Multifunctional Organic Materials, Devices, and Mechanisms for Neuroscience, Neuromorphic Computing, and Bioelectronics
Corresponding Author: Desmond K. Loke
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 251
Abstract
Neuromorphic computing has the potential to overcome limitations of traditional silicon technology in machine learning tasks. Recent advancements in large crossbar arrays and silicon-based asynchronous spiking neural networks have led to promising neuromorphic systems. However, developing compact parallel computing technology for integrating artificial neural networks into traditional hardware remains a challenge. Organic computational materials offer affordable, biocompatible neuromorphic devices with exceptional adjustability and energy-efficient switching. Here, the review investigates the advancements made in the development of organic neuromorphic devices. This review explores resistive switching mechanisms such as interface-regulated filament growth, molecular-electronic dynamics, nanowire-confined filament growth, and vacancy-assisted ion migration, while proposing methodologies to enhance state retention and conductance adjustment. The survey examines the challenges faced in implementing low-power neuromorphic computing, e.g., reducing device size and improving switching time. The review analyses the potential of these materials in adjustable, flexible, and low-power consumption applications, viz. biohybrid spiking circuits interacting with biological systems, systems that respond to specific events, robotics, intelligent agents, neuromorphic computing, neuromorphic bioelectronics, neuroscience, and other applications, and prospects of this technology.
Highlights:
1 The review emphasizes the switching mechanisms of organic neuromorphic materials.
2 In addition to these switching mechanisms, the capabilities of organic neuromorphic materials in tunable, conformable, and low-power applications, e.g., neuromorphic computing, neuroscience, and neuromorphic bioelectronics, are investigated.
3 This review article offers a comprehensive examination of the capabilities of organic neuromorphic material-based devices to incorporate artificial intelligence into everyday activities.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Soori, B. Arezoo, R. Dastres, Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 3, 54–70 (2023). https://doi.org/10.1016/j.cogr.2023.04.001
- S.-X. Go, K.-G. Lim, T.-H. Lee, D.K. Loke, Nonvolatile memristive materials and physical modeling for in-memory and in-sensor computing. Small Sci. 4(3), 2300139 (2024). https://doi.org/10.1002/smsc.202300139
- K. Aggarwal, M.M. Mijwil, A.-H. Al-Mistarehi, S. Alomari, M. Gök et al., Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi J. Comput. Sci. Math. 3(1), 115–123 (2022). https://doi.org/10.52866/ijcsm.2022.01.01.013
- M.Y. Tsai, K.C. Lee, C.Y. Lin, Y.M. Chang, K. Watanabe et al., Photoactive electro-controlled visual perception memory for emulating synaptic metaplasticity and hebbian learning. Adv. Funct. Mater. 31(40), 2105345 (2021). https://doi.org/10.1002/adfm.202105345
- D. Loke, J.M. Skelton, T.-C. Chong, S.R. Elliott, Design of a nanoscale, CMOS-integrable, thermal-guiding structure for Boolean-logic and neuromorphic computation. ACS Appl. Mater. Interfaces 8(50), 34530–34536 (2016). https://doi.org/10.1021/acsami.6b10667
- Y. Huang, J. Liu, J. Harkin, L. McDaid, Y. Luo, An memristor-based synapse implementation using BCM learning rule. Neurocomputing 423, 336–342 (2021). https://doi.org/10.1016/j.neucom.2020.10.106
- Y. Yu, J. Mo, Q. Deng, C. Zhou, B. Li et al., Memristor parallel computing for a matrix-friendly genetic algorithm. IEEE Trans. Evol. Comput. 26(5), 901–910 (2022). https://doi.org/10.1109/TEVC.2022.3144419
- K.-G. Lim, S.-X. Go, C.-C. Tan, Y. Jiang, K. Cai et al., Toward memristive phase-change neural network with high-quality ultra-effective highly-self-adjustable online learning. Adv. Phys. Res. 3(3), 2300085 (2024). https://doi.org/10.1002/apxr.202300085
- J. Li, H. Zhou, Y. Li, X. Miao, A memristive neural network based matrix equation solver with high versatility and high energy efficiency. Sci. China Inf. Sci. 66(2), 122402 (2022). https://doi.org/10.1007/s11432-021-3374-x
- H. Yu, H. Wei, J. Gong, H. Han, M. Ma et al., Evolution of bio-inspired artificial synapses: materials, structures, and mechanisms. Small 17(9), e2000041 (2021). https://doi.org/10.1002/smll.202000041
- J.M. Skelton, D. Loke, T.H. Lee, S.R. Elliott, Structural insights into the formation and evolution of amorphous phase-change materials. Phys. Status Solidi B 250(5), 968–975 (2013). https://doi.org/10.1002/pssb.201248563
- K. Ahmed, M. Habib, C. Martín-Gómez, Brain-Inspired Spiking Neural Networks. Biomimetics (IntechOpen, UK, 2020), pp.1–25
- L. Yuan, S. Liu, W. Chen, F. Fan, G. Liu, Organic memory and memristors: from mechanisms, materials to devices. Adv. Electron. Mater. 7(11), 2100432 (2021). https://doi.org/10.1002/aelm.202100432
- D.K. Loke, G.J. Clausen, J.F. Ohmura, T.-C. Chong, A.M. Belcher, Biological-templating of a segregating binary alloy for nanowire-like phase-change materials and memory. ACS Appl. Nano Mater. 1(12), 6556–6562 (2018). https://doi.org/10.1021/acsanm.8b01508
- C.J. O’Kelly, T. Nakayama, J.W. Ryan, Organic memristive devices based on squaraine nanowires. ACS Appl. Electron. Mater. 2(10), 3088–3092 (2020). https://doi.org/10.1021/acsaelm.0c00652
- B. Ramesh, R.J. Anandhi, V. Arun, A. Singla, P.K. Chandra, V.A. Sethi, A.S. Abood, A review on biomaterials for neural interfaces: enhancing brain-machine interfaces. E3S Web of Conf. 505, 01005 (2024). https://doi.org/10.1051/e3sconf/202450501005
- A. Gumyusenge, A. Melianas, S.T. Keene, A. Salleo, Materials strategies for organic neuromorphic devices. Annu. Rev. Mater. Res. 51, 47–71 (2021). https://doi.org/10.1146/annurev-matsci-080619-111402
- Y. Ziai, S.S. Zargarian, C. Rinoldi, P. Nakielski, A. Sola et al., Conducting polymer-based nanostructured materials for brain–machine interfaces. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15(5), e1895 (2023). https://doi.org/10.1002/wnan.1895
- A.V. Fadeev, K.V. Rudenko, To the issue of the memristor’s HRS and LRS states degradation and data retention time. Russ. Microelectron. 50(5), 311–325 (2021). https://doi.org/10.1134/S1063739721050024
- J. Zhou, W. Li, Y. Chen, Y.-H. Lin, M. Yi et al., A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv. Mater. 33(5), e2006201 (2021). https://doi.org/10.1002/adma.202006201
- J. Park, E. Park, S.-G. Kim, D.-G. Jin, H.-Y. Yu, Analysis of the thermal degradation effect on a HfO2-based memristor synapse caused by oxygen affinity of a top electrode metal and on a neuromorphic system. ACS Appl. Electron. Mater. 3(12), 5584–5591 (2021). https://doi.org/10.1021/acsaelm.1c01000
- K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), e2300433 (2023). https://doi.org/10.1002/advs.202300433
- S. Pazos, X. Xu, T. Guo, K. Zhu, H.N. Alshareef et al., Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 9(5), 358–373 (2024). https://doi.org/10.1038/s41578-024-00661-6
- M. Awais, H.Z. Leong, N. Othman, M.D. Shafiq, F. Zhao et al., Impact of electrical testing strategies on the performance metrics of bio-organic-based resistive switching memory. MRS Commun. 14(6), 1281–1287 (2024). https://doi.org/10.1557/s43579-024-00653-1
- J.-H. Lee, S.-K. Jung, G. Kim, J.-S. Park, K. Park et al., High thermal conductive crystalline organohalide for endurable resistive switching non-volatile memory. Adv. Mater. 21, e2413020 (2024). https://doi.org/10.1002/adma.202413020
- A. Nachawaty, T. Chen, F. Ibrahim, Y. Wang, Y. Hao et al., Voltage-driven fluorine motion for novel organic spintronic memristor. Adv. Mater. 36(33), e2401611 (2024). https://doi.org/10.1002/adma.202401611
- B. Guo, X. Zhong, Z. Yu, Z. He, S. Liu et al., Affective computing for human-machine interaction via a bionic organic memristor exhibiting selective in situ activation. Mater. Horiz. 11(17), 4075–4085 (2024). https://doi.org/10.1039/d3mh01950k
- H.L. Park, M.H. Kim, S.H. Lee, Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater. 6(10), 2000582 (2020). https://doi.org/10.1002/aelm.202000582
- S. Goswami, S.P. Rath, D. Thompson, S. Hedström, M. Annamalai et al., Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15(5), 380–389 (2020). https://doi.org/10.1038/s41565-020-0653-1
- Y. Zhang, S. Poddar, H. Huang, L. Gu, Q. Zhang et al., Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 7(36), eabg3788 (2021). https://doi.org/10.1126/sciadv.abg3788
- X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107
- S. Goswami, A.J. Matula, S.P. Rath, S. Hedström, S. Saha et al., Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16(12), 1216–1224 (2017). https://doi.org/10.1038/nmat5009
- S.-I. Yi, S.P. Rath, T. Deepak, N.B. Venkatesan et al., Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35(37), e2206128 (2023). https://doi.org/10.1002/adma.202206128
- K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
- Y. Zhang, E.R.W. van Doremaele, G. Ye, T. Stevens, J. Song et al., Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic-electronic conductor. Adv. Mater. 34(20), e2200393 (2022). https://doi.org/10.1002/adma.202200393
- Y. Tuchman, T.N. Mangoma, P. Gkoupidenis, Y. van de Burgt, R.A. John et al., Organic neuromorphic devices: past, present, and future challenges. MRS Bull. 45(8), 619–630 (2020). https://doi.org/10.1557/mrs.2020.196
- S.V. Bachinin, A. Marunchenko, I. Matchenya, N. Zhestkij, V. Shirobokov et al., Metal-organic framework single crystal for in-memory neuromorphic computing with a light control. Commun. Mater. 5, 128 (2024). https://doi.org/10.1038/s43246-024-00573-6
- I. Krauhausen, C.T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34(15), 2307729 (2024). https://doi.org/10.1002/adfm.202307729
- S. Lan, X. Wang, R. Yu, C. Zhou, M. Wang et al., Organic synaptic transistors based on a hybrid trapping layer for neuromorphic computing. IEEE Electron Device Lett. 43(8), 1255–1258 (2022). https://doi.org/10.1109/LED.2022.3182816
- Y. Li, G. He, W. Wang, C. Fu, S. Jiang et al., A high-performance organic lithium salt-doped OFET with the optical radical effect for photoelectric pulse synaptic simulation and neuromorphic memory learning. Mater. Horiz. 11(16), 3867–3877 (2024). https://doi.org/10.1039/D4MH00297K
- D.-H. Kim, J. Lee, Y. Kim, H. Yoo, E.K. Lee, Enhanced synaptic behavior of neuromorphic device based on organic electrochemical transistors by adding Aminosilane. Org. Electron. 131, 107076 (2024). https://doi.org/10.1016/j.orgel.2024.107076
- T. Kim, W. Lee, S. Kim, D.C. Lim, Y. Kim, Near-infrared-sensing flexible organic synaptic transistors with water-processable charge-trapping polymers for potential neuromorphic computing/skin applications. Adv. Intell. Syst. 6(4), 2300651 (2024). https://doi.org/10.1002/aisy.202300651
- D. Liu, Q. Shi, J. Zhang, L. Tian, L. Xiong et al., 2D metal–organic framework based optoelectronic neuromorphic transistors for human emotion simulation and neuromorphic computing. Adv. Intell. Syst. 4(11), 2200164 (2022). https://doi.org/10.1002/aisy.202200164
- D.-H. Ahn, S. Hu, K. Ko, D. Park, H. Suh et al., Energy-efficient III–V tunnel FET-based synaptic device with enhanced charge trapping ability utilizing both hot hole and hot electron injections for analog neuromorphic computing. ACS Appl. Mater. Interfaces 14(21), 24592–24601 (2022). https://doi.org/10.1021/acsami.2c04404
- Y. Wei, J. Yu, Y. Li, Y. Wang, Z. Huo et al., Mechano-driven logic-in-memory with neuromorphic triboelectric charge-trapping transistor. Nano Energy 126, 109622 (2024). https://doi.org/10.1016/j.nanoen.2024.109622
- H. Ling, D.A. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan et al., Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 7(1), 011307 (2020). https://doi.org/10.1063/1.5122249
- B. Mu, H.-H. Hsu, C.-C. Kuo, S.-T. Han, Y. Zhou, Organic small molecule-based RRAM for data storage and neuromorphic computing. J. Mater. Chem. C 8(37), 12714–12738 (2020). https://doi.org/10.1039/d0tc02116d
- Y. Yuan, R.K. Patel, S. Banik, T.B. Reta, R.S. Bisht et al., Proton conducting neuromorphic materials and devices. Chem. Rev. 124(16), 9733–9784 (2024). https://doi.org/10.1021/acs.chemrev.4c00071
- T. Tsuchiya, D. Nishioka, W. Namiki, K. Terabe, Physical Reservoir computing utilizing ion-gating transistors operating in electric double layer and redox mechanisms. Adv. Electron. Mater. 10(12), 2400625 (2024). https://doi.org/10.1002/aelm.202400625
- H. Lian, X. Cheng, H. Hao, J. Han, M.-T. Lau et al., Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 51(6), 1926–1982 (2022). https://doi.org/10.1039/d0cs00569j
- R. Gupta, P. Jash, P.C. Mondal, Nanoscale molecular layers for memory devices: challenges and opportunities for commercialization. J. Mater. Chem. C 9(35), 11497–11516 (2021). https://doi.org/10.1039/d1tc01283e
- K.Y. Cheong, I.A. Tayeb, F. Zhao, J.M. Abdullah, Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application. Nanotechnol. Rev. 10(1), 680–709 (2021). https://doi.org/10.1515/ntrev-2021-0047
- Q. Che, C. Li, Z. Chen, S. Yang, W. Zhang et al., High performance memristors based on imine-linked covalent organic frameworks obtained using a protonation modification strategy. Angew. Chem. Int. Ed. 63(48), e202409926 (2024). https://doi.org/10.1002/anie.202409926
- S. Shin, D.C. Kang, K. Kim, Y. Jeong, J. Kim et al., Emulating the short-term plasticity of a biological synapse with a ruthenium complex-based organic mixed ionic–electronic conductor. Mater. Adv. 3(6), 2827–2837 (2022). https://doi.org/10.1039/D1MA01078F
- Y. Qian, J. Li, W. Li, C.-H. Hou, Z. Feng et al., High synaptic plasticity enabled by controlled ion migration in organic heterojunction memristors. J. Mater. Chem. C 12(26), 9669–9676 (2024). https://doi.org/10.1039/d4tc01257g
- Q. Ding, W. Jiao, H. Wang, X. Zhang, S. Gao, Study of a stretchable polymer for adjustable flexible organic memristor. IEEE Trans. Electron Devices 70(7), 3921–3927 (2023). https://doi.org/10.1109/TED.2023.3274509
- M.M.H. Tanim, Z. Templin, F. Zhao, Natural organic materials based memristors and transistors for artificial synaptic devices in sustainable neuromorphic computing systems. Micromachines 14(2), 235 (2023). https://doi.org/10.3390/mi14020235
- B. Sueoka, F. Zhao, Memristive synaptic device based on a natural organic material: honey for spiking neural network in biodegradable neuromorphic systems. J. Phys. D Appl. Phys. 55(22), 225105 (2022). https://doi.org/10.1088/1361-6463/ac585b
- H.-L. Park, T.-W. Lee, Organic and perovskite memristors for neuromorphic computing. Org. Electron. 98, 106301 (2021). https://doi.org/10.1016/j.orgel.2021.106301
- H.-T. Huang, J. Luo, J.-L. Wu, X.-E. Han, Z.-D. Zhang et al., Solution-processed organic memristor matrix with behavior of clustered synaptic plasticity. IEEE Electron Device Lett. 44(10), 1724–1727 (2023). https://doi.org/10.1109/LED.2023.3306015
- A. Betal, J. Bera, S. Sahu, Non-volatile memristor-based artificial synaptic behavior of redox-active organic composites. J. Mater. Chem. C 11(14), 4674–4682 (2023). https://doi.org/10.1039/d3tc00227f
- Y. Zhang, S. Mao, C. Jiang, B. Tian, C. Luo et al., Ferroelectric polarization assisted organic artificial synapse with enhanced performance. Org. Electron. 109, 106618 (2022). https://doi.org/10.1016/j.orgel.2022.106618
- J. Zhang, J. Huang, Neuromorphic devices based on organic materials. Neuromorphic Device Brain-Inspired Comput.: Artif. Intell., Percept. Robot. 2022, 149–172 (2022). https://doi.org/10.1002/9783527835317.ch5
- N. Saini, A. Bisht, A. Patra, A. Kumar, Synaptic plasticity in electro-polymerized PEDOT based memristors for neuromorphic application. J. Mater. Sci. Mater. Electron. 33(36), 27053–27061 (2022). https://doi.org/10.1007/s10854-022-09368-2
- Y. Park, M.-K. Kim, J.-S. Lee, Emerging memory devices for artificial synapses. J. Mater. Chem. C 8(27), 9163–9183 (2020). https://doi.org/10.1039/d0tc01500h
- S. Liu, X. Chen, G. Liu, Conjugated polymers for information storage and neuromorphic computing. Polym. Int. 70(4), 374–403 (2021). https://doi.org/10.1002/pi.6017
- Y. Lee, J.Y. Oh, T.W. Lee, Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 7(12), 2200193 (2022). https://doi.org/10.1002/admt.202200193
- S.T. Keene, P. Gkoupidenis, Y. van de Burgt, Neuromorphic Computing Systems Based on Flexible Organic Electronics, in Organic Flexible Electronics. (Elsevier, 2021), pp.531–574. https://doi.org/10.1016/B978-0-12-818890-3.00018-7
- J. Wang, L. Liu, J. Guo, X. Zhao, Y. Zhang et al., Gold nanop in chemoelectronics: fundamentals, challenges, and future prospects. Adv. Funct. Mater. 34(6), 2309531 (2024). https://doi.org/10.1002/adfm.202309531
- S. Pathania, J.J.L. Hmar, V. Kumar, O.N. Verma, T. Kumar et al., Gold (Au)-doped lead sulfide-polyvinyl alcohol (PbS-PVA) nanocomposites for high-performance, flexible memristors. J. Electron. Mater. 51(9), 4964–4977 (2022). https://doi.org/10.1007/s11664-022-09740-2
- L. He, Z. Yang, Z. Wang, T. Leydecker, E. Orgiu, Organic multilevel (opto)electronic memories towards neuromorphic applications. Nanoscale 15(27), 11434–11456 (2023). https://doi.org/10.1039/d3nr01311a
- A. Han, L. Zhang, M. Zhang, C. Liu, R. Wu et al., Amyloid-gold nanop hybrids for biocompatible memristive devices. Materials 16(5), 1884 (2023). https://doi.org/10.3390/ma16051884
- R.K. Bhosale, S.S. Kundale, A.R. Shelake, H.L. Lokhande, K.A. Rokade et al., Electrochemical synthesis and functional analysis of self-assembled Au-decorated polypyrrole for non-volatile memory and bio-inspired computing. Org. Electron. 127, 107013 (2024). https://doi.org/10.1016/j.orgel.2024.107013
- L. Wang, H. Zhu, D. Wen, Bioresistive random-access memory with gold nanops that generate the coulomb blocking effect can realize multilevel data storage and synapse simulation. J. Phys. Chem. Lett. 12(37), 8956–8962 (2021). https://doi.org/10.1021/acs.jpclett.1c02815
- L. Wang, J. Xie, D. Wen, Forming-free plant resistive random access memory based on the Coulomb blockade effect produced by gold nanops. Phys. Chem. Chem. Phys. 25(27), 18132–18138 (2023). https://doi.org/10.1039/d3cp02177g
- Q. Zhang, D. Wu, Y. Fu, J. Li, Y. Chen et al., Molecular-potential and redox coregulated cathodic electrosynthesis toward ionic azulene-based thin films for organic memristors. ACS Appl. Mater. Interfaces 16(17), 22217–22228 (2024). https://doi.org/10.1021/acsami.3c19527
- Y. Xia, C. Zhang, Z. Xu, S. Lu, X. Cheng et al., Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. Nanoscale 16(4), 1471–1489 (2024). https://doi.org/10.1039/d3nr06057h
- S. Sharma, M. Pandey, S. Nagamatsu, H. Tanaka, K. Takashima et al., High-density, nonvolatile, flexible multilevel organic memristor using multilayered polymer semiconductors. ACS Appl. Mater. Interfaces 16(17), 22282–22293 (2024). https://doi.org/10.1021/acsami.4c03111
- Y. Liang, A. Offenhäusser, S. Ingebrandt, D. Mayer, PEDOT: PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 10(11), 2100061 (2021). https://doi.org/10.1002/adhm.202100061
- S. Wang, Y. Xin, R. Wang, Y. Cao, W. Zhang et al., High-performance flexible polymer memristors based on silver ions-doped polyethylenimine. IEEE Trans. Electron Devices 71(2), 1203–1207 (2024). https://doi.org/10.1109/TED.2023.3341927
- Y.-T. Yang, Y.-H. Shih, Q.-G. Chen, C.-H. Chen, M.-H. Yu et al., Revealing the potential of perovskite transistors for dual-modulated synaptic behavior through heterojunction design. ACS Energy Lett. 9(9), 4564–4571 (2024). https://doi.org/10.1021/acsenergylett.4c01784
- T. Guo, B. Sun, S. Ranjan, Y. Jiao, L. Wei et al., From memristive materials to neural networks. ACS Appl. Mater. Interfaces 12(49), 54243–54265 (2020). https://doi.org/10.1021/acsami.0c10796
- V. Erokhin, Memristive devices and circuits, in Fundamentals of Organic Neuromorphic Systems. ed. by V. Erokhin (Springer International Publishing, Cham, 2022), pp.1–17. https://doi.org/10.1007/978-3-030-79492-7_1
- R. Yang, H. Hu, J. Zhang, D. Wang, W. Huang, Data encryption based on field effect transistors and memristors. Moore More 2(1), 1 (2025). https://doi.org/10.1007/s44275-024-00011-2
- G.K. Gupta, I.-J. Kim, Y. Park, M.-K. Kim, J.-S. Lee, Inorganic perovskite quantum dot-mediated photonic multimodal synapse. ACS Appl. Mater. Interfaces 15(14), 18055–18064 (2023). https://doi.org/10.1021/acsami.2c23218
- X. Wang, Y. Ran, X. Li, X. Qin, W. Lu et al., Bio-inspired artificial synaptic transistors: evolution from innovative basic units to system integration. Mater. Horiz. 10(9), 3269–3292 (2023). https://doi.org/10.1039/d3mh00216k
- J. Liu, D. Liao, A universal flexible near-sensor neuromorphic tactile system with multi-threshold strategy for pressure characteristic detection. arXiv preprint. arXiv:240805846 (2024). https://doi.org/10.48550/arXiv.2408.05846
- Z. Xu, Y. Li, Y. Xia, C. Shi, S. Chen et al., Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 34(16), 2312658 (2024). https://doi.org/10.1002/adfm.202312658
- K. Sun, Q. Wang, L. Zhou, J. Wang, J. Chang et al., 2D–3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Sci. China Mater. 66(5), 2013–2022 (2023). https://doi.org/10.1007/s40843-022-2317-0
- Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5(4), 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
- C. Zhang, Y. Li, F. Yu, G. Wang, K. Wang et al., Visual growth of nano-hofs for low-power memristive spiking neuromorphic system. Nano Energy 109, 108274 (2023). https://doi.org/10.1016/j.nanoen.2023.108274
- Y. Ren, L. Sun, Y. Xie, S. Gao, Y. Du et al., Recent progress of organic photonic synaptic transistors for artificial visual systems: structure configuration and innovative applications. J. Mater. Chem. C 12(26), 9455–9476 (2024). https://doi.org/10.1039/D4TC01378F
- Z. Rao, X. Wang, S. Mao, J. Qin, Y. Yang et al., Flexible memristor-based nanoelectronic devices for wearable applications: a review. ACS Appl. Nano Mater. 6(20), 18645–18669 (2023). https://doi.org/10.1021/acsanm.3c03397
- H.J. Gogoi, K. Bajpai, A.T. Mallajosyula, A. Solanki, Advances in flexible memristors with hybrid perovskites. J. Phys. Chem. Lett. 12(36), 8798–8825 (2021). https://doi.org/10.1021/acs.jpclett.1c02105
- Z. Cao, B. Sun, G. Zhou, S. Mao, S. Zhu et al., Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horiz. 8(6), 716–745 (2023). https://doi.org/10.1039/d2nh00536k
- B.K. Barman, N.G. Ghosh, I. Giri, C. Kumar, S.S. Zade et al., Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor. Nanoscale 13(14), 6759–6763 (2021). https://doi.org/10.1039/d1nr00960e
- S. Mao, B. Sun, G. Zhou, T. Guo, J. Wang et al., Applications of biomemristors in next generation wearable electronics. Nanoscale Horiz. 7(8), 822–848 (2022). https://doi.org/10.1039/d2nh00163b
- J. Wu, X. Yang, J. Chen, S. Li, T. Zhou et al., Overview of amorphous carbon memristor device, modeling, and applications for neuromorphic computing. Nanotechnol. Rev. 13(1), 20230181 (2024). https://doi.org/10.1515/ntrev-2023-0181
- I. Raifuku, Y.P. Chao, H.H. Chen, C.F. Lin, P.E. Lin, Halide perovskite for low-power consumption neuromorphic devices. EcoMat 3(6), 12142 (2021). https://doi.org/10.1002/eom2.12142
- Y. Hu, Y. Chen, H. Mao, Y. Wu, Z. Zhou et al., A transparent flexible volatile memory with ultrahigh ON/OFF ratio and ultralow switching voltage. Org. Electron. 82, 105708 (2020). https://doi.org/10.1016/j.orgel.2020.105708
- X. Xu, E.J. Cho, L. Bekker, A.A. Talin, E. Lee et al., A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing. Adv. Sci. 9(15), e2200629 (2022). https://doi.org/10.1002/advs.202200629
- F. Mariani, F. Decataldo, F. Bonafè, M. Tessarolo, T. Cramer et al., High-endurance long-term potentiation in neuromorphic organic electrochemical transistors by PEDOT:PSS electrochemical polymerization on the gate electrode. ACS Appl. Mater. Interfaces 16(45), 61446–61456 (2024). https://doi.org/10.1021/acsami.3c10576
- K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang et al., Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13(28), 32606–32623 (2021). https://doi.org/10.1021/acsami.1c07665
- S. Desbief, M. di Lauro, S. Casalini, D. Guerin, S. Tortorella et al., Electrolyte-gated organic synapse transistor interfaced with neurons. Org. Electron. 38, 21–28 (2016). https://doi.org/10.1016/j.orgel.2016.07.028
- D.A. Koutsouras, T. Prodromakis, G.G. Malliaras, P.W. Blom, P. Gkoupidenis, Functional connectivity of organic neuromorphic devices by global voltage oscillations. Adv. Intell. Syst. 1(1), 1900013 (2019). https://doi.org/10.1002/aisy.201900013
- D.A. Koutsouras, M.H. Amiri, P.W.M. Blom, F. Torricelli, K. Asadi et al., An iontronic multiplexer based on spatiotemporal dynamics of multiterminal organic electrochemical transistors. Adv. Funct. Mater. 31(22), 2011013 (2021). https://doi.org/10.1002/adfm.202011013
- S. Yamamoto, Polymer-based neuromorphic devices: resistive switches and organic electrochemical transistors. Polym. Int. 72(7), 609–618 (2023). https://doi.org/10.1002/pi.6520
- M. Ghazal, M. DaherMansour, C. Scholaert, T. Dargent, Y. Coffinier et al., Bio-inspired adaptive sensing through electropolymerization of organic electrochemical transistors. Adv. Electron. Mater. 8(3), 2100891 (2022). https://doi.org/10.1002/aelm.202100891
- K. Janzakova, I. Balafrej, A. Kumar, N. Garg, C. Scholaert et al., Structural plasticity for neuromorphic networks with electropolymerized dendritic PEDOT connections. Nat. Commun. 14(1), 8143 (2023). https://doi.org/10.1038/s41467-023-43887-8
- Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
- K. Wang, J. Liu, M.E. El-Khouly, X. Cui, Q. Che et al., Water-soluble polythiophene-conjugated polyelectrolyte-based memristors for transient electronics. ACS Appl. Mater. Interfaces 14(32), 36987–36997 (2022). https://doi.org/10.1021/acsami.2c04752
- X. Ji, Z. Dong, C.S. Lai, D. Qi, A brain-inspired in-memory computing system for neuronal communication via memristive circuits. IEEE Commun. Mag. 60(1), 100–106 (2022). https://doi.org/10.1109/MCOM.001.21664
- L.S. Hu, M. Fattori, W. Schilp, R. Verbeek, S. Kazemzadeh et al., An energy-efficient solid-state organic device array for neuromorphic computing. IEEE Trans. Electron Devices 70(12), 6520–6525 (2023). https://doi.org/10.1109/TED.2023.3327947
- T.-G. Hwang, H. Park, W.-J. Cho, Organic-inorganic hybrid synaptic transistors: methyl-silsesquioxanes-based electric double layer for enhanced synaptic functionality and CMOS compatibility. Biomimetics 9(3), 157 (2024). https://doi.org/10.3390/biomimetics9030157
- J. Chen, J. Li, Y. Li, X. Miao, Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 42(1), 013104 (2021). https://doi.org/10.1088/1674-4926/42/1/013104
- M. Franco, A. Kiazadeh, R. Martins, S. Lanceros-Méndez, E. Carlos, Printed memristors: an overview of ink, materials, deposition techniques, and applications. Adv. Electron. Mater. 10(10), 2400212 (2024). https://doi.org/10.1002/aelm.202400212
- D. Vlasov, A. Minnekhanov, R. Rybka, Y. Davydov, A. Sboev et al., Memristor-based spiking neural network with online reinforcement learning. Neural Netw. 166, 512–523 (2023). https://doi.org/10.1016/j.neunet.2023.07.031
- K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
- M.K. Rahmani, S.A. Khan, H. Kim, M.U. Khan, J. Kim et al., Demonstration of high-stable bipolar resistive switching and bio-inspired synaptic characteristics using PEDOT:PSS-based memristor devices. Org. Electron. 114, 106730 (2023). https://doi.org/10.1016/j.orgel.2022.106730
- K. Oshima, K. Kuribara, T. Sato, Flex-SNN: spiking neural network on flexible substrate. IEEE Sens. Lett. 7(5), 7002104 (2023). https://doi.org/10.1109/LSENS.2023.3271988
- X. Wu, L. Jiang, H. Xu, B. Wang, L. Yang et al., Bionic olfactory synaptic transistors for artificial neuromotor pathway construction and gas recognition. Adv. Funct. Mater. 34(36), 2401965 (2024). https://doi.org/10.1002/adfm.202401965
- A. Sinha, J. Lee, J. Kim, H. So, An evaluation of recent advancements in biological sensory organ-inspired neuromorphically tuned biomimetic devices. Mater. Horiz. 11(21), 5181–5208 (2024). https://doi.org/10.1039/D4MH00522H
- Y. Meng, G. Cheng, Human somatosensory systems based on sensor-memory-integrated technology. Nanoscale 16(25), 11928–11958 (2024). https://doi.org/10.1039/d3nr06521a
- K. Lu, L. Li, S. Jiang, X. Chen, Q. Chang et al., Advanced bioinspired organic sensors for future-oriented intelligent applications. Adv. Sens. Res. 2(7), 2200066 (2023). https://doi.org/10.1002/adsr.202200066
- J.Y. Kwon, J.E. Kim, J.S. Kim, S.Y. Chun, K. Soh et al., Artificial sensory system based on memristive devices. Exploration 4(1), 20220162 (2024). https://doi.org/10.1002/EXP.20220162
- H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
- L. Fang, C. Mao, H. Wang, Q. Ding, W. Jiao et al., Recent progress of organic artificial synapses in biomimetic sensory neural systems. J. Mater. Chem. C 12(24), 8586–8610 (2024). https://doi.org/10.1039/D4TC00704B
- X. Ji, X. Zhao, M.C. Tan, R. Zhao, Artificial perception built on memristive system: visual, auditory, and tactile sensations. Adv. Intell. Syst. 2(3), 1900118 (2020). https://doi.org/10.1002/aisy.201900118
- J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
- F.Y. Rahman, D. Bhattacharjee, S.A. Hussain, An account of natural material-based nonvolatile memory device. Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 93(3), 497–510 (2023). https://doi.org/10.1007/s40010-023-00830-2
- A. Adamatzky, Electrical resistive spiking of fungi andrew adamatzky, alessandro chiolerio, and georgios sirakoulis. Fungal Mach. Sens. Comput. Fungi. 47, 169 (2023). https://doi.org/10.1142/S1793048021500016
- L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U.S.A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
- V.Y. Prinz, K.B. Fritzler, 3D printed biohybrid microsystems. Adv. Mater. Technol. 8(2), 2101633 (2023). https://doi.org/10.1002/admt.202101633
- A. Mikhaylov, A. Pimashkin, Y. Pigareva, S. Gerasimova, E. Gryaznov et al., Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 14, 358 (2020). https://doi.org/10.3389/fnins.2020.00358
- M.M. Makhoul-Mansour, J.J. Maraj, S.A. Sarles, Bioderived materials for stimuli-responsive, adaptive, and neuromorphic systems: a perspective. J. Compos. Mater. 57(4), 659–678 (2023). https://doi.org/10.1177/00219983221135055
- H.R. Lee, Y. Won, J.H. Oh, Neuromorphic bioelectronics based on semiconducting polymers. J. Polym. Sci. 60(3), 348–376 (2022). https://doi.org/10.1002/pol.20210502
- M. Chiappalone, V.R. Cota, M. Carè, M. Di Florio, R. Beaubois et al., Neuromorphic-based neuroprostheses for brain rewiring: state-of-the-art and perspectives in neuroengineering. Brain Sci. 12(11), 1578 (2022). https://doi.org/10.3390/brainsci12111578
- U. Bruno, A. Mariano, D. Rana, T. Gemmeke, S. Musall et al., From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks. Neuromorph. Comput. Eng. 3(2), 023002 (2023). https://doi.org/10.1088/2634-4386/acc683
- T. Ahmed, Bio-inspired artificial synapses: neuromorphic computing chip engineering with soft biomaterials. Memories Mater. Dev. Circuits Syst. 6, 100088 (2023). https://doi.org/10.1016/j.memori.2023.100088
- D. Rana, C.-H. Kim, M. Wang, F. Cicoira, F. Santoro, Tissue-like interfacing of planar electrochemical organic neuromorphic devices. Neuromorph. Comput. Eng. 4(3), 034010 (2024). https://doi.org/10.1088/2634-4386/ad63c6
- B. Zhou, W. Liu, Y. Xu, C. Jin, J. Yang et al., Organic electrochemical transistors toward synaptic electronics. J. Phys. D Appl. Phys. 55(30), 304006 (2022). https://doi.org/10.1088/1361-6463/ac67b9
- Q. Jiang, M. Liu, Recent progress in artificial neurons for neuromodulation. J. Funct. Biomater. 15(8), 214 (2024). https://doi.org/10.3390/jfb15080214
- K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
- C. Forró, S. Musall, V.R. Montes, J. Linkhorst, P. Walter et al., Toward the next generation of neural iontronic interfaces. Adv. Healthc. Mater. 12(20), e2301055 (2023). https://doi.org/10.1002/adhm.202301055
- Y. Yao, R.M. Pankow, W. Huang et al., An organic electrochemical neuron for a neuromorphic perception system. Proc. Natl. Acad. Sci. U.S.A. 122(2), e2414879122 (2025). https://doi.org/10.1073/pnas.2414879122
- D. Rana, U. Bruno, C. Lubrano, F. Santoro, Neuromorphic control of organic electrochemical transistors for the actuation of a robotic hand. In: Proceedings of Neuromorphic Materials, Devices, Circuits and Systems (NeuMatDeCaS, 2023). https://doi.org/10.1073/pnas.2414879122
- H. Roh, C. Cunin, S. Samal, A. Gumyusenge, Towards organic electronics that learn at the body-machine interface: a materials journey. MRS Commun. 12(5), 565–577 (2022). https://doi.org/10.1557/s43579-022-00269-3
- W. Li, Y. Li, Z. Song, Y.-X. Wang, W. Hu, PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53(21), 10575–10603 (2024). https://doi.org/10.1039/d4cs00541d
- H. Jang, S. Biswas, P. Lang, J.-H. Bae, H. Kim, Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications. Org. Electron. 127, 107014 (2024). https://doi.org/10.1016/j.orgel.2024.107014
- M.J. Mirshojaeian Hosseini, Y. Yang, A.J. Prendergast, E. Donati, M. Faezipour et al., An organic synaptic circuit: toward flexible and biocompatible organic neuromorphic processing. Neuromorph. Comput. Eng. 2(3), 034009 (2022). https://doi.org/10.1088/2634-4386/ac830c
- M. Giordani, M. Sensi, M. Berto, M. DiLauro, C.A. Bortolotti et al., Neuromorphic organic devices that specifically discriminate dopamine from its metabolites by nonspecific interactions. Adv. Funct. Mater. 30(28), 2002141 (2020). https://doi.org/10.1002/adfm.202002141
- J. Fan, J. Feng, Y. Gao, Z. Zhang, S. Xue et al., PEDOT-ZnO nanop hybrid film-based memristors for synapse emulation in neuromorphic computing applications. ACS Appl. Nano Mater. 7(5), 5661–5668 (2024). https://doi.org/10.1021/acsanm.4c00759
- Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
- S. Battistoni, Organic memristive devices for neuromorphic applications. BioNanoScience 11(1), 227–231 (2021). https://doi.org/10.1007/s12668-020-00808-z
- W. Xu, Y. Zhu, X. Zhou, H. Guo, J. Wang et al., High-density, ultraflexible organic electrochemical transistor array for brain activity mapping. J. Mater. Chem. C 13(9), 4385–4397 (2025). https://doi.org/10.1039/d4tc02839b
- A. Baron, E.H. Balaguera, S. Pecqueur, Correlation between electrochemical relaxations and morphologies of conducting polymer dendrites. ECS Adv. 3(4), 044001 (2024). https://doi.org/10.1149/2754-2734/ad9bcb
- Y. Zeng, F. Zhao, Y. Zhao, D. Zhao, E. Lu et al., Brain-inspired and self-based artificial intelligence. arXiv preprint arXiv:240218784. (2024). https://doi.org/10.48550/arXiv.2402.18784
- C. Shi, L. Wang, H. Gao, M. Tian, Learnable leakage and onset-spiking self-attention in SNNs with local error signals. Sensors 23(24), 9781 (2023). https://doi.org/10.3390/s23249781
- B. Gökgöz, F. Gül, T. Aydın, An overview memristor based hardware accelerators for deep neural network. Concurr. Comput. Pract. Exp. 36(9), e7997 (2024). https://doi.org/10.1002/cpe.7997
- J.C. Hsieh, H. Alawieh, Y. Li, F. Iwane, L. Zhao et al., A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens. Bioelectron. 218, 114756 (2022). https://doi.org/10.1016/j.bios.2022.114756
References
M. Soori, B. Arezoo, R. Dastres, Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 3, 54–70 (2023). https://doi.org/10.1016/j.cogr.2023.04.001
S.-X. Go, K.-G. Lim, T.-H. Lee, D.K. Loke, Nonvolatile memristive materials and physical modeling for in-memory and in-sensor computing. Small Sci. 4(3), 2300139 (2024). https://doi.org/10.1002/smsc.202300139
K. Aggarwal, M.M. Mijwil, A.-H. Al-Mistarehi, S. Alomari, M. Gök et al., Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi J. Comput. Sci. Math. 3(1), 115–123 (2022). https://doi.org/10.52866/ijcsm.2022.01.01.013
M.Y. Tsai, K.C. Lee, C.Y. Lin, Y.M. Chang, K. Watanabe et al., Photoactive electro-controlled visual perception memory for emulating synaptic metaplasticity and hebbian learning. Adv. Funct. Mater. 31(40), 2105345 (2021). https://doi.org/10.1002/adfm.202105345
D. Loke, J.M. Skelton, T.-C. Chong, S.R. Elliott, Design of a nanoscale, CMOS-integrable, thermal-guiding structure for Boolean-logic and neuromorphic computation. ACS Appl. Mater. Interfaces 8(50), 34530–34536 (2016). https://doi.org/10.1021/acsami.6b10667
Y. Huang, J. Liu, J. Harkin, L. McDaid, Y. Luo, An memristor-based synapse implementation using BCM learning rule. Neurocomputing 423, 336–342 (2021). https://doi.org/10.1016/j.neucom.2020.10.106
Y. Yu, J. Mo, Q. Deng, C. Zhou, B. Li et al., Memristor parallel computing for a matrix-friendly genetic algorithm. IEEE Trans. Evol. Comput. 26(5), 901–910 (2022). https://doi.org/10.1109/TEVC.2022.3144419
K.-G. Lim, S.-X. Go, C.-C. Tan, Y. Jiang, K. Cai et al., Toward memristive phase-change neural network with high-quality ultra-effective highly-self-adjustable online learning. Adv. Phys. Res. 3(3), 2300085 (2024). https://doi.org/10.1002/apxr.202300085
J. Li, H. Zhou, Y. Li, X. Miao, A memristive neural network based matrix equation solver with high versatility and high energy efficiency. Sci. China Inf. Sci. 66(2), 122402 (2022). https://doi.org/10.1007/s11432-021-3374-x
H. Yu, H. Wei, J. Gong, H. Han, M. Ma et al., Evolution of bio-inspired artificial synapses: materials, structures, and mechanisms. Small 17(9), e2000041 (2021). https://doi.org/10.1002/smll.202000041
J.M. Skelton, D. Loke, T.H. Lee, S.R. Elliott, Structural insights into the formation and evolution of amorphous phase-change materials. Phys. Status Solidi B 250(5), 968–975 (2013). https://doi.org/10.1002/pssb.201248563
K. Ahmed, M. Habib, C. Martín-Gómez, Brain-Inspired Spiking Neural Networks. Biomimetics (IntechOpen, UK, 2020), pp.1–25
L. Yuan, S. Liu, W. Chen, F. Fan, G. Liu, Organic memory and memristors: from mechanisms, materials to devices. Adv. Electron. Mater. 7(11), 2100432 (2021). https://doi.org/10.1002/aelm.202100432
D.K. Loke, G.J. Clausen, J.F. Ohmura, T.-C. Chong, A.M. Belcher, Biological-templating of a segregating binary alloy for nanowire-like phase-change materials and memory. ACS Appl. Nano Mater. 1(12), 6556–6562 (2018). https://doi.org/10.1021/acsanm.8b01508
C.J. O’Kelly, T. Nakayama, J.W. Ryan, Organic memristive devices based on squaraine nanowires. ACS Appl. Electron. Mater. 2(10), 3088–3092 (2020). https://doi.org/10.1021/acsaelm.0c00652
B. Ramesh, R.J. Anandhi, V. Arun, A. Singla, P.K. Chandra, V.A. Sethi, A.S. Abood, A review on biomaterials for neural interfaces: enhancing brain-machine interfaces. E3S Web of Conf. 505, 01005 (2024). https://doi.org/10.1051/e3sconf/202450501005
A. Gumyusenge, A. Melianas, S.T. Keene, A. Salleo, Materials strategies for organic neuromorphic devices. Annu. Rev. Mater. Res. 51, 47–71 (2021). https://doi.org/10.1146/annurev-matsci-080619-111402
Y. Ziai, S.S. Zargarian, C. Rinoldi, P. Nakielski, A. Sola et al., Conducting polymer-based nanostructured materials for brain–machine interfaces. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15(5), e1895 (2023). https://doi.org/10.1002/wnan.1895
A.V. Fadeev, K.V. Rudenko, To the issue of the memristor’s HRS and LRS states degradation and data retention time. Russ. Microelectron. 50(5), 311–325 (2021). https://doi.org/10.1134/S1063739721050024
J. Zhou, W. Li, Y. Chen, Y.-H. Lin, M. Yi et al., A monochloro copper phthalocyanine memristor with high-temperature resilience for electronic synapse applications. Adv. Mater. 33(5), e2006201 (2021). https://doi.org/10.1002/adma.202006201
J. Park, E. Park, S.-G. Kim, D.-G. Jin, H.-Y. Yu, Analysis of the thermal degradation effect on a HfO2-based memristor synapse caused by oxygen affinity of a top electrode metal and on a neuromorphic system. ACS Appl. Electron. Mater. 3(12), 5584–5591 (2021). https://doi.org/10.1021/acsaelm.1c01000
K.A. Nirmal, W. Ren, A.C. Khot, D.Y. Kang, T.D. Dongale et al., Flexible memristive organic solar cell using multilayer 2D titanium carbide MXene electrodes. Adv. Sci. 10(19), e2300433 (2023). https://doi.org/10.1002/advs.202300433
S. Pazos, X. Xu, T. Guo, K. Zhu, H.N. Alshareef et al., Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 9(5), 358–373 (2024). https://doi.org/10.1038/s41578-024-00661-6
M. Awais, H.Z. Leong, N. Othman, M.D. Shafiq, F. Zhao et al., Impact of electrical testing strategies on the performance metrics of bio-organic-based resistive switching memory. MRS Commun. 14(6), 1281–1287 (2024). https://doi.org/10.1557/s43579-024-00653-1
J.-H. Lee, S.-K. Jung, G. Kim, J.-S. Park, K. Park et al., High thermal conductive crystalline organohalide for endurable resistive switching non-volatile memory. Adv. Mater. 21, e2413020 (2024). https://doi.org/10.1002/adma.202413020
A. Nachawaty, T. Chen, F. Ibrahim, Y. Wang, Y. Hao et al., Voltage-driven fluorine motion for novel organic spintronic memristor. Adv. Mater. 36(33), e2401611 (2024). https://doi.org/10.1002/adma.202401611
B. Guo, X. Zhong, Z. Yu, Z. He, S. Liu et al., Affective computing for human-machine interaction via a bionic organic memristor exhibiting selective in situ activation. Mater. Horiz. 11(17), 4075–4085 (2024). https://doi.org/10.1039/d3mh01950k
H.L. Park, M.H. Kim, S.H. Lee, Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater. 6(10), 2000582 (2020). https://doi.org/10.1002/aelm.202000582
S. Goswami, S.P. Rath, D. Thompson, S. Hedström, M. Annamalai et al., Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15(5), 380–389 (2020). https://doi.org/10.1038/s41565-020-0653-1
Y. Zhang, S. Poddar, H. Huang, L. Gu, Q. Zhang et al., Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 7(36), eabg3788 (2021). https://doi.org/10.1126/sciadv.abg3788
X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang et al., A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 15(25), 1900107 (2019). https://doi.org/10.1002/smll.201900107
S. Goswami, A.J. Matula, S.P. Rath, S. Hedström, S. Saha et al., Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16(12), 1216–1224 (2017). https://doi.org/10.1038/nmat5009
S.-I. Yi, S.P. Rath, T. Deepak, N.B. Venkatesan et al., Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35(37), e2206128 (2023). https://doi.org/10.1002/adma.202206128
K. Wang, J. Chen, X. Yan, MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021). https://doi.org/10.1016/j.nanoen.2020.105453
Y. Zhang, E.R.W. van Doremaele, G. Ye, T. Stevens, J. Song et al., Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic-electronic conductor. Adv. Mater. 34(20), e2200393 (2022). https://doi.org/10.1002/adma.202200393
Y. Tuchman, T.N. Mangoma, P. Gkoupidenis, Y. van de Burgt, R.A. John et al., Organic neuromorphic devices: past, present, and future challenges. MRS Bull. 45(8), 619–630 (2020). https://doi.org/10.1557/mrs.2020.196
S.V. Bachinin, A. Marunchenko, I. Matchenya, N. Zhestkij, V. Shirobokov et al., Metal-organic framework single crystal for in-memory neuromorphic computing with a light control. Commun. Mater. 5, 128 (2024). https://doi.org/10.1038/s43246-024-00573-6
I. Krauhausen, C.T. Coen, S. Spolaor, P. Gkoupidenis, Y. van de Burgt, Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34(15), 2307729 (2024). https://doi.org/10.1002/adfm.202307729
S. Lan, X. Wang, R. Yu, C. Zhou, M. Wang et al., Organic synaptic transistors based on a hybrid trapping layer for neuromorphic computing. IEEE Electron Device Lett. 43(8), 1255–1258 (2022). https://doi.org/10.1109/LED.2022.3182816
Y. Li, G. He, W. Wang, C. Fu, S. Jiang et al., A high-performance organic lithium salt-doped OFET with the optical radical effect for photoelectric pulse synaptic simulation and neuromorphic memory learning. Mater. Horiz. 11(16), 3867–3877 (2024). https://doi.org/10.1039/D4MH00297K
D.-H. Kim, J. Lee, Y. Kim, H. Yoo, E.K. Lee, Enhanced synaptic behavior of neuromorphic device based on organic electrochemical transistors by adding Aminosilane. Org. Electron. 131, 107076 (2024). https://doi.org/10.1016/j.orgel.2024.107076
T. Kim, W. Lee, S. Kim, D.C. Lim, Y. Kim, Near-infrared-sensing flexible organic synaptic transistors with water-processable charge-trapping polymers for potential neuromorphic computing/skin applications. Adv. Intell. Syst. 6(4), 2300651 (2024). https://doi.org/10.1002/aisy.202300651
D. Liu, Q. Shi, J. Zhang, L. Tian, L. Xiong et al., 2D metal–organic framework based optoelectronic neuromorphic transistors for human emotion simulation and neuromorphic computing. Adv. Intell. Syst. 4(11), 2200164 (2022). https://doi.org/10.1002/aisy.202200164
D.-H. Ahn, S. Hu, K. Ko, D. Park, H. Suh et al., Energy-efficient III–V tunnel FET-based synaptic device with enhanced charge trapping ability utilizing both hot hole and hot electron injections for analog neuromorphic computing. ACS Appl. Mater. Interfaces 14(21), 24592–24601 (2022). https://doi.org/10.1021/acsami.2c04404
Y. Wei, J. Yu, Y. Li, Y. Wang, Z. Huo et al., Mechano-driven logic-in-memory with neuromorphic triboelectric charge-trapping transistor. Nano Energy 126, 109622 (2024). https://doi.org/10.1016/j.nanoen.2024.109622
H. Ling, D.A. Koutsouras, S. Kazemzadeh, Y. van de Burgt, F. Yan et al., Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 7(1), 011307 (2020). https://doi.org/10.1063/1.5122249
B. Mu, H.-H. Hsu, C.-C. Kuo, S.-T. Han, Y. Zhou, Organic small molecule-based RRAM for data storage and neuromorphic computing. J. Mater. Chem. C 8(37), 12714–12738 (2020). https://doi.org/10.1039/d0tc02116d
Y. Yuan, R.K. Patel, S. Banik, T.B. Reta, R.S. Bisht et al., Proton conducting neuromorphic materials and devices. Chem. Rev. 124(16), 9733–9784 (2024). https://doi.org/10.1021/acs.chemrev.4c00071
T. Tsuchiya, D. Nishioka, W. Namiki, K. Terabe, Physical Reservoir computing utilizing ion-gating transistors operating in electric double layer and redox mechanisms. Adv. Electron. Mater. 10(12), 2400625 (2024). https://doi.org/10.1002/aelm.202400625
H. Lian, X. Cheng, H. Hao, J. Han, M.-T. Lau et al., Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 51(6), 1926–1982 (2022). https://doi.org/10.1039/d0cs00569j
R. Gupta, P. Jash, P.C. Mondal, Nanoscale molecular layers for memory devices: challenges and opportunities for commercialization. J. Mater. Chem. C 9(35), 11497–11516 (2021). https://doi.org/10.1039/d1tc01283e
K.Y. Cheong, I.A. Tayeb, F. Zhao, J.M. Abdullah, Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application. Nanotechnol. Rev. 10(1), 680–709 (2021). https://doi.org/10.1515/ntrev-2021-0047
Q. Che, C. Li, Z. Chen, S. Yang, W. Zhang et al., High performance memristors based on imine-linked covalent organic frameworks obtained using a protonation modification strategy. Angew. Chem. Int. Ed. 63(48), e202409926 (2024). https://doi.org/10.1002/anie.202409926
S. Shin, D.C. Kang, K. Kim, Y. Jeong, J. Kim et al., Emulating the short-term plasticity of a biological synapse with a ruthenium complex-based organic mixed ionic–electronic conductor. Mater. Adv. 3(6), 2827–2837 (2022). https://doi.org/10.1039/D1MA01078F
Y. Qian, J. Li, W. Li, C.-H. Hou, Z. Feng et al., High synaptic plasticity enabled by controlled ion migration in organic heterojunction memristors. J. Mater. Chem. C 12(26), 9669–9676 (2024). https://doi.org/10.1039/d4tc01257g
Q. Ding, W. Jiao, H. Wang, X. Zhang, S. Gao, Study of a stretchable polymer for adjustable flexible organic memristor. IEEE Trans. Electron Devices 70(7), 3921–3927 (2023). https://doi.org/10.1109/TED.2023.3274509
M.M.H. Tanim, Z. Templin, F. Zhao, Natural organic materials based memristors and transistors for artificial synaptic devices in sustainable neuromorphic computing systems. Micromachines 14(2), 235 (2023). https://doi.org/10.3390/mi14020235
B. Sueoka, F. Zhao, Memristive synaptic device based on a natural organic material: honey for spiking neural network in biodegradable neuromorphic systems. J. Phys. D Appl. Phys. 55(22), 225105 (2022). https://doi.org/10.1088/1361-6463/ac585b
H.-L. Park, T.-W. Lee, Organic and perovskite memristors for neuromorphic computing. Org. Electron. 98, 106301 (2021). https://doi.org/10.1016/j.orgel.2021.106301
H.-T. Huang, J. Luo, J.-L. Wu, X.-E. Han, Z.-D. Zhang et al., Solution-processed organic memristor matrix with behavior of clustered synaptic plasticity. IEEE Electron Device Lett. 44(10), 1724–1727 (2023). https://doi.org/10.1109/LED.2023.3306015
A. Betal, J. Bera, S. Sahu, Non-volatile memristor-based artificial synaptic behavior of redox-active organic composites. J. Mater. Chem. C 11(14), 4674–4682 (2023). https://doi.org/10.1039/d3tc00227f
Y. Zhang, S. Mao, C. Jiang, B. Tian, C. Luo et al., Ferroelectric polarization assisted organic artificial synapse with enhanced performance. Org. Electron. 109, 106618 (2022). https://doi.org/10.1016/j.orgel.2022.106618
J. Zhang, J. Huang, Neuromorphic devices based on organic materials. Neuromorphic Device Brain-Inspired Comput.: Artif. Intell., Percept. Robot. 2022, 149–172 (2022). https://doi.org/10.1002/9783527835317.ch5
N. Saini, A. Bisht, A. Patra, A. Kumar, Synaptic plasticity in electro-polymerized PEDOT based memristors for neuromorphic application. J. Mater. Sci. Mater. Electron. 33(36), 27053–27061 (2022). https://doi.org/10.1007/s10854-022-09368-2
Y. Park, M.-K. Kim, J.-S. Lee, Emerging memory devices for artificial synapses. J. Mater. Chem. C 8(27), 9163–9183 (2020). https://doi.org/10.1039/d0tc01500h
S. Liu, X. Chen, G. Liu, Conjugated polymers for information storage and neuromorphic computing. Polym. Int. 70(4), 374–403 (2021). https://doi.org/10.1002/pi.6017
Y. Lee, J.Y. Oh, T.W. Lee, Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 7(12), 2200193 (2022). https://doi.org/10.1002/admt.202200193
S.T. Keene, P. Gkoupidenis, Y. van de Burgt, Neuromorphic Computing Systems Based on Flexible Organic Electronics, in Organic Flexible Electronics. (Elsevier, 2021), pp.531–574. https://doi.org/10.1016/B978-0-12-818890-3.00018-7
J. Wang, L. Liu, J. Guo, X. Zhao, Y. Zhang et al., Gold nanop in chemoelectronics: fundamentals, challenges, and future prospects. Adv. Funct. Mater. 34(6), 2309531 (2024). https://doi.org/10.1002/adfm.202309531
S. Pathania, J.J.L. Hmar, V. Kumar, O.N. Verma, T. Kumar et al., Gold (Au)-doped lead sulfide-polyvinyl alcohol (PbS-PVA) nanocomposites for high-performance, flexible memristors. J. Electron. Mater. 51(9), 4964–4977 (2022). https://doi.org/10.1007/s11664-022-09740-2
L. He, Z. Yang, Z. Wang, T. Leydecker, E. Orgiu, Organic multilevel (opto)electronic memories towards neuromorphic applications. Nanoscale 15(27), 11434–11456 (2023). https://doi.org/10.1039/d3nr01311a
A. Han, L. Zhang, M. Zhang, C. Liu, R. Wu et al., Amyloid-gold nanop hybrids for biocompatible memristive devices. Materials 16(5), 1884 (2023). https://doi.org/10.3390/ma16051884
R.K. Bhosale, S.S. Kundale, A.R. Shelake, H.L. Lokhande, K.A. Rokade et al., Electrochemical synthesis and functional analysis of self-assembled Au-decorated polypyrrole for non-volatile memory and bio-inspired computing. Org. Electron. 127, 107013 (2024). https://doi.org/10.1016/j.orgel.2024.107013
L. Wang, H. Zhu, D. Wen, Bioresistive random-access memory with gold nanops that generate the coulomb blocking effect can realize multilevel data storage and synapse simulation. J. Phys. Chem. Lett. 12(37), 8956–8962 (2021). https://doi.org/10.1021/acs.jpclett.1c02815
L. Wang, J. Xie, D. Wen, Forming-free plant resistive random access memory based on the Coulomb blockade effect produced by gold nanops. Phys. Chem. Chem. Phys. 25(27), 18132–18138 (2023). https://doi.org/10.1039/d3cp02177g
Q. Zhang, D. Wu, Y. Fu, J. Li, Y. Chen et al., Molecular-potential and redox coregulated cathodic electrosynthesis toward ionic azulene-based thin films for organic memristors. ACS Appl. Mater. Interfaces 16(17), 22217–22228 (2024). https://doi.org/10.1021/acsami.3c19527
Y. Xia, C. Zhang, Z. Xu, S. Lu, X. Cheng et al., Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. Nanoscale 16(4), 1471–1489 (2024). https://doi.org/10.1039/d3nr06057h
S. Sharma, M. Pandey, S. Nagamatsu, H. Tanaka, K. Takashima et al., High-density, nonvolatile, flexible multilevel organic memristor using multilayered polymer semiconductors. ACS Appl. Mater. Interfaces 16(17), 22282–22293 (2024). https://doi.org/10.1021/acsami.4c03111
Y. Liang, A. Offenhäusser, S. Ingebrandt, D. Mayer, PEDOT: PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 10(11), 2100061 (2021). https://doi.org/10.1002/adhm.202100061
S. Wang, Y. Xin, R. Wang, Y. Cao, W. Zhang et al., High-performance flexible polymer memristors based on silver ions-doped polyethylenimine. IEEE Trans. Electron Devices 71(2), 1203–1207 (2024). https://doi.org/10.1109/TED.2023.3341927
Y.-T. Yang, Y.-H. Shih, Q.-G. Chen, C.-H. Chen, M.-H. Yu et al., Revealing the potential of perovskite transistors for dual-modulated synaptic behavior through heterojunction design. ACS Energy Lett. 9(9), 4564–4571 (2024). https://doi.org/10.1021/acsenergylett.4c01784
T. Guo, B. Sun, S. Ranjan, Y. Jiao, L. Wei et al., From memristive materials to neural networks. ACS Appl. Mater. Interfaces 12(49), 54243–54265 (2020). https://doi.org/10.1021/acsami.0c10796
V. Erokhin, Memristive devices and circuits, in Fundamentals of Organic Neuromorphic Systems. ed. by V. Erokhin (Springer International Publishing, Cham, 2022), pp.1–17. https://doi.org/10.1007/978-3-030-79492-7_1
R. Yang, H. Hu, J. Zhang, D. Wang, W. Huang, Data encryption based on field effect transistors and memristors. Moore More 2(1), 1 (2025). https://doi.org/10.1007/s44275-024-00011-2
G.K. Gupta, I.-J. Kim, Y. Park, M.-K. Kim, J.-S. Lee, Inorganic perovskite quantum dot-mediated photonic multimodal synapse. ACS Appl. Mater. Interfaces 15(14), 18055–18064 (2023). https://doi.org/10.1021/acsami.2c23218
X. Wang, Y. Ran, X. Li, X. Qin, W. Lu et al., Bio-inspired artificial synaptic transistors: evolution from innovative basic units to system integration. Mater. Horiz. 10(9), 3269–3292 (2023). https://doi.org/10.1039/d3mh00216k
J. Liu, D. Liao, A universal flexible near-sensor neuromorphic tactile system with multi-threshold strategy for pressure characteristic detection. arXiv preprint. arXiv:240805846 (2024). https://doi.org/10.48550/arXiv.2408.05846
Z. Xu, Y. Li, Y. Xia, C. Shi, S. Chen et al., Organic frameworks memristor: an emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 34(16), 2312658 (2024). https://doi.org/10.1002/adfm.202312658
K. Sun, Q. Wang, L. Zhou, J. Wang, J. Chang et al., 2D–3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Sci. China Mater. 66(5), 2013–2022 (2023). https://doi.org/10.1007/s40843-022-2317-0
Y. Lee, H.-L. Park, Y. Kim, T.-W. Lee, Organic electronic synapses with low energy consumption. Joule 5(4), 794–810 (2021). https://doi.org/10.1016/j.joule.2021.01.005
C. Zhang, Y. Li, F. Yu, G. Wang, K. Wang et al., Visual growth of nano-hofs for low-power memristive spiking neuromorphic system. Nano Energy 109, 108274 (2023). https://doi.org/10.1016/j.nanoen.2023.108274
Y. Ren, L. Sun, Y. Xie, S. Gao, Y. Du et al., Recent progress of organic photonic synaptic transistors for artificial visual systems: structure configuration and innovative applications. J. Mater. Chem. C 12(26), 9455–9476 (2024). https://doi.org/10.1039/D4TC01378F
Z. Rao, X. Wang, S. Mao, J. Qin, Y. Yang et al., Flexible memristor-based nanoelectronic devices for wearable applications: a review. ACS Appl. Nano Mater. 6(20), 18645–18669 (2023). https://doi.org/10.1021/acsanm.3c03397
H.J. Gogoi, K. Bajpai, A.T. Mallajosyula, A. Solanki, Advances in flexible memristors with hybrid perovskites. J. Phys. Chem. Lett. 12(36), 8798–8825 (2021). https://doi.org/10.1021/acs.jpclett.1c02105
Z. Cao, B. Sun, G. Zhou, S. Mao, S. Zhu et al., Memristor-based neural networks: a bridge from device to artificial intelligence. Nanoscale Horiz. 8(6), 716–745 (2023). https://doi.org/10.1039/d2nh00536k
B.K. Barman, N.G. Ghosh, I. Giri, C. Kumar, S.S. Zade et al., Incorporating a redox active entity to attain electrical bistability in a polymer semiconductor. Nanoscale 13(14), 6759–6763 (2021). https://doi.org/10.1039/d1nr00960e
S. Mao, B. Sun, G. Zhou, T. Guo, J. Wang et al., Applications of biomemristors in next generation wearable electronics. Nanoscale Horiz. 7(8), 822–848 (2022). https://doi.org/10.1039/d2nh00163b
J. Wu, X. Yang, J. Chen, S. Li, T. Zhou et al., Overview of amorphous carbon memristor device, modeling, and applications for neuromorphic computing. Nanotechnol. Rev. 13(1), 20230181 (2024). https://doi.org/10.1515/ntrev-2023-0181
I. Raifuku, Y.P. Chao, H.H. Chen, C.F. Lin, P.E. Lin, Halide perovskite for low-power consumption neuromorphic devices. EcoMat 3(6), 12142 (2021). https://doi.org/10.1002/eom2.12142
Y. Hu, Y. Chen, H. Mao, Y. Wu, Z. Zhou et al., A transparent flexible volatile memory with ultrahigh ON/OFF ratio and ultralow switching voltage. Org. Electron. 82, 105708 (2020). https://doi.org/10.1016/j.orgel.2020.105708
X. Xu, E.J. Cho, L. Bekker, A.A. Talin, E. Lee et al., A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing. Adv. Sci. 9(15), e2200629 (2022). https://doi.org/10.1002/advs.202200629
F. Mariani, F. Decataldo, F. Bonafè, M. Tessarolo, T. Cramer et al., High-endurance long-term potentiation in neuromorphic organic electrochemical transistors by PEDOT:PSS electrochemical polymerization on the gate electrode. ACS Appl. Mater. Interfaces 16(45), 61446–61456 (2024). https://doi.org/10.1021/acsami.3c10576
K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang et al., Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13(28), 32606–32623 (2021). https://doi.org/10.1021/acsami.1c07665
S. Desbief, M. di Lauro, S. Casalini, D. Guerin, S. Tortorella et al., Electrolyte-gated organic synapse transistor interfaced with neurons. Org. Electron. 38, 21–28 (2016). https://doi.org/10.1016/j.orgel.2016.07.028
D.A. Koutsouras, T. Prodromakis, G.G. Malliaras, P.W. Blom, P. Gkoupidenis, Functional connectivity of organic neuromorphic devices by global voltage oscillations. Adv. Intell. Syst. 1(1), 1900013 (2019). https://doi.org/10.1002/aisy.201900013
D.A. Koutsouras, M.H. Amiri, P.W.M. Blom, F. Torricelli, K. Asadi et al., An iontronic multiplexer based on spatiotemporal dynamics of multiterminal organic electrochemical transistors. Adv. Funct. Mater. 31(22), 2011013 (2021). https://doi.org/10.1002/adfm.202011013
S. Yamamoto, Polymer-based neuromorphic devices: resistive switches and organic electrochemical transistors. Polym. Int. 72(7), 609–618 (2023). https://doi.org/10.1002/pi.6520
M. Ghazal, M. DaherMansour, C. Scholaert, T. Dargent, Y. Coffinier et al., Bio-inspired adaptive sensing through electropolymerization of organic electrochemical transistors. Adv. Electron. Mater. 8(3), 2100891 (2022). https://doi.org/10.1002/aelm.202100891
K. Janzakova, I. Balafrej, A. Kumar, N. Garg, C. Scholaert et al., Structural plasticity for neuromorphic networks with electropolymerized dendritic PEDOT connections. Nat. Commun. 14(1), 8143 (2023). https://doi.org/10.1038/s41467-023-43887-8
Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023). https://doi.org/10.1080/14686996.2022.2162323
K. Wang, J. Liu, M.E. El-Khouly, X. Cui, Q. Che et al., Water-soluble polythiophene-conjugated polyelectrolyte-based memristors for transient electronics. ACS Appl. Mater. Interfaces 14(32), 36987–36997 (2022). https://doi.org/10.1021/acsami.2c04752
X. Ji, Z. Dong, C.S. Lai, D. Qi, A brain-inspired in-memory computing system for neuronal communication via memristive circuits. IEEE Commun. Mag. 60(1), 100–106 (2022). https://doi.org/10.1109/MCOM.001.21664
L.S. Hu, M. Fattori, W. Schilp, R. Verbeek, S. Kazemzadeh et al., An energy-efficient solid-state organic device array for neuromorphic computing. IEEE Trans. Electron Devices 70(12), 6520–6525 (2023). https://doi.org/10.1109/TED.2023.3327947
T.-G. Hwang, H. Park, W.-J. Cho, Organic-inorganic hybrid synaptic transistors: methyl-silsesquioxanes-based electric double layer for enhanced synaptic functionality and CMOS compatibility. Biomimetics 9(3), 157 (2024). https://doi.org/10.3390/biomimetics9030157
J. Chen, J. Li, Y. Li, X. Miao, Multiply accumulate operations in memristor crossbar arrays for analog computing. J. Semicond. 42(1), 013104 (2021). https://doi.org/10.1088/1674-4926/42/1/013104
M. Franco, A. Kiazadeh, R. Martins, S. Lanceros-Méndez, E. Carlos, Printed memristors: an overview of ink, materials, deposition techniques, and applications. Adv. Electron. Mater. 10(10), 2400212 (2024). https://doi.org/10.1002/aelm.202400212
D. Vlasov, A. Minnekhanov, R. Rybka, Y. Davydov, A. Sboev et al., Memristor-based spiking neural network with online reinforcement learning. Neural Netw. 166, 512–523 (2023). https://doi.org/10.1016/j.neunet.2023.07.031
K. Sun, J. Chen, X. Yan, The future of memristors: materials engineering and neural networks. Adv. Funct. Mater. 31(8), 2006773 (2021). https://doi.org/10.1002/adfm.202006773
M.K. Rahmani, S.A. Khan, H. Kim, M.U. Khan, J. Kim et al., Demonstration of high-stable bipolar resistive switching and bio-inspired synaptic characteristics using PEDOT:PSS-based memristor devices. Org. Electron. 114, 106730 (2023). https://doi.org/10.1016/j.orgel.2022.106730
K. Oshima, K. Kuribara, T. Sato, Flex-SNN: spiking neural network on flexible substrate. IEEE Sens. Lett. 7(5), 7002104 (2023). https://doi.org/10.1109/LSENS.2023.3271988
X. Wu, L. Jiang, H. Xu, B. Wang, L. Yang et al., Bionic olfactory synaptic transistors for artificial neuromotor pathway construction and gas recognition. Adv. Funct. Mater. 34(36), 2401965 (2024). https://doi.org/10.1002/adfm.202401965
A. Sinha, J. Lee, J. Kim, H. So, An evaluation of recent advancements in biological sensory organ-inspired neuromorphically tuned biomimetic devices. Mater. Horiz. 11(21), 5181–5208 (2024). https://doi.org/10.1039/D4MH00522H
Y. Meng, G. Cheng, Human somatosensory systems based on sensor-memory-integrated technology. Nanoscale 16(25), 11928–11958 (2024). https://doi.org/10.1039/d3nr06521a
K. Lu, L. Li, S. Jiang, X. Chen, Q. Chang et al., Advanced bioinspired organic sensors for future-oriented intelligent applications. Adv. Sens. Res. 2(7), 2200066 (2023). https://doi.org/10.1002/adsr.202200066
J.Y. Kwon, J.E. Kim, J.S. Kim, S.Y. Chun, K. Soh et al., Artificial sensory system based on memristive devices. Exploration 4(1), 20220162 (2024). https://doi.org/10.1002/EXP.20220162
H. Chen, Y. Cai, Y. Han, H. Huang, Towards artificial visual sensory system: organic optoelectronic synaptic materials and devices. Angew. Chem. Int. Ed. 63(1), e202313634 (2024). https://doi.org/10.1002/anie.202313634
L. Fang, C. Mao, H. Wang, Q. Ding, W. Jiao et al., Recent progress of organic artificial synapses in biomimetic sensory neural systems. J. Mater. Chem. C 12(24), 8586–8610 (2024). https://doi.org/10.1039/D4TC00704B
X. Ji, X. Zhao, M.C. Tan, R. Zhao, Artificial perception built on memristive system: visual, auditory, and tactile sensations. Adv. Intell. Syst. 2(3), 1900118 (2020). https://doi.org/10.1002/aisy.201900118
J. Gong, H. Wei, J. Liu, L. Sun, Z. Xu et al., An artificial visual nerve for mimicking pupil reflex. Matter 5(5), 1578–1589 (2022). https://doi.org/10.1016/j.matt.2022.02.020
F.Y. Rahman, D. Bhattacharjee, S.A. Hussain, An account of natural material-based nonvolatile memory device. Proc. Natl. Acad. Sci. India Sect. A: Phys. Sci. 93(3), 497–510 (2023). https://doi.org/10.1007/s40010-023-00830-2
A. Adamatzky, Electrical resistive spiking of fungi andrew adamatzky, alessandro chiolerio, and georgios sirakoulis. Fungal Mach. Sens. Comput. Fungi. 47, 169 (2023). https://doi.org/10.1142/S1793048021500016
L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U.S.A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
V.Y. Prinz, K.B. Fritzler, 3D printed biohybrid microsystems. Adv. Mater. Technol. 8(2), 2101633 (2023). https://doi.org/10.1002/admt.202101633
A. Mikhaylov, A. Pimashkin, Y. Pigareva, S. Gerasimova, E. Gryaznov et al., Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 14, 358 (2020). https://doi.org/10.3389/fnins.2020.00358
M.M. Makhoul-Mansour, J.J. Maraj, S.A. Sarles, Bioderived materials for stimuli-responsive, adaptive, and neuromorphic systems: a perspective. J. Compos. Mater. 57(4), 659–678 (2023). https://doi.org/10.1177/00219983221135055
H.R. Lee, Y. Won, J.H. Oh, Neuromorphic bioelectronics based on semiconducting polymers. J. Polym. Sci. 60(3), 348–376 (2022). https://doi.org/10.1002/pol.20210502
M. Chiappalone, V.R. Cota, M. Carè, M. Di Florio, R. Beaubois et al., Neuromorphic-based neuroprostheses for brain rewiring: state-of-the-art and perspectives in neuroengineering. Brain Sci. 12(11), 1578 (2022). https://doi.org/10.3390/brainsci12111578
U. Bruno, A. Mariano, D. Rana, T. Gemmeke, S. Musall et al., From neuromorphic to neurohybrid: transition from the emulation to the integration of neuronal networks. Neuromorph. Comput. Eng. 3(2), 023002 (2023). https://doi.org/10.1088/2634-4386/acc683
T. Ahmed, Bio-inspired artificial synapses: neuromorphic computing chip engineering with soft biomaterials. Memories Mater. Dev. Circuits Syst. 6, 100088 (2023). https://doi.org/10.1016/j.memori.2023.100088
D. Rana, C.-H. Kim, M. Wang, F. Cicoira, F. Santoro, Tissue-like interfacing of planar electrochemical organic neuromorphic devices. Neuromorph. Comput. Eng. 4(3), 034010 (2024). https://doi.org/10.1088/2634-4386/ad63c6
B. Zhou, W. Liu, Y. Xu, C. Jin, J. Yang et al., Organic electrochemical transistors toward synaptic electronics. J. Phys. D Appl. Phys. 55(30), 304006 (2022). https://doi.org/10.1088/1361-6463/ac67b9
Q. Jiang, M. Liu, Recent progress in artificial neurons for neuromodulation. J. Funct. Biomater. 15(8), 214 (2024). https://doi.org/10.3390/jfb15080214
K. He, C. Wang, Y. He, J. Su, X. Chen, Artificial neuron devices. Chem. Rev. 123(23), 13796–13865 (2023). https://doi.org/10.1021/acs.chemrev.3c00527
C. Forró, S. Musall, V.R. Montes, J. Linkhorst, P. Walter et al., Toward the next generation of neural iontronic interfaces. Adv. Healthc. Mater. 12(20), e2301055 (2023). https://doi.org/10.1002/adhm.202301055
Y. Yao, R.M. Pankow, W. Huang et al., An organic electrochemical neuron for a neuromorphic perception system. Proc. Natl. Acad. Sci. U.S.A. 122(2), e2414879122 (2025). https://doi.org/10.1073/pnas.2414879122
D. Rana, U. Bruno, C. Lubrano, F. Santoro, Neuromorphic control of organic electrochemical transistors for the actuation of a robotic hand. In: Proceedings of Neuromorphic Materials, Devices, Circuits and Systems (NeuMatDeCaS, 2023). https://doi.org/10.1073/pnas.2414879122
H. Roh, C. Cunin, S. Samal, A. Gumyusenge, Towards organic electronics that learn at the body-machine interface: a materials journey. MRS Commun. 12(5), 565–577 (2022). https://doi.org/10.1557/s43579-022-00269-3
W. Li, Y. Li, Z. Song, Y.-X. Wang, W. Hu, PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53(21), 10575–10603 (2024). https://doi.org/10.1039/d4cs00541d
H. Jang, S. Biswas, P. Lang, J.-H. Bae, H. Kim, Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications. Org. Electron. 127, 107014 (2024). https://doi.org/10.1016/j.orgel.2024.107014
M.J. Mirshojaeian Hosseini, Y. Yang, A.J. Prendergast, E. Donati, M. Faezipour et al., An organic synaptic circuit: toward flexible and biocompatible organic neuromorphic processing. Neuromorph. Comput. Eng. 2(3), 034009 (2022). https://doi.org/10.1088/2634-4386/ac830c
M. Giordani, M. Sensi, M. Berto, M. DiLauro, C.A. Bortolotti et al., Neuromorphic organic devices that specifically discriminate dopamine from its metabolites by nonspecific interactions. Adv. Funct. Mater. 30(28), 2002141 (2020). https://doi.org/10.1002/adfm.202002141
J. Fan, J. Feng, Y. Gao, Z. Zhang, S. Xue et al., PEDOT-ZnO nanop hybrid film-based memristors for synapse emulation in neuromorphic computing applications. ACS Appl. Nano Mater. 7(5), 5661–5668 (2024). https://doi.org/10.1021/acsanm.4c00759
Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
S. Battistoni, Organic memristive devices for neuromorphic applications. BioNanoScience 11(1), 227–231 (2021). https://doi.org/10.1007/s12668-020-00808-z
W. Xu, Y. Zhu, X. Zhou, H. Guo, J. Wang et al., High-density, ultraflexible organic electrochemical transistor array for brain activity mapping. J. Mater. Chem. C 13(9), 4385–4397 (2025). https://doi.org/10.1039/d4tc02839b
A. Baron, E.H. Balaguera, S. Pecqueur, Correlation between electrochemical relaxations and morphologies of conducting polymer dendrites. ECS Adv. 3(4), 044001 (2024). https://doi.org/10.1149/2754-2734/ad9bcb
Y. Zeng, F. Zhao, Y. Zhao, D. Zhao, E. Lu et al., Brain-inspired and self-based artificial intelligence. arXiv preprint arXiv:240218784. (2024). https://doi.org/10.48550/arXiv.2402.18784
C. Shi, L. Wang, H. Gao, M. Tian, Learnable leakage and onset-spiking self-attention in SNNs with local error signals. Sensors 23(24), 9781 (2023). https://doi.org/10.3390/s23249781
B. Gökgöz, F. Gül, T. Aydın, An overview memristor based hardware accelerators for deep neural network. Concurr. Comput. Pract. Exp. 36(9), e7997 (2024). https://doi.org/10.1002/cpe.7997
J.C. Hsieh, H. Alawieh, Y. Li, F. Iwane, L. Zhao et al., A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens. Bioelectron. 218, 114756 (2022). https://doi.org/10.1016/j.bios.2022.114756