Tri-Band Regulation and Split-Type Smart Photovoltaic Windows for Thermal Modulation of Energy-Saving Buildings in All-Season
Corresponding Author: Huai Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 132
Abstract
Energy-saving buildings (ESBs) are an emerging green technology that can significantly reduce building-associated cooling and heating energy consumption, catering to the desire for carbon neutrality and sustainable development of society. Smart photovoltaic windows (SPWs) offer a promising platform for designing ESBs because they present the capability to regulate and harness solar energy. With frequent outbreaks of extreme weather all over the world, the achievement of exceptional energy-saving effect under different weather conditions is an inevitable trend for the development of ESBs but is hardly achieved via existing SPWs. Here, we substantially reduce the driving voltage of polymer-dispersed liquid crystals (PDLCs) by 28.1 % via molecular engineering while maintaining their high solar transmittance (Tsol = 83.8 %, transparent state) and solar modulating ability (ΔTsol = 80.5 %). By the assembly of perovskite solar cell and a broadband thermal-managing unit encompassing the electrical-responsive PDLCs, transparent high-emissivity SiO2 passive radiation-cooling, and Ag low-emissivity layers possesses, we present a tri-band regulation and split-type SPW possessing superb energy-saving effect in all-season. The perovskite solar cell can produce the electric power to stimulate the electrical-responsive behavior of the PDLCs, endowing the SPWs zero-energy input solar energy regulating characteristic, and compensate the daily energy consumption needed for ESBs. Moreover, the scalable manufacturing technology holds a great potential for the real-world applications.
Highlights:
1 Broadening the modulation range and decreasing the driving voltage of polymer dispersed liquid crystals via molecular engineering without sacrificing high solar transmittance (transparent state) and solar modulating ability.
2 Modulating capability of the smart photovoltaic windows across visible, near-infrared and mid-infrared bands enabling superb energy-saving performance in all season.
3 Holding a great potential for real-world application due to their scalable manufacturing technology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Chai, J. Fan, Solar and thermal radiation-modulation materials for building applications. Adv. Energy Mater. 13(1), 2202932 (2023). https://doi.org/10.1002/aenm.202202932
- C.Z. Li, L. Zhang, X. Liang, B. Xiao, V.W.Y. Tam et al., Advances in the research of building energy saving. Energy Build. 254, 111556 (2022). https://doi.org/10.1016/j.enbuild.2021.111556
- A.M. Omer, Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12(9), 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001
- S. Jia, Q. Weng, C. Yoo, H. Xiao, Q. Zhong, Building energy savings by green roofs and cool roofs in current and future climates. NPJ Urban Sustain. 4, 23 (2024). https://doi.org/10.1038/s42949-024-00159-8
- L. Long, H. Ye, How to be smart and energy efficient: a general discussion on thermochromic windows. Sci. Rep. 4, 6427 (2014). https://doi.org/10.1038/srep06427
- W.J. Hee, M.A. Alghoul, B. Bakhtyar, O. Elayeb, M.A. Shameri et al., The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev. 42, 323–343 (2015). https://doi.org/10.1016/j.rser.2014.09.020
- Z. Duan, S. Wu, H. Sun, B. Lin, P. Ding et al., Improvements in energy saving and thermal comfort for electric vehicles in summer through coupled electrochromic and radiative cooling smart windows. Build. Simul. 17(8), 1231–1251 (2024). https://doi.org/10.1007/s12273-024-1137-2
- N.C. Davy, M. Sezen-Edmonds, J. Gao, X. Lin, A. Liu et al., Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2, 17104 (2017). https://doi.org/10.1038/nenergy.2017.104
- H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32(43), e2003574 (2020). https://doi.org/10.1002/adma.202003574
- Z. Kou, J. Wang, X. Tong, P. Lei, Y. Gao et al., Multi-functional electrochromic energy storage smart window powered by CZTSSe solar cell for intelligent managing solar radiation of building. Sol. Energy Mater. Sol. Cells 254, 112273 (2023). https://doi.org/10.1016/j.solmat.2023.112273
- Y. Meng, Y. Tan, X. Li, Y. Cai, J. Peng et al., Building-integrated photovoltaic smart window with energy generation and conservation. Appl. Energy 324, 119676 (2022). https://doi.org/10.1016/j.apenergy.2022.119676
- G. Syrrokostas, G. Leftheriotis, S.N. Yannopoulos, Lessons learned from 25 years of development of photoelectrochromic devices: a technical review. Renew. Sustain. Energy Rev. 162, 112462 (2022). https://doi.org/10.1016/j.rser.2022.112462
- Z. Liu, J. Yang, G. Leftheriotis, H. Huang, Y. Xia et al., A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustain. Mater. Technol. 31, e00372 (2022). https://doi.org/10.1016/j.susmat.2021.e00372
- Z. Wang, X. Jia, P. Zhang, Y. Liu, H. Qi et al., Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 34(1), 2106073 (2022). https://doi.org/10.1002/adma.202106073
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- C.-Y. Cheng, Y.-J. Chiang, H.-F. Yu, L.-Y. Hsiao, C.-L. Yeh et al., Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy 90, 106575 (2021). https://doi.org/10.1016/j.nanoen.2021.106575
- C.J. Barile, D.J. Slotcavage, J. Hou, M.T. Strand, T.S. Hernandez et al., Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1(1), 133–145 (2017). https://doi.org/10.1016/j.joule.2017.06.001
- S. Yang, J. Zheng, M. Li, C. Xu, A novel photoelectrochromic device based on poly(3, 4-(2, 2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells 97, 186–190 (2012). https://doi.org/10.1016/j.solmat.2011.09.038
- C.-L. Lin, C.-Y. Chen, H.-F. Yu, K.-C. Ho, Comparisons of the electrochromic properties of poly(hydroxymethyl 3, 4-ethylenedioxythiophene) and poly(3, 4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Sol. Energy Mater. Sol. Cells 202, 110132 (2019). https://doi.org/10.1016/j.solmat.2019.110132
- Y. Liu, J. Wang, F. Wang, Z. Cheng, Y. Fang et al., Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 12(1), 3360 (2021). https://doi.org/10.1038/s41467-021-23701-z
- H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat. Commun. 12(1), 1010 (2021). https://doi.org/10.1038/s41467-021-21086-7
- L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia et al., Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. J. Mater. Chem. A 9(35), 19687–19691 (2021). https://doi.org/10.1039/D1TA03544D
- M.K. Ganesha, I. Mondal, A.K. Singh, G.U. Kulkarni, Fabrication of large-area, affordable dual-function electrochromic smart windows by using a hybrid electrode coated with an oxygen-deficient tungsten oxide ultrathin porous film. ACS Appl. Mater. Interfaces 15(15), 19111–19120 (2023). https://doi.org/10.1021/acsami.2c22638
- I. Mondal, M.K. Ganesha, A.K. Singh, G.U. Kulkarni, Affordable smart windows with dual-functionality: electrochromic color switching and charge storage. Adv. Mater. Technol. 8(18), 2300651 (2023). https://doi.org/10.1002/admt.202300651
- Z. Xu, W. Li, J. Huang, X. Guo, Q. Liu et al., Flexible, controllable and angle-independent photoelectrochromic display enabled by smart sunlight management. Nano Energy 63, 103830 (2019). https://doi.org/10.1016/j.nanoen.2019.06.026
- M.K. Ganesha, H. Hakkeem, I. Mondal, A.K. Singh, G.U. Kulkarni, An ITO free all tungsten-based electrochromic energy storage device as smart window. Small 20(48), 2405467 (2024). https://doi.org/10.1002/smll.202405467
- M.K. Ganesha, H. Hakkeem, A.K. Singh, Redox potential based self-powered electrochromic devices for smart windows. Small 20(42), e2403156 (2024). https://doi.org/10.1002/smll.202403156
- R. Roy, R. Greeshma, A. Basith, R. Banerjee, A.K. Singh, Self-rechargeable aqueous Zn2+/K+ electrochromic energy storage device via scalable spray-coating integrated with Marangoni flow. Energy Storage Mater. 71, 103680 (2024). https://doi.org/10.1016/j.ensm.2024.103680
- Y. Xia, X. Liang, Y. Jiang, S. Wang, Y. Qi et al., High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv. Energy Mater. 9(33), 1900720 (2019). https://doi.org/10.1002/aenm.201900720
- Z. Na, X. Liang, H. Wang, L. Yu, C. Fan et al., Broadband modulation, self-driven, and self-cleaning smart photovoltaic windows for high efficiency energy saving buildings. Adv. Funct. Mater. 34(2), 2308312 (2024). https://doi.org/10.1002/adfm.202308312
- S. Agarwal, S. Srivastava, S. Joshi, S. Tripathi, B.P. Singh et al., A comprehensive review on polymer-dispersed liquid crystals: mechanisms, materials, and applications. ACS Mater. Au 5(1), 88–114 (2025). https://doi.org/10.1021/acsmaterialsau.4c00122
- S. Shaik, K. Gorantla, M. Venkata Ramana, S. Mishra, K.S. Kulkarni, Thermal and cost assessment of various polymer-dispersed liquid crystal film smart windows for energy efficient buildings. Constr. Build. Mater. 263, 120155 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120155
- H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko et al., Switchable response of ferroelectric nanop doped polymer-dispersed liquid crystals. J. Nanosci. Nanotechnol. 16(10), 11125–11129 (2016). https://doi.org/10.1166/jnn.2016.13302
- Z. Liang, Y. Zhao, H. Gao, D. Wang, Z. Miao et al., Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals. Liq. Cryst. 48(12), 1699–1708 (2021). https://doi.org/10.1080/02678292.2021.1898055
- M. Ellahi, J. Muhammad, M. Furqan Ali, K.H. Mangi, A.M. Bhayo et al., Preparation of silver nanops (AgNPs)-doped epoxy-based thin PDLC films (smart glass). Polym. Bull. 79(5), 3135–3153 (2022). https://doi.org/10.1007/s00289-021-03670-5
- X. Zhao, M. Sheng, H. Tang, H. Pan, C. Guo et al., A flexible electrochromic device for all-season thermal regulation on curved transparent building envelopes. ACS Appl. Mater. Interfaces 16(32), 42481–42490 (2024). https://doi.org/10.1021/acsami.4c08207
- Y. Huang, S. Wu, S. Zhao, Z. Guo, Z. Zhao et al., A novel liquid flow electrochromic smart window for all-year-round dynamic photothermal regulation. Energy Environ. Sci. 18(4), 1824–1834 (2025). https://doi.org/10.1039/d4ee05416d
- Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
- Z. Zhang, Y. Yang, C. Ma, M. Yu, J. Xu et al., Enhanced electro-optical and heat regulation of intelligent dimming films using the photovoltaic effect of p–n heterostructures. Adv. Funct. Mater. 34(45), 2406858 (2024). https://doi.org/10.1002/adfm.202406858
- Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
- Y. Deng, Y. Yang, Y. Xiao, X. Zeng, H.-L. Xie et al., Annual energy-saving smart windows with actively controllable passive radiative cooling and multimode heating regulation. Adv. Mater. 36(27), 2401869 (2024). https://doi.org/10.1002/adma.202401869
- S. Wu, Y. Wang, M. Iqbal, K. Mehmood, Y. Li et al., Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity—a review. Environ. Pollut. 304, 119241 (2022). https://doi.org/10.1016/j.envpol.2022.119241
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- Y. Zhang, J. Yu, In situ formation of SiO2 nanospheres on common fabrics for broadband radiative cooling. ACS Appl. Nano Mater. 4(10), 11260–11268 (2021). https://doi.org/10.1021/acsanm.1c02841
- S. Lin, H. Wang, X. Zhang, D. Wang, D. Zu et al., Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 62, 111–116 (2019). https://doi.org/10.1016/j.nanoen.2019.04.071
- H. Zhang, Z. Miao, W. Shen, Development of polymer-dispersed liquid crystals: from mode innovation to applications. Compos. Part A Appl. Sci. Manuf. 163, 107234 (2022). https://doi.org/10.1016/j.compositesa.2022.107234
- N. Nasir, S. Kumar, M. Kim, V.H. Nguyen, M. Suleman et al., Effect of the photoinitiator concentration on the electro-optical properties of thiol–acrylate-based PDLC smart windows. ACS Appl. Energy Mater. 5(6), 6986–6995 (2022). https://doi.org/10.1021/acsaem.2c00623
- G.P. Montgomery Jr., J.L. West, W. Tamura-Lis, Light scattering from polymer-dispersed liquid crystal films: droplet size effects. J. Appl. Phys. 69(3), 1605–1612 (1991). https://doi.org/10.1063/1.347256
- M. Kim, K.J. Park, S. Seok, J.M. Ok, H.-T. Jung et al., Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015). https://doi.org/10.1021/acsami.5b04496
- M. Yu, J. Xu, L. Luo, L. Zhang, Y. Gao et al., Role of hydroxy group in the electro-optical properties of polymer-dispersed liquid crystals. Crystals 13(5), 843 (2023). https://doi.org/10.3390/cryst13050843
- W. Li, L. Yu, W. He, X. Yuan, D. Zhao et al., Effect of a photopolymerizable monomer containing a hydrogen bond on near-infrared radiation transmittance of nematic liquid crystal/monomers composites. J. Phys. Chem. C 112(35), 13739–13743 (2008). https://doi.org/10.1021/jp804490b
- M. Yu, F. Zhou, L. Zhang, X. He, C. Chen et al., Effects of hydroxylated acrylates on electro-optical performance and adhesion strength of polymer dispersed liquid crystal films. J. Mol. Liq. 397, 124180 (2024). https://doi.org/10.1016/j.molliq.2024.124180
- Z. He, P. Yu, Y. Zhao, Q. Yang, Y. Zhao et al., The regulation of electric-optical properties of polymer-dispersed liquid crystals via implantation of polyhedral oligomeric silsesquioxane (POSS) microstructure. Liq. Cryst. 49(2), 240–247 (2022). https://doi.org/10.1080/02678292.2021.1956611
- Z. He, P. Yu, H. Zhang, Y. Zhao, Y. Zhu et al., Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows. Nanotechnology 33(8), 085205 (2022). https://doi.org/10.1088/1361-6528/ac3a3b
- Z. Ding, X. Li, Q. Ji, Y. Zhang, H. Li et al., Machine-learning-assisted design of a robust biomimetic radiative cooling metamaterial. ACS Mater. Lett. 6(6), 2416–2424 (2024). https://doi.org/10.1021/acsmaterialslett.4c00337
- Z. Ding, H. Li, X. Li, X. Fan, J. Jaramillo-Fernandez et al., Designer SiO2 metasurfaces for efficient passive radiative cooling. Adv. Mater. Interfaces 11(3), 2300603 (2024). https://doi.org/10.1002/admi.202300603
- J. Atkinson, I.A. Goldthorpe, Near-infrared properties of silver nanowire networks. Nanotechnology 31(36), 365201 (2020). https://doi.org/10.1088/1361-6528/ab94de
- H. Hu, S. Wang, Y. Meng, G. Liu, M. Li et al., Layer-by-layer alignment of silver nanowires for transparent and flexible energy-saving windows. Adv. Mater. Technol. 7(3), 2100824 (2022). https://doi.org/10.1002/admt.202100824
- K. Jiang, K. Zhang, Z. Shi, H. Li, B. Wu et al., Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microps for energy saving. Energy 283, 128473 (2023). https://doi.org/10.1016/j.energy.2023.128473
- S. Hanauer, C. Celle, C. Crivello, H. Szambolics, D. Muñoz-Rojas et al., Transparent and mechanically resistant silver-nanowire-based low-emissivity coatings. ACS Appl. Mater. Interfaces 13(18), 21971–21978 (2021). https://doi.org/10.1021/acsami.1c02689
- C. Lin, J. Hur, C.Y.H. Chao, G. Liu, S. Yao et al., All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Sci. Adv. 8(17), eabn7359 (2022). https://doi.org/10.1126/sciadv.abn7359
References
J. Chai, J. Fan, Solar and thermal radiation-modulation materials for building applications. Adv. Energy Mater. 13(1), 2202932 (2023). https://doi.org/10.1002/aenm.202202932
C.Z. Li, L. Zhang, X. Liang, B. Xiao, V.W.Y. Tam et al., Advances in the research of building energy saving. Energy Build. 254, 111556 (2022). https://doi.org/10.1016/j.enbuild.2021.111556
A.M. Omer, Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12(9), 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001
S. Jia, Q. Weng, C. Yoo, H. Xiao, Q. Zhong, Building energy savings by green roofs and cool roofs in current and future climates. NPJ Urban Sustain. 4, 23 (2024). https://doi.org/10.1038/s42949-024-00159-8
L. Long, H. Ye, How to be smart and energy efficient: a general discussion on thermochromic windows. Sci. Rep. 4, 6427 (2014). https://doi.org/10.1038/srep06427
W.J. Hee, M.A. Alghoul, B. Bakhtyar, O. Elayeb, M.A. Shameri et al., The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev. 42, 323–343 (2015). https://doi.org/10.1016/j.rser.2014.09.020
Z. Duan, S. Wu, H. Sun, B. Lin, P. Ding et al., Improvements in energy saving and thermal comfort for electric vehicles in summer through coupled electrochromic and radiative cooling smart windows. Build. Simul. 17(8), 1231–1251 (2024). https://doi.org/10.1007/s12273-024-1137-2
N.C. Davy, M. Sezen-Edmonds, J. Gao, X. Lin, A. Liu et al., Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2, 17104 (2017). https://doi.org/10.1038/nenergy.2017.104
H. Li, W. Zhang, A.Y. Elezzabi, Transparent zinc-mesh electrodes for solar-charging electrochromic windows. Adv. Mater. 32(43), e2003574 (2020). https://doi.org/10.1002/adma.202003574
Z. Kou, J. Wang, X. Tong, P. Lei, Y. Gao et al., Multi-functional electrochromic energy storage smart window powered by CZTSSe solar cell for intelligent managing solar radiation of building. Sol. Energy Mater. Sol. Cells 254, 112273 (2023). https://doi.org/10.1016/j.solmat.2023.112273
Y. Meng, Y. Tan, X. Li, Y. Cai, J. Peng et al., Building-integrated photovoltaic smart window with energy generation and conservation. Appl. Energy 324, 119676 (2022). https://doi.org/10.1016/j.apenergy.2022.119676
G. Syrrokostas, G. Leftheriotis, S.N. Yannopoulos, Lessons learned from 25 years of development of photoelectrochromic devices: a technical review. Renew. Sustain. Energy Rev. 162, 112462 (2022). https://doi.org/10.1016/j.rser.2022.112462
Z. Liu, J. Yang, G. Leftheriotis, H. Huang, Y. Xia et al., A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustain. Mater. Technol. 31, e00372 (2022). https://doi.org/10.1016/j.susmat.2021.e00372
Z. Wang, X. Jia, P. Zhang, Y. Liu, H. Qi et al., Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 34(1), 2106073 (2022). https://doi.org/10.1002/adma.202106073
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13(1), 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
P. Lei, J. Wang, Y. Gao, C. Hu, S. Zhang et al., An electrochromic nickel phosphate film for large-area smart window with ultra-large optical modulation. Nano-Micro Lett. 15(1), 34 (2023). https://doi.org/10.1007/s40820-022-01002-4
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
C.-Y. Cheng, Y.-J. Chiang, H.-F. Yu, L.-Y. Hsiao, C.-L. Yeh et al., Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy 90, 106575 (2021). https://doi.org/10.1016/j.nanoen.2021.106575
C.J. Barile, D.J. Slotcavage, J. Hou, M.T. Strand, T.S. Hernandez et al., Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 1(1), 133–145 (2017). https://doi.org/10.1016/j.joule.2017.06.001
S. Yang, J. Zheng, M. Li, C. Xu, A novel photoelectrochromic device based on poly(3, 4-(2, 2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells 97, 186–190 (2012). https://doi.org/10.1016/j.solmat.2011.09.038
C.-L. Lin, C.-Y. Chen, H.-F. Yu, K.-C. Ho, Comparisons of the electrochromic properties of poly(hydroxymethyl 3, 4-ethylenedioxythiophene) and poly(3, 4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Sol. Energy Mater. Sol. Cells 202, 110132 (2019). https://doi.org/10.1016/j.solmat.2019.110132
Y. Liu, J. Wang, F. Wang, Z. Cheng, Y. Fang et al., Full-frame and high-contrast smart windows from halide-exchanged perovskites. Nat. Commun. 12(1), 3360 (2021). https://doi.org/10.1038/s41467-021-23701-z
H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat. Commun. 12(1), 1010 (2021). https://doi.org/10.1038/s41467-021-21086-7
L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia et al., Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. J. Mater. Chem. A 9(35), 19687–19691 (2021). https://doi.org/10.1039/D1TA03544D
M.K. Ganesha, I. Mondal, A.K. Singh, G.U. Kulkarni, Fabrication of large-area, affordable dual-function electrochromic smart windows by using a hybrid electrode coated with an oxygen-deficient tungsten oxide ultrathin porous film. ACS Appl. Mater. Interfaces 15(15), 19111–19120 (2023). https://doi.org/10.1021/acsami.2c22638
I. Mondal, M.K. Ganesha, A.K. Singh, G.U. Kulkarni, Affordable smart windows with dual-functionality: electrochromic color switching and charge storage. Adv. Mater. Technol. 8(18), 2300651 (2023). https://doi.org/10.1002/admt.202300651
Z. Xu, W. Li, J. Huang, X. Guo, Q. Liu et al., Flexible, controllable and angle-independent photoelectrochromic display enabled by smart sunlight management. Nano Energy 63, 103830 (2019). https://doi.org/10.1016/j.nanoen.2019.06.026
M.K. Ganesha, H. Hakkeem, I. Mondal, A.K. Singh, G.U. Kulkarni, An ITO free all tungsten-based electrochromic energy storage device as smart window. Small 20(48), 2405467 (2024). https://doi.org/10.1002/smll.202405467
M.K. Ganesha, H. Hakkeem, A.K. Singh, Redox potential based self-powered electrochromic devices for smart windows. Small 20(42), e2403156 (2024). https://doi.org/10.1002/smll.202403156
R. Roy, R. Greeshma, A. Basith, R. Banerjee, A.K. Singh, Self-rechargeable aqueous Zn2+/K+ electrochromic energy storage device via scalable spray-coating integrated with Marangoni flow. Energy Storage Mater. 71, 103680 (2024). https://doi.org/10.1016/j.ensm.2024.103680
Y. Xia, X. Liang, Y. Jiang, S. Wang, Y. Qi et al., High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells. Adv. Energy Mater. 9(33), 1900720 (2019). https://doi.org/10.1002/aenm.201900720
Z. Na, X. Liang, H. Wang, L. Yu, C. Fan et al., Broadband modulation, self-driven, and self-cleaning smart photovoltaic windows for high efficiency energy saving buildings. Adv. Funct. Mater. 34(2), 2308312 (2024). https://doi.org/10.1002/adfm.202308312
S. Agarwal, S. Srivastava, S. Joshi, S. Tripathi, B.P. Singh et al., A comprehensive review on polymer-dispersed liquid crystals: mechanisms, materials, and applications. ACS Mater. Au 5(1), 88–114 (2025). https://doi.org/10.1021/acsmaterialsau.4c00122
S. Shaik, K. Gorantla, M. Venkata Ramana, S. Mishra, K.S. Kulkarni, Thermal and cost assessment of various polymer-dispersed liquid crystal film smart windows for energy efficient buildings. Constr. Build. Mater. 263, 120155 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120155
H. Shim, H.-K. Lyu, B. Allabergenov, Y. Garbovskiy, A. Glushchenko et al., Switchable response of ferroelectric nanop doped polymer-dispersed liquid crystals. J. Nanosci. Nanotechnol. 16(10), 11125–11129 (2016). https://doi.org/10.1166/jnn.2016.13302
Z. Liang, Y. Zhao, H. Gao, D. Wang, Z. Miao et al., Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals. Liq. Cryst. 48(12), 1699–1708 (2021). https://doi.org/10.1080/02678292.2021.1898055
M. Ellahi, J. Muhammad, M. Furqan Ali, K.H. Mangi, A.M. Bhayo et al., Preparation of silver nanops (AgNPs)-doped epoxy-based thin PDLC films (smart glass). Polym. Bull. 79(5), 3135–3153 (2022). https://doi.org/10.1007/s00289-021-03670-5
X. Zhao, M. Sheng, H. Tang, H. Pan, C. Guo et al., A flexible electrochromic device for all-season thermal regulation on curved transparent building envelopes. ACS Appl. Mater. Interfaces 16(32), 42481–42490 (2024). https://doi.org/10.1021/acsami.4c08207
Y. Huang, S. Wu, S. Zhao, Z. Guo, Z. Zhao et al., A novel liquid flow electrochromic smart window for all-year-round dynamic photothermal regulation. Energy Environ. Sci. 18(4), 1824–1834 (2025). https://doi.org/10.1039/d4ee05416d
Z. Shao, A. Huang, C. Cao, X. Ji, W. Hu et al., Tri-band electrochromic smart window for energy savings in buildings. Nat. Sustain. 7(6), 796–803 (2024). https://doi.org/10.1038/s41893-024-01349-z
Z. Zhang, Y. Yang, C. Ma, M. Yu, J. Xu et al., Enhanced electro-optical and heat regulation of intelligent dimming films using the photovoltaic effect of p–n heterostructures. Adv. Funct. Mater. 34(45), 2406858 (2024). https://doi.org/10.1002/adfm.202406858
Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
Y. Deng, Y. Yang, Y. Xiao, X. Zeng, H.-L. Xie et al., Annual energy-saving smart windows with actively controllable passive radiative cooling and multimode heating regulation. Adv. Mater. 36(27), 2401869 (2024). https://doi.org/10.1002/adma.202401869
S. Wu, Y. Wang, M. Iqbal, K. Mehmood, Y. Li et al., Challenges of fluoride pollution in environment: mechanisms and pathological significance of toxicity—a review. Environ. Pollut. 304, 119241 (2022). https://doi.org/10.1016/j.envpol.2022.119241
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
Y. Zhang, J. Yu, In situ formation of SiO2 nanospheres on common fabrics for broadband radiative cooling. ACS Appl. Nano Mater. 4(10), 11260–11268 (2021). https://doi.org/10.1021/acsanm.1c02841
S. Lin, H. Wang, X. Zhang, D. Wang, D. Zu et al., Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. Nano Energy 62, 111–116 (2019). https://doi.org/10.1016/j.nanoen.2019.04.071
H. Zhang, Z. Miao, W. Shen, Development of polymer-dispersed liquid crystals: from mode innovation to applications. Compos. Part A Appl. Sci. Manuf. 163, 107234 (2022). https://doi.org/10.1016/j.compositesa.2022.107234
N. Nasir, S. Kumar, M. Kim, V.H. Nguyen, M. Suleman et al., Effect of the photoinitiator concentration on the electro-optical properties of thiol–acrylate-based PDLC smart windows. ACS Appl. Energy Mater. 5(6), 6986–6995 (2022). https://doi.org/10.1021/acsaem.2c00623
G.P. Montgomery Jr., J.L. West, W. Tamura-Lis, Light scattering from polymer-dispersed liquid crystal films: droplet size effects. J. Appl. Phys. 69(3), 1605–1612 (1991). https://doi.org/10.1063/1.347256
M. Kim, K.J. Park, S. Seok, J.M. Ok, H.-T. Jung et al., Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015). https://doi.org/10.1021/acsami.5b04496
M. Yu, J. Xu, L. Luo, L. Zhang, Y. Gao et al., Role of hydroxy group in the electro-optical properties of polymer-dispersed liquid crystals. Crystals 13(5), 843 (2023). https://doi.org/10.3390/cryst13050843
W. Li, L. Yu, W. He, X. Yuan, D. Zhao et al., Effect of a photopolymerizable monomer containing a hydrogen bond on near-infrared radiation transmittance of nematic liquid crystal/monomers composites. J. Phys. Chem. C 112(35), 13739–13743 (2008). https://doi.org/10.1021/jp804490b
M. Yu, F. Zhou, L. Zhang, X. He, C. Chen et al., Effects of hydroxylated acrylates on electro-optical performance and adhesion strength of polymer dispersed liquid crystal films. J. Mol. Liq. 397, 124180 (2024). https://doi.org/10.1016/j.molliq.2024.124180
Z. He, P. Yu, Y. Zhao, Q. Yang, Y. Zhao et al., The regulation of electric-optical properties of polymer-dispersed liquid crystals via implantation of polyhedral oligomeric silsesquioxane (POSS) microstructure. Liq. Cryst. 49(2), 240–247 (2022). https://doi.org/10.1080/02678292.2021.1956611
Z. He, P. Yu, H. Zhang, Y. Zhao, Y. Zhu et al., Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows. Nanotechnology 33(8), 085205 (2022). https://doi.org/10.1088/1361-6528/ac3a3b
Z. Ding, X. Li, Q. Ji, Y. Zhang, H. Li et al., Machine-learning-assisted design of a robust biomimetic radiative cooling metamaterial. ACS Mater. Lett. 6(6), 2416–2424 (2024). https://doi.org/10.1021/acsmaterialslett.4c00337
Z. Ding, H. Li, X. Li, X. Fan, J. Jaramillo-Fernandez et al., Designer SiO2 metasurfaces for efficient passive radiative cooling. Adv. Mater. Interfaces 11(3), 2300603 (2024). https://doi.org/10.1002/admi.202300603
J. Atkinson, I.A. Goldthorpe, Near-infrared properties of silver nanowire networks. Nanotechnology 31(36), 365201 (2020). https://doi.org/10.1088/1361-6528/ab94de
H. Hu, S. Wang, Y. Meng, G. Liu, M. Li et al., Layer-by-layer alignment of silver nanowires for transparent and flexible energy-saving windows. Adv. Mater. Technol. 7(3), 2100824 (2022). https://doi.org/10.1002/admt.202100824
K. Jiang, K. Zhang, Z. Shi, H. Li, B. Wu et al., Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microps for energy saving. Energy 283, 128473 (2023). https://doi.org/10.1016/j.energy.2023.128473
S. Hanauer, C. Celle, C. Crivello, H. Szambolics, D. Muñoz-Rojas et al., Transparent and mechanically resistant silver-nanowire-based low-emissivity coatings. ACS Appl. Mater. Interfaces 13(18), 21971–21978 (2021). https://doi.org/10.1021/acsami.1c02689
C. Lin, J. Hur, C.Y.H. Chao, G. Liu, S. Yao et al., All-weather thermochromic windows for synchronous solar and thermal radiation regulation. Sci. Adv. 8(17), eabn7359 (2022). https://doi.org/10.1126/sciadv.abn7359