10812
Y. Liu, S. Gao, X. Zhang, J.H. Xin, C. Zhang, Probing the nature of charge carriers in one-dimensional conjugated polymers: a review of the theoretical models, experimental trends, and thermoelectric applications. J. Mater. Chem. C 11(1), 12–47 (2023). https://doi.org/10.1039/D2TC03574J
E. Jin, M. Asada, Q. Xu, S. Dalapati, M.A. Addicoat et al., Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357(6352), 673–676 (2017). https://doi.org/10.1126/science.aan0202
C. Cojan, G.P. Agrawal, C. Flytzanis, Optical properties of one-dimensional semiconductors and conjugated polymers. Phys. Rev. B 15(2), 909–925 (1977). https://doi.org/10.1103/physrevb.15.909
Y. Ren, Y. Xu, Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem. Soc. Rev. 53(4), 1823–1869 (2024). https://doi.org/10.1039/d3cs00782k
M. Yu, R. Dong, X. Feng, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications. J. Am. Chem. Soc. 142(30), 12903–12915 (2020). https://doi.org/10.1021/jacs.0c05130
M. Wang, R. Dong, X. Feng, Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50(4), 2764–2793 (2021). https://doi.org/10.1039/D0CS01160F
M.S. Lohse, T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28(33), 1705553 (2018). https://doi.org/10.1002/adfm.201705553
S. Kobayashi, M. Ashiya, T. Yamamoto, K. Tajima, Y. Yamamoto et al., Suzuki-miyaura catalyst-transfer polycondensation of triolborate-type carbazole monomers. Polymers 13(23), 4168 (2021). https://doi.org/10.3390/polym13234168
M. Martínez-Abadía, C.T. Stoppiello, K. Strutynski, B. Lerma-Berlanga, C. Martí-Gastaldo et al., A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141(36), 14403–14410 (2019). https://doi.org/10.1021/jacs.9b07383
K.A. Peterson, E.M. Thomas, M.L. Chabinyc, Thermoelectric properties of semiconducting polymers. Annu. Rev. Mater. Res. 50, 551–574 (2020). https://doi.org/10.1146/annurev-matsci-082219-024716
Y. Lee, M. Choi, I. Park, I.-C. Hwang, S.A. Rahaman et al., Observation of ultrafast electrons in pendant-embedded conducting two-dimensional polymers. Chem 10(4), 1160–1174 (2024). https://doi.org/10.1016/j.chempr.2023.12.007
R. Wang, H. Lyu, G.S.H. Poon Ho, H. Chen, Y. Yuan et al., Highly conductive covalent-organic framework films. Small 20(4), e2306634 (2024). https://doi.org/10.1002/smll.202306634
B.D. Paulsen, S. Fabiano, J. Rivnay, Mixed ionic-electronic transport in polymers. Annu. Rev. Mater. Res. 51, 73–99 (2021). https://doi.org/10.1146/annurev-matsci-080619-101319
E. Zeglio, Y. Wang, S. Jain, Y. Lin, A.E. Avila Ramirez et al., Mixing insulating commodity polymers with semiconducting n-type polymers enables high-performance electrochemical transistors. Adv. Mater. 36(23), e2302624 (2024). https://doi.org/10.1002/adma.202302624
C. Cuadrado-Laborde, Applications of optical fibers for sensing. (IntechOpen, Rijeka, 2019). https://doi.org/10.5772/intechopen.78283
S. Attar, R. Yang, Z. Chen, X. Ji, M. Comí et al., Thiazole fused S, N-heteroacene step-ladder polymeric semiconductors for organic transistors. Chem. Sci. 13(41), 12034–12044 (2022). https://doi.org/10.1039/d2sc04661j
C. Schaack, A.M. Evans, F. Ng, M.L. Steigerwald, C. Nuckolls, High-performance organic electronic materials by contorting perylene diimides. J. Am. Chem. Soc. 144(1), 42–51 (2022). https://doi.org/10.1021/jacs.1c11544
D. Kim, T.S. Nguyen, H. Lee, B. Bayarkhuu, V. Rozyyev et al., Covalent scrambling in porous polyarylthioethers through a stepwise SNAr for tunable bandgap and porosity. Angew. Chem. Int. Ed. 62(28), e202304378 (2023). https://doi.org/10.1002/anie.202304378
S.W. Kim, H. Jung, M.S. Okyay, H.J. Noh, S. Chung et al., Hexaazatriphenylene-based two-dimensional conductive covalent organic framework with anisotropic charge transfer. Angew. Chem. Int. Ed. 62(42), e202310560 (2023). https://doi.org/10.1002/anie.202310560
A. Puthukkudi, S. Nath, P. Shee, A. Dutta, C.V. Rajput et al., Terahertz conductivity of free-standing 3D covalent organic framework membranes fabricated via triple-layer-dual interfacial approach. Adv. Mater. 36(16), 2312960 (2024). https://doi.org/10.1002/adma.202312960
H. Kim, J. Lee, T. Kim, M. Cho, T.-L. Choi, Precision synthesis of various low-bandgap donor-acceptor alternating conjugated polymers via living suzuki-miyaura catalyst-transfer polymerization. Angew. Chem. Int. Ed. 61(31), e202205828 (2022). https://doi.org/10.1002/anie.202205828
D. Chen, S. Liu, J. Oh, B. Huang, R. Lv et al., Novel high-efficiency polymer acceptors via random ternary copolymerization engineering enables all-polymer solar cells with excellent performance and stability. ACS Appl. Mater. Interfaces 13(15), 17892–17901 (2021). https://doi.org/10.1021/acsami.1c03739
Z. Li, Y. Liang, L. Ying, Y. Cao, Overcoming efficiency loss of large-area all-polymer solar cells via asymmetric alkyl side-chain engineering of naphthalene diimide-based n-type polymer. Chem. Eng. J. 448, 137554 (2022). https://doi.org/10.1016/j.cej.2022.137554
S. Yoon, S. Park, S.H. Park, S. Nah, S. Lee et al., High-performance scalable organic photovoltaics with high thickness tolerance from 1 cm2 to above 50 cm2. Joule 6(10), 2406–2422 (2022). https://doi.org/10.1016/j.joule.2022.07.014
X. Liu, C. Zhang, C. Duan, M. Li, Z. Hu et al., Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J. Am. Chem. Soc. 140(28), 8934–8943 (2018). https://doi.org/10.1021/jacs.8b05038
Y. Yu, J. Wang, Y. Cui, Z. Chen, T. Zhang et al., Cost-effective cathode interlayer material for scalable organic photovoltaic cells. J. Am. Chem. Soc. 146(12), 8697–8705 (2024). https://doi.org/10.1021/jacs.4c01139
Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
Y. Li, Y. Zhang, B. Wu, S. Pang, X. Yuan et al., High-efficiency P3HT-based all-polymer solar cells with a thermodynamically miscible polymer acceptor. Sol. RRL 6(7), 2200073 (2022). https://doi.org/10.1002/solr.202200073
X. Yuan, J. Yuan, B. Li, Y. Feng, Y. Maung Maung et al., Efficient wide bandgap all-polymer solar cells benefiting from a random n-type copolymers strategy. Chem. Eng. J. 417, 128000 (2021). https://doi.org/10.1016/j.cej.2020.128000
D. Li, Q. Lian, T. Du, R. Ma, H. Liu et al., Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells. Nat. Commun. 15(1), 7605 (2024). https://doi.org/10.1038/s41467-024-51760-5
D. Theunissen, S. Smeets, W. Maes, Single-component organic solar cells-Perspective on the importance of chemical precision in conjugated block copolymers. Front. Chem. 11, 1326131 (2023). https://doi.org/10.3389/fchem.2023.1326131
X. Yang, Y. Gao, R. Sun, M. Chen, Y. Wang et al., The application of Y series acceptor-based double-cable polymers in single-material organic solar cells. Macromolecules 57(3), 1011–1020 (2024). https://doi.org/10.1021/acs.macromol.3c02277
S. Li, B. Li, X. Yang, H. Wei, Z. Wu et al., Regioselectivity control of block copolymers for high-performance single-material organic solar cells. J. Mater. Chem. A 10(24), 12997–13004 (2022). https://doi.org/10.1039/D2TA02307E
S. Liang, B. Liu, S. Karuthedath, J. Wang, Y. He et al., Double-cable conjugated polymers with pendent near-infrared electron acceptors for single-component organic solar cells. Angew. Chem. Int. Ed. 61(35), e202209316 (2022). https://doi.org/10.1002/anie.202209316
Y. Wu, J. Guo, W. Wang, Z. Chen, Z. Chen et al., A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells. Joule 5(7), 1800–1815 (2021). https://doi.org/10.1016/j.joule.2021.05.002
S. Liu, R. Duan, Z. Lin, Z. Xiao, M. Liu et al., Single-component organic solar cells with over 14% efficiency. ACS Appl. Mater. Interfaces 16(36), 47988–47995 (2024). https://doi.org/10.1021/acsami.4c09559
Z. Zhang, Q. Chen, J. Wang, C. Xiao, Z. Tang et al., Correlating crystallinity and performance in single-component organic solar cells based on double-cable conjugated polymers. Giant 19, 100322 (2024). https://doi.org/10.1016/j.giant.2024.100322
Y. Wang, Q. Chen, S. Liang, D. Xia, C. Zhao et al., Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chin. Chem. Lett. 35(4), 109164 (2024). https://doi.org/10.1016/j.cclet.2023.109164
Y. Wu, Q. Fan, B. Fan, F. Qi, Z. Wu et al., Non-fullerene acceptor doped block copolymer for efficient and stable organic solar cells. ACS Energy Lett. 7(7), 2196–2202 (2022). https://doi.org/10.1021/acsenergylett.2c01082
X. Yang, M. Chen, S. Wang, Y. Gao, Y. Shao et al., The application of chlorine substituted conjugated block copolymers in the single-component organic solar cells. Giant 16, 100191 (2023). https://doi.org/10.1016/j.giant.2023.100191
W. Lai, S. Karuthedath, C. Xiao, L. Meng, F. Laquai et al., Alkyl-thiophene-alkyl linkers to construct double-cable conjugated polymers for single-component organic solar cells. Chin. Chem. Lett. 35(1), 108287 (2024). https://doi.org/10.1016/j.cclet.2023.108287
K.C. Ranjeesh, A. Rezk, J.I. Martinez, S. Gaber, A. Merhi et al., A rational design of isoindigo-based conjugated microporous n-type semiconductors for high electron mobility and conductivity. Adv. Sci. 10(29), e2303562 (2023). https://doi.org/10.1002/advs.202303562
M. Li, D.K. Mangalore, J. Zhao, J.H. Carpenter, H. Yan et al., Integrated circuits based on conjugated polymer monolayer. Nat. Commun. 9(1), 451 (2018). https://doi.org/10.1038/s41467-017-02805-5
S. Ren, Z. Wang, J. Chen, S. Wang, Z. Yi, Organic transistors based on highly crystalline donor-acceptor π-conjugated polymer of pentathiophene and diketopyrrolopyrrole. Molecules 29(2), 457 (2024). https://doi.org/10.3390/molecules29020457
Z.-F. Yao, Z.-Y. Wang, H.-T. Wu, Y. Lu, Q.-Y. Li et al., Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew. Chem. Int. Ed. 59(40), 17467–17471 (2020). https://doi.org/10.1002/anie.202007589
Y.-Q. Zheng, T. Lei, J.-H. Dou, X. Xia, J.-Y. Wang et al., Strong electron-deficient polymers lead to high electron mobility in air and their morphology-dependent transport behaviors. Adv. Mater. 28(33), 7213–7219 (2016). https://doi.org/10.1002/adma.201600541
Z. Zhang, P. Li, M. Xiong, L. Zhang, J. Chen et al., Continuous production of ultratough semiconducting polymer fibers with high electronic performance. Sci. Adv (2024). https://doi.org/10.1126/sciadv.adk0647
Y. Zhao, A. Gumyusenge, J. He, G. Qu, W.W. McNutt et al., Continuous melt-drawing of highly aligned flexible and stretchable semiconducting microfibers for organic electronics. Adv. Funct. Mater. 28(4), 1705584 (2018). https://doi.org/10.1002/adfm.201705584
Q. Liu, W. He, Y. Shi, S. Otep, W.L. Tan et al., Directional carrier polarity tunability in ambipolar organic transistors based on diketopyrrolopyrrole and bithiophene imide dual-acceptor semiconducting polymers. Chem. Mater. 34(7), 3140–3151 (2022). https://doi.org/10.1021/acs.chemmater.1c04258
H. Jiang, C.-Y. Yang, D. Tu, Z. Chen, W. Huang et al., Shear-enhanced liquid crystal spinning of conjugated polymer fibers. arXiv Preprint arXiv:2403.03088 (2024). https://doi.org/10.48550/arXiv.2403.03088
P. Pal, H. Li, R. Al-Ajeil, A.K. Mohammed, A. Rezk et al., Energy efficient memristor based on green-synthesized 2D carbonyl-decorated organic polymer and application in image denoising and edge detection: toward sustainable AI. Adv. Sci. 11(45), 2408648 (2024). https://doi.org/10.1002/advs.202408648
R. Al-Ajeil, A.K. Mohammed, P. Pal, M.A. Addicoat, S.S. Nair et al., A carbonyl-decorated two-dimensional polymer as a charge-trapping layer for non-volatile memory storage devices with a high endurance and wide memory window. Mater. Horiz. 11(16), 3878–3884 (2024). https://doi.org/10.1039/D4MH00201F
A. Rezk, M.H.R. Ansari, K.C. Ranjeesh, S. Gaber, D. Kumar et al., Nano-scale charge trapping memory based on two-dimensional conjugated microporous polymer. Sci. Rep. 13(1), 18845 (2023). https://doi.org/10.1038/s41598-023-44232-1
B. Zhang, W. Chen, J. Zeng, F. Fan, J. Gu et al., 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 12(1), 1984 (2021). https://doi.org/10.1038/s41467-021-22243-8
Z. Zhao, W. Huan, C. Sun, M.E. El-Khouly, B. Zhang et al., Proton-responsive azulene-based conjugated polymer with nonvolatile memory effects. New J. Chem. 46(8), 3800–3805 (2022). https://doi.org/10.1039/D1NJ04769H
S. Sharma, N. Kumari, S. Nagamatsu, M. Nakamura, S.S. Pandey, Bistable resistive memory switches fabricated by floating thin films of conjugated polymers. Mater. Today Electron. 4, 100043 (2023). https://doi.org/10.1016/j.mtelec.2023.100043
Z. He, X. Chen, H. Yu, Y. Du, M. Gao et al., Quinoxaline-based donor-acceptor conjugated polymers for nonvolatile ternary memory devices. Chem. Eng. J. 457, 141365 (2023). https://doi.org/10.1016/j.cej.2023.141365
Y. Cao, B. Zhang, X. Tian, M. Gu, Y. Chen, Direct covalent modification of black phosphorus quantum dots with conjugated polymers for information storage. Nanoscale 11(8), 3527–3533 (2019). https://doi.org/10.1039/C8NR09711A
X.-F. Cheng, J. Li, X. Hou, J. Zhou, J.-H. He et al., One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance. Sci. China Chem. 62(6), 753–760 (2019). https://doi.org/10.1007/s11426-018-9447-4
F. Sun, X. Wang, D. Wu, M. El-Khouly, T. Zheng et al., Conjugated polymer-functionalized 2D MXene nanosheets for nonvolatile memory devices with high environmental stability. ACS Appl. Nano Mater. 6(9), 7186–7195 (2023). https://doi.org/10.1021/acsanm.3c00220
Q. Zhang, Q. Jiang, F. Fan, G. Liu, Y. Chen et al., MoS2 quantum dot-optimized conductive channels for a conjugated polymer-based synaptic memristor. ACS Appl. Mater. Interfaces 15(51), 59630–59642 (2023). https://doi.org/10.1021/acsami.3c12674
C.-Y. Lee, C.-S. Tsao, H.-K. Lin, H.-C. Cha, T.-Y. Chung et al., Encapsulation improvement and stability of ambient roll-to-roll slot-die-coated organic photovoltaic modules. Sol. Energy 213, 136–144 (2021). https://doi.org/10.1016/j.solener.2020.11.021
A.G.S. Al-Azzawi, S.B. Aziz, E.M.A. Dannoun, A. Iraqi, M.M. Nofal et al., A mini review on the development of conjugated polymers: steps towards the commercialization of organic solar cells. Polymers 15, 15010164 (2023). https://doi.org/10.3390/polym15010164
V.M. Reports, Conjugated Polymer Market Size, SWOT, Industry Trends & Forecast—verifiedmarketreports.com, (n.d.). https://www.verifiedmarketreports.com/product/conjugated-polymer-market