A Janus Smart Window for Temperature-Adaptive Radiative Cooling and Adjustable Solar Transmittance
Corresponding Author: Huai Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 233
Abstract
The advancement of sophisticated smart windows exhibiting superior thermoregulation capabilities in both solar spectrum and long-wave infrared range maintains a prominent objective for researchers in this field. In this study, a Janus window is proposed and prepared based on polymer-stabilized liquid–crystal films/thermochromic materials. It can achieve switchable front long-wave infrared emissivity (εFront) and solar modulation ability (ΔTsol) through dynamic flipping, making it suitable for different seasonal energy-saving requirements. Outdoor experiments show that under daytime illumination, the indoor temperature decreases by 8 °C, and the nighttime temperature drops by 5 °C. MATLAB simulation calculations indicate that the daytime cooling power is 93 W m−2, while the nighttime cooling power reaches 142 W m−2. Interestingly, by modifying the conductive layer, it can effectively shield electromagnetic radiation (within the X-band frequency range (8.2–12.4) GHz). Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer polymer-stabilized liquid crystal, poly(N-isopropyl acrylamide), and normal glass when applied in different climate zones. This research presents a compelling opportunity for the development of sophisticated smart windows characterized by exceptional thermoregulation capabilities.
Highlights:
1 Using polymer-stabilized liquid crystal as the active control layer and KCWO-PNIPAM (KPP) as the passive control layer, a KPP smart window was constructed, successfully achieving dual electro-thermal collaborative control.
2 The window can adjust incident light across three bands: visible light, near-infrared light, and mid-far infrared light (especially 8–13 µm).
3 Combination of active and passive control to meet the diverse weather conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Lee, D. Kim, J. Yoon, Stepwise activation of switchable glazing by compositional gradient of copolymers. ACS Appl. Mater. Interfaces 8(39), 26359–26364 (2016). https://doi.org/10.1021/acsami.6b10091
- Y. Zhou, Y. Cai, X. Hu, Y. Long, Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications. J. Mater. Chem. A 2(33), 13550–13555 (2014). https://doi.org/10.1039/C4TA02287D
- J.E. Stumpel, E.R. Gil, A.B. Spoelstra, C.W.M. Bastiaansen, D.J. Broer et al., Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 25(22), 3314–3320 (2015). https://doi.org/10.1002/adfm.201500745
- Y. Kim, H. Shin, M. Han, S. Seo, W. Lee et al., Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer. Adv. Funct. Mater. 27(31), 1701192 (2017). https://doi.org/10.1002/adfm.201701192
- R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
- A.K. Singh, S. Kiruthika, I. Mondal, G.U. Kulkarni, Fabrication of solar and electrically adjustable large area smart windows for indoor light and heat modulation. J. Mater. Chem. C 5(24), 5917–5922 (2017). https://doi.org/10.1039/C7TC01489A
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
- H. Li, A.Y. Elezzabi, Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horiz. 5(4), 691–695 (2020). https://doi.org/10.1039/c9nh00751b
- K.G. Gutierrez-Cuevas, L. Wang, Z.-G. Zheng, H.K. Bisoyi, G. Li et al., Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanops. Angew. Chem. Int. Ed. 55(42), 13090–13094 (2016). https://doi.org/10.1002/anie.201606895
- B. Wang, M. Cui, Y. Gao, F. Jiang, W. Du et al., A long-life battery-type electrochromic window with remarkable energy storage ability. Sol. RRL 4(3), 2070036 (2020). https://doi.org/10.1002/solr.202070036
- Y. Liu, N. Jiang, Y. Liu, D. Cui, C.-F. Yu et al., Effect of laser power density on the electrochromic properties of WO3 films obtained by pulsed laser deposition. Ceram. Int. 47(16), 22416–22423 (2021). https://doi.org/10.1016/j.ceramint.2021.04.251
- W. Cheng, J. He, K.E. Dettelbach, N.J.J. Johnson, R.S. Sherbo et al., Photodeposited amorphous oxide films for electrochromic windows. Chem 4(4), 821–832 (2018). https://doi.org/10.1016/j.chempr.2017.12.030
- N. Tamai, H. Miyasaka, Ultrafast dynamics of photochromic systems. Chem. Rev. 100(5), 1875–1890 (2000). https://doi.org/10.1021/cr9800816
- T. Ma, B. Li, Y. Zhu, S. Wu, X. Zhao et al., Enhanced photochromic performance of Zn-doped W18O49-based films for smart windows. J. Mater. Chem. C 12(27), 10218–10225 (2024). https://doi.org/10.1039/d4tc01445f
- T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma et al., Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed. 43(3), 357–360 (2004). https://doi.org/10.1002/anie.200352565
- S. Wang, Z. Xu, T. Wang, T. Xiao, X.-Y. Hu et al., Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar [6] Arene and ferrocene. Nat. Commun. 9(1), 1737 (2018). https://doi.org/10.1038/s41467-018-03827-3
- L. Sun, Z. Li, R. Su, Y. Wang, Z. Li et al., Phase-transition induced conversion into a photothermal material: quasi-metallic WO2·9 nanorods for solar water evaporation and anticancer photothermal therapy. Angew. Chem. Int. Ed. 57(33), 10666–10671 (2018). https://doi.org/10.1002/anie.201806611
- C. Guo, S. Yin, L. Huang, T. Sato, Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Appl. Mater. Interfaces 3(7), 2794–2799 (2011). https://doi.org/10.1021/am200631e
- S. Kumar, H. Hong, W. Choi, I. Akhtar, M.A. Rehman et al., Acrylate-assisted fractal nanostructured polymer dispersed liquid crystal droplet based vibrant colored smart-windows. RSC Adv. 9(22), 12645–12655 (2019). https://doi.org/10.1039/C9RA00729F
- H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N.M. Abukhdeir, I.A. Goldthorpe, Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol. Energy Mater. Sol. Cells 132, 337–341 (2015). https://doi.org/10.1016/j.solmat.2014.09.006
- L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang et al., A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv. 8(39), 21690–21698 (2018). https://doi.org/10.1039/c8ra03426e
- J.D. Busbee, A.T. Yuhl, L.V. Natarajan, V.P. Tongdilia, T.J. Bunning et al., SiO2 nanop sequestration via reactive functionalization in holographic polymer-dispersed liquid crystals. Adv. Mater. 21(36), 3659–3662 (2009). https://doi.org/10.1002/adma.200900298
- M. Yu, T. Wang, J. Xu, W. Hu, Y. Gao et al., Steric group-based polymer dispersed liquid crystal composite films with high contrast ratio, low driving voltage and small hysteresis. J. Mol. Liq. 365, 120152 (2022). https://doi.org/10.1016/j.molliq.2022.120152
- Z. Zhang, X. He, L. Zhang, J. Xu, B. Yuan et al., A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications. Chem. Eng. J. 479, 147668 (2024). https://doi.org/10.1016/j.cej.2023.147668
- Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, Crystallised mesoporous TiO2 (A)–VO2 (M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. Mater. Chem. A 2, 11874–11884 (2014). https://doi.org/10.1039/C4TA01585A
- R.L. Sala, R.H. Gonçalves, E.R. Camargo, E.R. Leite, Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Sol. Energy Mater. Sol. Cells 186, 266–272 (2018). https://doi.org/10.1016/j.solmat.2018.06.037
- H. Kojima, Studies on the phase transition of hydrogels and aqueous solutions of thermosensitive polymers. Polymer J. 50(6), 411–418 (2018). https://doi.org/10.1038/s41428-018-0035-9
- Y. Zhou, Y. Cai, X. Hu, Y. Long, VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J. Mater. Chem. A 3(3), 1121–1126 (2015). https://doi.org/10.1039/C4TA05035E
- H. Cai, Z.P. Zhang, P.C. Sun, L.H. Bing, X.Z. Xiao, Synthesis and characterization of thermo- and pH- sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat. Phys. Chem. 74(1), 26–30 (2005). https://doi.org/10.1016/j.radphyschem.2004.10.007
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- R. Lan, X.G. Hu, J. Chen, X. Zeng, X. Chen et al., Adaptive liquid crystal polymers based on dynamic bonds: from fundamentals to functionalities. Responsive Mater. 2(1), e20230030 (2024). https://doi.org/10.1002/rpm.20230030
- J. Liu, H. Lu, Q. Huang, Z. Ding, R. Yang et al., The thermochromic smart window and thermo-electrochromic device(T-ECD) based on PNIPAm/Ppy composite hydrogel for fast phase transition. Sol. Energy Mater. Sol. Cells 263, 112596 (2023). https://doi.org/10.1016/j.solmat.2023.112596
- S. Xue, G. Huang, Q. Chen, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
- W. Wang, Z. Liu, R. Wang, M. Cao, Y. Chen et al., A novel strategy for efficient removal of hazardous metal ions based on thermoresponsive phase separation of the PNIPAM/GO system. Chem. Eng. J. 470, 143967 (2023). https://doi.org/10.1016/j.cej.2023.143967
- H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
- Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
- R. Zhang, B. Xiang, Y. Shen, L. Xia, L. Xu et al., Energy-efficient smart window based on a thermochromic microgel with ultrahigh visible transparency and infrared transmittance modulation. J. Mater. Chem. A 9(32), 17481–17491 (2021). https://doi.org/10.1039/d1ta03917b
- M. Wu, Y. Shi, R. Li, P. Wang, Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance. ACS Appl. Mater. Interfaces 10(46), 39819–39827 (2018). https://doi.org/10.1021/acsami.8b15574
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- B. Xiang, P. Xu, R. Li, R. Zhang, Bioinspired temperature-adaptive thermal management membrane based on reversible thermochromic fibers for all-season thermal regulation. ACS Sustain. Chem. Eng. 12(2), 841–848 (2024). https://doi.org/10.1021/acssuschemeng.3c05583
- J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Infrared adaptive materials: beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2170105 (2024). https://doi.org/10.1002/adma.202170105
- B. Li, C. Valenzuela, Y. Liu, X. Zhang, Y. Yang et al., Free-standing bacterial cellulose-templated radiative cooling liquid crystal films with self-adaptive solar transmittance modulation. Adv. Funct. Mater. 34(37), 2402124 (2024). https://doi.org/10.1002/adfm.202402124
- S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), e2301957 (2023). https://doi.org/10.1002/smll.202301957
- L. Tang, L. Wang, X. Yang, Y. Feng, Y. Li et al., Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 115, 100702 (2021). https://doi.org/10.1016/j.pmatsci.2020.100702
- H. Bai, R. Ma, W. Su, T.A. Peña, T. Li, L. Tang, J. Yang, B. Hu, Y. Wang, Z. Bi, Y. Su, Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Lett. 15, 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
- B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
- R. Zhang, R. Li, P. Xu, B. Xiang, A hierarchical metafabric with dynamically thermochromic property for subambient daytime radiative cooling. J. Mater. Chem. C 12(4), 1377–1385 (2024). https://doi.org/10.1039/d3tc03769j
- C. Ma, Z. Zhang, Y. Yang, P. Wang, M. Yu et al., A smart window with passive radiative cooling and switchable near-infrared light transmittance via molecular engineering. ACS Appl. Mater. Interfaces 16(19), 25343–25352 (2024). https://doi.org/10.1021/acsami.4c02819
- Z. Zhang, Y. Yang, C. Ma, M. Yu, J. Xu et al., Enhanced electro-optical and heat regulation of intelligent dimming films using the photovoltaic effect of p–n heterostructures. Adv. Funct. Mater. 34(45), 2406858 (2024). https://doi.org/10.1002/adfm.202406858
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- Y. Liu, R. Bi, X. Zhang, Y. Chen, C. Valenzuela et al., Cephalopod-inspired MXene-integrated mechanochromic cholesteric liquid crystal elastomers for visible-infrared-radar multispectral camouflage. Angew. Chem. Int. Ed. 64, e202422636 (2025). https://doi.org/10.1002/anie.202422636
- W.L. Song, Y.J. Zhang, K.L. Zhang, K. Wang, L. Zhang et al., Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 7(2), 1902162 (2020). https://doi.org/10.1002/advs.201902162
- G. Yang, D. Hu, F. Xia, C. Yang, Y. Liu et al., Doping sodium tungsten bronze-like (Na5W14O44) near-infrared shielding functional units in bulk borosilicate glasses for energy-saving window applications. ACS Appl. Mater. Interfaces 14(28), 32206–32217 (2022). https://doi.org/10.1021/acsami.2c03640
- M. Wang, S. Liang, S. Zhao, W. Gao, Z. Li, Facile preparation of a low-cost liquid interlayer material with intelligent UV–NIR-shielding function for smart windows. ACS Appl. Mater. Interfaces 15(41), 48673–48682 (2023). https://doi.org/10.1021/acsami.3c10909
- H. Zhang, J. Liu, F. Shi, S. Jiang, X. Song et al., Controlling the growth of hexagonal CsxWO3 nanorods by Li+-doping to further improve its near infrared shielding performance. Sol. Energy Mater. Sol. Cells 238, 111612 (2022). https://doi.org/10.1016/j.solmat.2022.111612
- B. Shen, Y. Wang, L. Lu, H. Yang, Spraying fabrication of spectrally selective coating with improved near-infrared shielding performance for energy-efficient glazing. Ceram. Int. 47(13), 18991–18997 (2021). https://doi.org/10.1016/j.ceramint.2021.03.243
- H. Zhang, J. Liu, F. Shi, T. Li, H. Zhang et al., A novel bidirectional fast self-responsive PVA-PNIPAM/LimCsnWO3 composite hydrogel for smart window applications. Chem. Eng. J. 431, 133353 (2022). https://doi.org/10.1016/j.cej.2021.133353
- Z. Chen, Y. Chen, C. Chen, X. Zheng, H. Li et al., Dual-gradient PNIPAM-based hydrogel capable of rapid response and tunable actuation. Chem. Eng. J. 424, 130562 (2021). https://doi.org/10.1016/j.cej.2021.130562
References
E. Lee, D. Kim, J. Yoon, Stepwise activation of switchable glazing by compositional gradient of copolymers. ACS Appl. Mater. Interfaces 8(39), 26359–26364 (2016). https://doi.org/10.1021/acsami.6b10091
Y. Zhou, Y. Cai, X. Hu, Y. Long, Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications. J. Mater. Chem. A 2(33), 13550–13555 (2014). https://doi.org/10.1039/C4TA02287D
J.E. Stumpel, E.R. Gil, A.B. Spoelstra, C.W.M. Bastiaansen, D.J. Broer et al., Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels. Adv. Funct. Mater. 25(22), 3314–3320 (2015). https://doi.org/10.1002/adfm.201500745
Y. Kim, H. Shin, M. Han, S. Seo, W. Lee et al., Energy saving electrochromic polymer windows with a highly transparent charge-balancing layer. Adv. Funct. Mater. 27(31), 1701192 (2017). https://doi.org/10.1002/adfm.201701192
R. Baetens, B.P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94(2), 87–105 (2010). https://doi.org/10.1016/j.solmat.2009.08.021
A.K. Singh, S. Kiruthika, I. Mondal, G.U. Kulkarni, Fabrication of solar and electrically adjustable large area smart windows for indoor light and heat modulation. J. Mater. Chem. C 5(24), 5917–5922 (2017). https://doi.org/10.1039/C7TC01489A
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/C8EE01718B
H. Li, A.Y. Elezzabi, Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horiz. 5(4), 691–695 (2020). https://doi.org/10.1039/c9nh00751b
K.G. Gutierrez-Cuevas, L. Wang, Z.-G. Zheng, H.K. Bisoyi, G. Li et al., Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanops. Angew. Chem. Int. Ed. 55(42), 13090–13094 (2016). https://doi.org/10.1002/anie.201606895
B. Wang, M. Cui, Y. Gao, F. Jiang, W. Du et al., A long-life battery-type electrochromic window with remarkable energy storage ability. Sol. RRL 4(3), 2070036 (2020). https://doi.org/10.1002/solr.202070036
Y. Liu, N. Jiang, Y. Liu, D. Cui, C.-F. Yu et al., Effect of laser power density on the electrochromic properties of WO3 films obtained by pulsed laser deposition. Ceram. Int. 47(16), 22416–22423 (2021). https://doi.org/10.1016/j.ceramint.2021.04.251
W. Cheng, J. He, K.E. Dettelbach, N.J.J. Johnson, R.S. Sherbo et al., Photodeposited amorphous oxide films for electrochromic windows. Chem 4(4), 821–832 (2018). https://doi.org/10.1016/j.chempr.2017.12.030
N. Tamai, H. Miyasaka, Ultrafast dynamics of photochromic systems. Chem. Rev. 100(5), 1875–1890 (2000). https://doi.org/10.1021/cr9800816
T. Ma, B. Li, Y. Zhu, S. Wu, X. Zhao et al., Enhanced photochromic performance of Zn-doped W18O49-based films for smart windows. J. Mater. Chem. C 12(27), 10218–10225 (2024). https://doi.org/10.1039/d4tc01445f
T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma et al., Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem. Int. Ed. 43(3), 357–360 (2004). https://doi.org/10.1002/anie.200352565
S. Wang, Z. Xu, T. Wang, T. Xiao, X.-Y. Hu et al., Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar [6] Arene and ferrocene. Nat. Commun. 9(1), 1737 (2018). https://doi.org/10.1038/s41467-018-03827-3
L. Sun, Z. Li, R. Su, Y. Wang, Z. Li et al., Phase-transition induced conversion into a photothermal material: quasi-metallic WO2·9 nanorods for solar water evaporation and anticancer photothermal therapy. Angew. Chem. Int. Ed. 57(33), 10666–10671 (2018). https://doi.org/10.1002/anie.201806611
C. Guo, S. Yin, L. Huang, T. Sato, Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Appl. Mater. Interfaces 3(7), 2794–2799 (2011). https://doi.org/10.1021/am200631e
S. Kumar, H. Hong, W. Choi, I. Akhtar, M.A. Rehman et al., Acrylate-assisted fractal nanostructured polymer dispersed liquid crystal droplet based vibrant colored smart-windows. RSC Adv. 9(22), 12645–12655 (2019). https://doi.org/10.1039/C9RA00729F
H. Hosseinzadeh Khaligh, K. Liew, Y. Han, N.M. Abukhdeir, I.A. Goldthorpe, Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol. Energy Mater. Sol. Cells 132, 337–341 (2015). https://doi.org/10.1016/j.solmat.2014.09.006
L. Zhou, H. Ma, C. Han, W. Hu, S. Zhang et al., A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Adv. 8(39), 21690–21698 (2018). https://doi.org/10.1039/c8ra03426e
J.D. Busbee, A.T. Yuhl, L.V. Natarajan, V.P. Tongdilia, T.J. Bunning et al., SiO2 nanop sequestration via reactive functionalization in holographic polymer-dispersed liquid crystals. Adv. Mater. 21(36), 3659–3662 (2009). https://doi.org/10.1002/adma.200900298
M. Yu, T. Wang, J. Xu, W. Hu, Y. Gao et al., Steric group-based polymer dispersed liquid crystal composite films with high contrast ratio, low driving voltage and small hysteresis. J. Mol. Liq. 365, 120152 (2022). https://doi.org/10.1016/j.molliq.2022.120152
Z. Zhang, X. He, L. Zhang, J. Xu, B. Yuan et al., A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications. Chem. Eng. J. 479, 147668 (2024). https://doi.org/10.1016/j.cej.2023.147668
Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, Crystallised mesoporous TiO2 (A)–VO2 (M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. Mater. Chem. A 2, 11874–11884 (2014). https://doi.org/10.1039/C4TA01585A
R.L. Sala, R.H. Gonçalves, E.R. Camargo, E.R. Leite, Thermosensitive poly(N-vinylcaprolactam) as a transmission light regulator in smart windows. Sol. Energy Mater. Sol. Cells 186, 266–272 (2018). https://doi.org/10.1016/j.solmat.2018.06.037
H. Kojima, Studies on the phase transition of hydrogels and aqueous solutions of thermosensitive polymers. Polymer J. 50(6), 411–418 (2018). https://doi.org/10.1038/s41428-018-0035-9
Y. Zhou, Y. Cai, X. Hu, Y. Long, VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J. Mater. Chem. A 3(3), 1121–1126 (2015). https://doi.org/10.1039/C4TA05035E
H. Cai, Z.P. Zhang, P.C. Sun, L.H. Bing, X.Z. Xiao, Synthesis and characterization of thermo- and pH- sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat. Phys. Chem. 74(1), 26–30 (2005). https://doi.org/10.1016/j.radphyschem.2004.10.007
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
R. Lan, X.G. Hu, J. Chen, X. Zeng, X. Chen et al., Adaptive liquid crystal polymers based on dynamic bonds: from fundamentals to functionalities. Responsive Mater. 2(1), e20230030 (2024). https://doi.org/10.1002/rpm.20230030
J. Liu, H. Lu, Q. Huang, Z. Ding, R. Yang et al., The thermochromic smart window and thermo-electrochromic device(T-ECD) based on PNIPAm/Ppy composite hydrogel for fast phase transition. Sol. Energy Mater. Sol. Cells 263, 112596 (2023). https://doi.org/10.1016/j.solmat.2023.112596
S. Xue, G. Huang, Q. Chen, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024). https://doi.org/10.1007/s40820-024-01396-3
W. Wang, Z. Liu, R. Wang, M. Cao, Y. Chen et al., A novel strategy for efficient removal of hazardous metal ions based on thermoresponsive phase separation of the PNIPAM/GO system. Chem. Eng. J. 470, 143967 (2023). https://doi.org/10.1016/j.cej.2023.143967
H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, A thermoregulatory flexible phase change nonwoven for all-season high-efficiency wearable thermal management. Nano-Micro Lett. 15, 29 (2023). https://doi.org/10.1007/s40820-022-00991-6
Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li et al., Liquid thermo-responsive smart window derived from hydrogel. Joule 4(11), 2458–2474 (2020). https://doi.org/10.1016/j.joule.2020.09.001
R. Zhang, B. Xiang, Y. Shen, L. Xia, L. Xu et al., Energy-efficient smart window based on a thermochromic microgel with ultrahigh visible transparency and infrared transmittance modulation. J. Mater. Chem. A 9(32), 17481–17491 (2021). https://doi.org/10.1039/d1ta03917b
M. Wu, Y. Shi, R. Li, P. Wang, Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance. ACS Appl. Mater. Interfaces 10(46), 39819–39827 (2018). https://doi.org/10.1021/acsami.8b15574
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
B. Xiang, P. Xu, R. Li, R. Zhang, Bioinspired temperature-adaptive thermal management membrane based on reversible thermochromic fibers for all-season thermal regulation. ACS Sustain. Chem. Eng. 12(2), 841–848 (2024). https://doi.org/10.1021/acssuschemeng.3c05583
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Infrared adaptive materials: beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2170105 (2024). https://doi.org/10.1002/adma.202170105
B. Li, C. Valenzuela, Y. Liu, X. Zhang, Y. Yang et al., Free-standing bacterial cellulose-templated radiative cooling liquid crystal films with self-adaptive solar transmittance modulation. Adv. Funct. Mater. 34(37), 2402124 (2024). https://doi.org/10.1002/adfm.202402124
S. Shi, P. Lv, C. Valenzuela, B. Li, Y. Liu et al., Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19(39), e2301957 (2023). https://doi.org/10.1002/smll.202301957
L. Tang, L. Wang, X. Yang, Y. Feng, Y. Li et al., Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog. Mater. Sci. 115, 100702 (2021). https://doi.org/10.1016/j.pmatsci.2020.100702
H. Bai, R. Ma, W. Su, T.A. Peña, T. Li, L. Tang, J. Yang, B. Hu, Y. Wang, Z. Bi, Y. Su, Green-solvent processed blade-coating organic solar cells with an efficiency approaching 19% enabled by alkyl-tailored acceptors. Nano-Micro Lett. 15, 241 (2023). https://doi.org/10.1007/s40820-023-01208-0
B. Xiang, R. Zhang, X. Zeng, Y. Luo, Z. Luo, An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv. Fiber Mater. 4(5), 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5
R. Zhang, R. Li, P. Xu, B. Xiang, A hierarchical metafabric with dynamically thermochromic property for subambient daytime radiative cooling. J. Mater. Chem. C 12(4), 1377–1385 (2024). https://doi.org/10.1039/d3tc03769j
C. Ma, Z. Zhang, Y. Yang, P. Wang, M. Yu et al., A smart window with passive radiative cooling and switchable near-infrared light transmittance via molecular engineering. ACS Appl. Mater. Interfaces 16(19), 25343–25352 (2024). https://doi.org/10.1021/acsami.4c02819
Z. Zhang, Y. Yang, C. Ma, M. Yu, J. Xu et al., Enhanced electro-optical and heat regulation of intelligent dimming films using the photovoltaic effect of p–n heterostructures. Adv. Funct. Mater. 34(45), 2406858 (2024). https://doi.org/10.1002/adfm.202406858
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
Y. Liu, R. Bi, X. Zhang, Y. Chen, C. Valenzuela et al., Cephalopod-inspired MXene-integrated mechanochromic cholesteric liquid crystal elastomers for visible-infrared-radar multispectral camouflage. Angew. Chem. Int. Ed. 64, e202422636 (2025). https://doi.org/10.1002/anie.202422636
W.L. Song, Y.J. Zhang, K.L. Zhang, K. Wang, L. Zhang et al., Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 7(2), 1902162 (2020). https://doi.org/10.1002/advs.201902162
G. Yang, D. Hu, F. Xia, C. Yang, Y. Liu et al., Doping sodium tungsten bronze-like (Na5W14O44) near-infrared shielding functional units in bulk borosilicate glasses for energy-saving window applications. ACS Appl. Mater. Interfaces 14(28), 32206–32217 (2022). https://doi.org/10.1021/acsami.2c03640
M. Wang, S. Liang, S. Zhao, W. Gao, Z. Li, Facile preparation of a low-cost liquid interlayer material with intelligent UV–NIR-shielding function for smart windows. ACS Appl. Mater. Interfaces 15(41), 48673–48682 (2023). https://doi.org/10.1021/acsami.3c10909
H. Zhang, J. Liu, F. Shi, S. Jiang, X. Song et al., Controlling the growth of hexagonal CsxWO3 nanorods by Li+-doping to further improve its near infrared shielding performance. Sol. Energy Mater. Sol. Cells 238, 111612 (2022). https://doi.org/10.1016/j.solmat.2022.111612
B. Shen, Y. Wang, L. Lu, H. Yang, Spraying fabrication of spectrally selective coating with improved near-infrared shielding performance for energy-efficient glazing. Ceram. Int. 47(13), 18991–18997 (2021). https://doi.org/10.1016/j.ceramint.2021.03.243
H. Zhang, J. Liu, F. Shi, T. Li, H. Zhang et al., A novel bidirectional fast self-responsive PVA-PNIPAM/LimCsnWO3 composite hydrogel for smart window applications. Chem. Eng. J. 431, 133353 (2022). https://doi.org/10.1016/j.cej.2021.133353
Z. Chen, Y. Chen, C. Chen, X. Zheng, H. Li et al., Dual-gradient PNIPAM-based hydrogel capable of rapid response and tunable actuation. Chem. Eng. J. 424, 130562 (2021). https://doi.org/10.1016/j.cej.2021.130562