Aspartame Endowed ZnO-Based Self-Healing Solid Electrolyte Interface Film for Long-Cycling and Wide-Temperature Aqueous Zn-Ion Batteries
Corresponding Author: Juan Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 254
Abstract
Metallic Zn anodes suffer from hydrogen evolution and dendritic deposition in aqueous electrolytes, resulting in low Coulombic efficiency and poor cyclic stability for aqueous Zn-ion batteries (AZIBs). Constructing stable solid electrolyte interphase (SEI) with strong affinity for Zn and exclusion of water corrosion of Zn metal anodes is a promising strategy to tackle these challenges. In this study, we develop a self-healing ZnO-based SEI film on the Zn electrode surface by employing an aspartame (APM) as a versatile electrolyte additive. The hydrophobic nature and strong Zn affinity of APM can facilitate the dynamic self-healing of ZnO-based SEI film during cyclic Zn plating/stripping process. Benefiting from the superior protection effect of self-healing ZnO-based SEI, the Zn║Cu cells possess an average coulombic efficiency more than 99.59% over 1,000 cycles even at a low current density of 1 mA cm−2 − 1 mAh cm−2. Furthermore, the Zn║NH4+-V2O5 full cells display a large specific capacity of 150 mAh g−1 and high cyclic stability with a capacity retention of 77.8% after 1,750 cycles. In addition, the Zn║Zn cell delivers high temperature adaptability at a wide-temperature range from − 5 to 40 °C even under a high DOD of 85.2%. The enhanced capability and durability originate from the self-healing SEI formation enabled by multifunctional APM additives mediating both corrosion suppression and interfacial stabilization. This work presents an inspired and straightforward approach to promote a dendrite-free and wide-temperature rechargeable AZIBs energy storage system.
Highlights:
1 Aspartame additive in electrolyte enables the in situ formation of ZnO-based solid electrolyte interphase, enhancing Zn anode corrosion resistance and stability with excellent self-healing capabilities.
2 Zn║Zn symmetric cells with APM-modified electrolyte operate stably for 6,400 h at − 5 °C, 10,330 h at 25 °C, and 2,250 h at 40 °C, with a high DOD of 85.2%.
3 Achieves 99.59% Coulombic efficiency, suppresses dendrite growth, and maintains 150 mAh g−1 capacity after 1,750 cycles in NH4+-V2O5 full cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Xie, K. Ren, Q. Wang, Y. Lin, F. Ma et al., In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode. eScience 3(4), 100153 (2023). https://doi.org/10.1016/j.esci.2023.100153
- B. Liu, X. Ma, Q. Wang, S. Zhang, J. Yuwono et al., Designing copolymeric SEI layer based on click reaction toward ultralow N/P ratio and long cycle life zinc ion batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202404660
- Y. Tang, J.-H. Li, C.-L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54
- J. Yang, R. Zhao, Y. Wang, Z. Hu, Y. Wang et al., Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv. Funct. Mater. 33(14), 2213510 (2023). https://doi.org/10.1002/adfm.202213510
- J. Wang, X. Gao, Y. Wang, R. Pan, Z. Liu, X. Liu et al., Robust ring insoluble naphthoquinone derivative cathode with high loading and long cycle life for aqueous zinc organic batteries. Nano Res. Energy 3(4), e9120124 (2024). https://doi.org/10.26599/NRE.2024.9120124
- K. Ren, M. Li, Q. Wang, B. Liu, C. Sun et al., Thioacetamide additive homogenizing Zn deposition revealed by in situ digital holography for advanced Zn ion batteries. Nano-Micro Lett. 16(1), 117 (2024). https://doi.org/10.1007/s40820-023-01310-3
- Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang et al., Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv. Funct. Mater. 34(16), 2312564 (2024). https://doi.org/10.1002/adfm.202312564
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- R. Qin, Y. Wang, L. Yao, L. Yang, Q. Zhao et al., Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 98, 107333 (2022). https://doi.org/10.1016/j.nanoen.2022.107333
- Q. Bai, Q. Meng, W. Liu, W. Lin, P. Yi et al., Advanced electrolyte with high stability and low-temperature resistance for zinc-ion batteries. J. Mater. Chem. A 12(1), 277–285 (2023). https://doi.org/10.1039/d3ta05052a
- H. Tian, M. Yao, Y. Guo, Z. Wang, D. Xu et al., Hydrogel electrolyte with regulated water activity and hydrogen bond network for ultra-stable zinc electrode. Adv. Energy Mater. 15(9), 2403683 (2025). https://doi.org/10.1002/aenm.202403683
- S. Yang, Q. Wu, Y. Li, F. Luo, J. Zhang et al., A bio-inspired multifunctional hydrogel network with toughly interfacial chemistry for dendrite-free flexible zinc ion battery. Angew. Chem. Int. Ed. 63(44), e202409160 (2024). https://doi.org/10.1002/anie.202409160
- B. Li, K. Yang, J. Ma, P. Shi, L. Chen et al., Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew. Chem. Int. Ed. 61(47), e202212587 (2022). https://doi.org/10.1002/anie.202212587
- Y. Liu, T. Guo, Q. Liu, F. Xiong, M. Huang et al., Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries. Mater. Today Energy 28, 101056 (2022). https://doi.org/10.1016/j.mtener.2022.101056
- Z. Jiang, Z. Du, R. Pan, F. Cui, G. Zhang et al., Electrosynthesis of metal–organic framework interlayer to realize highly stable and kinetics-enhanced Zn metal anode. Adv. Energy Mater. 14(44), 2402150 (2024). https://doi.org/10.1002/aenm.202402150
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
- S. Bai, Z. Huang, G. Liang, R. Yang, D. Liu et al., Electrolyte additives for stable Zn anodes. Adv. Sci. 11(4), 2304549 (2024). https://doi.org/10.1002/advs.202304549
- L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
- X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia et al., Electrolyte engineering via competitive solvation structures for developing longevous zinc ion batteries. Adv. Energy Mater. 13(48), 2302749 (2023). https://doi.org/10.1002/aenm.202302749
- X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
- Q. Meng, R. Zhao, P. Cao, Q. Bai, J. Tang et al., Stabilization of Zn anode via a multifunctional cysteine additive. Chem. Eng. J. 447, 137471 (2022). https://doi.org/10.1016/j.cej.2022.137471
- L. Yao, J. Liu, F. Zhang, B. Wen, X. Chi et al., Reconstruction of zinc-metal battery solvation structures operating from-50 ~ +100 °C. Nat. Commun. 15(1), 6249 (2024). https://doi.org/10.1038/s41467-024-50219-x
- Y. Geng, Y. Han, T. Zhang, L. Zhang, W. Xin et al., Resolving the zincophilicity-desolvation dilemma of electrolyte additives via molecular engineering for achieving high-rate zinc anodes with minimized polarization. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202501537
- Q. Meng, Q. Bai, R. Zhao, P. Cao, G. Zhang et al., Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra-stable Zn metal anode. Adv. Energy Mater. 13(44), 2302828 (2023). https://doi.org/10.1002/aenm.202302828
- H. Yang, D. Chen, R. Zhao, G. Li, H. Xu et al., Reunderstanding aqueous Zn electrochemistry from interfacial specific adsorption of solvation structures. Energy Environ. Sci. 16(7), 2910–2923 (2023). https://doi.org/10.1039/d3ee00658a
- T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8(8), 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
- W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
- J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
- H. Peng, C. Wang, D. Wang, X. Song, C. Zhang et al., Dynamic Zn/electrolyte interphase and enhanced cation transfer of Sol electrolyte for all-climate aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(34), e202308068 (2023). https://doi.org/10.1002/anie.202308068
- Y. Huang, H. Yan, W. Liu, F. Kang, Transforming zinc-ion batteries with DTPA-Na: a synergistic SEI and CEI engineering approach for exceptional cycling stability and self-discharge inhibition. Angew. Chem. Int. Ed. 63(48), e202409642 (2024). https://doi.org/10.1002/anie.202409642
- R. Chen, W. Zhang, C. Guan, Y. Zhou, I. Gilmore et al., Rational design of an In-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 63(21), e202401987 (2024). https://doi.org/10.1002/anie.202401987
- X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
- C. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu et al., Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Mater. 53, 322–330 (2022). https://doi.org/10.1016/j.ensm.2022.09.014
- W. Fu, G. Zhang, T. Qiu, J. Liu, X. Sun, A facile in situ etching–coating of artificial solid-electrolyte interphase on Zn metal anode for aqueous batteries. Adv. Funct. Mater. 35(2), 2412733 (2025). https://doi.org/10.1002/adfm.202412733
- J. Ren, C. Li, P. Li, S. Liu, L. Wang, Amorphous MOF as smart artificial solid/electrolyte interphase for highly-stable Zn-ion batteries. Chem. Eng. J. 462, 142270 (2023). https://doi.org/10.1016/j.cej.2023.142270
- Q. Ren, X. Tang, Y. Guo, X. Liao, C. Zhang et al., Achieving the dendrite-free Zn anode by inducing the (101)-preferred electrodeposition of Zn crystals. Adv. Energy Mater. 15(9), 2403961 (2025). https://doi.org/10.1002/aenm.202403961
- S. Liu, Q. Han, C. He, Z. Xu, P. Huang et al., Ion-sieving separator functionalized by natural mineral coating toward ultrastable Zn metal anodes. ACS Nano 18(37), 25880–25892 (2024). https://doi.org/10.1021/acsnano.4c09678
- J. Yang, S. Wang, L. Du, S. Bi, J. Zhu et al., Thermal-cyclized polyacrylonitrile artificial protective layers toward stable zinc anodes for aqueous zinc-based batteries. Adv. Funct. Mater. 34(21), 2314426 (2024). https://doi.org/10.1002/adfm.202314426
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of anin situmultifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm–2 and 30 mAh cm–2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
- M. Zhao, Y. Lv, J. Qi, Y. Zhang, Y. Du et al., Crystallographic reorientation induced by gradient solid-electrolyte interphase for highly stable zinc anode. Adv. Mater. 36(52), 2412667 (2024). https://doi.org/10.1002/adma.202412667
- Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33(51), 2304878 (2023). https://doi.org/10.1002/adfm.202304878
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III., W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 16 rev. C.01. (2016).
- Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41(2), 157–167 (2008). https://doi.org/10.1021/ar700111a
- F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple Zeta valence and quadruple Zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). https://doi.org/10.1039/b508541a
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- M. Luo, C. Wang, H. Lu, Y. Lu, B.X. Ben et al., Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater. 41, 515–521 (2021). https://doi.org/10.1016/j.ensm.2021.06.026
- M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261
- Z. Peng, L. Tang, S. Li, L. Tan, Y. Chen, Strong replaces weak: hydrogen bond-anchored electrolyte enabling ultra-stable and wide-temperature aqueous zinc-ion capacitors. Angew. Chem. Int. Ed. 64(6), e202418242 (2025). https://doi.org/10.1002/anie.202418242
- S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14(1), 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
- K. Qi, P. Liang, S. Wei, H. Ao, X. Ding et al., Trade-off between H2O-rich and H2O-poor electric double layers enables highly reversible Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(7), 2566–2575 (2024). https://doi.org/10.1039/d4ee00147h
- Y. Li, X. Liu, M. Zhang, D. Sheng, P. Ren et al., Optimization strategy of surface and interface in electrolyte structure of aqueous zinc-ion battery. ACS Mater. Lett. 6(5), 1938–1960 (2024). https://doi.org/10.1021/acsmaterialslett.4c00308
- H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
- S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35(18), e2300195 (2023). https://doi.org/10.1002/adma.202300195
- J. Das, S.K. Pradhan, D.R. Sahu, D.K. Mishra, S.N. Sarangi et al., Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter 405(10), 2492–2497 (2010). https://doi.org/10.1016/j.physb.2010.03.020
- Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
- S. Guo, L. Qin, C. Hu, L. Li, Z. Luo et al., Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery. Adv. Energy Mater. 12(25), 2200730 (2022). https://doi.org/10.1002/aenm.202200730
- R. Sun, D. Han, C. Cui, Z. Han, X. Guo et al., A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew. Chem. Int. Ed. 62(28), e202303557 (2023). https://doi.org/10.1002/anie.202303557
- C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv. Funct. Mater. 32(18), 2112091 (2022). https://doi.org/10.1002/adfm.202112091
- W. Xin, J. Xiao, J. Li, L. Zhang, H. Peng et al., Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Mater. 56, 76–86 (2023). https://doi.org/10.1016/j.ensm.2023.01.006
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119(24), e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
- M. Zhang, W. Xu, X. Han, H. Fan, T. Chen et al., Unveiling the mechanism of the dendrite nucleation and growth in aqueous zinc ion batteries. Adv. Energy Mater. 14(9), 2303737 (2024). https://doi.org/10.1002/aenm.202303737
- Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
- G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
- H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35(1), e2208237 (2023). https://doi.org/10.1002/adma.202208237
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), e2207344 (2022). https://doi.org/10.1002/adma.202207344
- Y. Qiu, X. Zheng, R. Zhang, Q. Lin, M. Li et al., Boosting zinc-ion batteries with innovative ternary electrolyte for enhanced interfacial electrochemistry and temperature-resilient performance. Adv. Funct. Mater. 34(4), 2310825 (2024). https://doi.org/10.1002/adfm.202310825
- Y. Wang, S. Wei, Z.-H. Qi, S. Chen, K. Zhu et al., Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 120(13), e2217208120 (2023). https://doi.org/10.1073/pnas.2217208120
- Z. Li, Y. Xu, L. Wu, J. Cui, H. Dou et al., Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 14(1), 6816 (2023). https://doi.org/10.1038/s41467-023-42492-z
References
K. Xie, K. Ren, Q. Wang, Y. Lin, F. Ma et al., In situ construction of zinc-rich polymeric solid–electrolyte interface for high-performance zinc anode. eScience 3(4), 100153 (2023). https://doi.org/10.1016/j.esci.2023.100153
B. Liu, X. Ma, Q. Wang, S. Zhang, J. Yuwono et al., Designing copolymeric SEI layer based on click reaction toward ultralow N/P ratio and long cycle life zinc ion batteries. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202404660
Y. Tang, J.-H. Li, C.-L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54
J. Yang, R. Zhao, Y. Wang, Z. Hu, Y. Wang et al., Insights on artificial interphases of Zn and electrolyte: protection mechanisms, constructing techniques, applicability, and prospective. Adv. Funct. Mater. 33(14), 2213510 (2023). https://doi.org/10.1002/adfm.202213510
J. Wang, X. Gao, Y. Wang, R. Pan, Z. Liu, X. Liu et al., Robust ring insoluble naphthoquinone derivative cathode with high loading and long cycle life for aqueous zinc organic batteries. Nano Res. Energy 3(4), e9120124 (2024). https://doi.org/10.26599/NRE.2024.9120124
K. Ren, M. Li, Q. Wang, B. Liu, C. Sun et al., Thioacetamide additive homogenizing Zn deposition revealed by in situ digital holography for advanced Zn ion batteries. Nano-Micro Lett. 16(1), 117 (2024). https://doi.org/10.1007/s40820-023-01310-3
Y. Wang, Z. Wang, W.K. Pang, W. Lie, J.A. Yuwono et al., Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 14(1), 2720 (2023). https://doi.org/10.1038/s41467-023-38384-x
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang et al., Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv. Funct. Mater. 34(16), 2312564 (2024). https://doi.org/10.1002/adfm.202312564
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
R. Qin, Y. Wang, L. Yao, L. Yang, Q. Zhao et al., Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 98, 107333 (2022). https://doi.org/10.1016/j.nanoen.2022.107333
Q. Bai, Q. Meng, W. Liu, W. Lin, P. Yi et al., Advanced electrolyte with high stability and low-temperature resistance for zinc-ion batteries. J. Mater. Chem. A 12(1), 277–285 (2023). https://doi.org/10.1039/d3ta05052a
H. Tian, M. Yao, Y. Guo, Z. Wang, D. Xu et al., Hydrogel electrolyte with regulated water activity and hydrogen bond network for ultra-stable zinc electrode. Adv. Energy Mater. 15(9), 2403683 (2025). https://doi.org/10.1002/aenm.202403683
S. Yang, Q. Wu, Y. Li, F. Luo, J. Zhang et al., A bio-inspired multifunctional hydrogel network with toughly interfacial chemistry for dendrite-free flexible zinc ion battery. Angew. Chem. Int. Ed. 63(44), e202409160 (2024). https://doi.org/10.1002/anie.202409160
B. Li, K. Yang, J. Ma, P. Shi, L. Chen et al., Multicomponent copper-zinc alloy layer enabling ultra-stable zinc metal anode of aqueous Zn-ion battery. Angew. Chem. Int. Ed. 61(47), e202212587 (2022). https://doi.org/10.1002/anie.202212587
Y. Liu, T. Guo, Q. Liu, F. Xiong, M. Huang et al., Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries. Mater. Today Energy 28, 101056 (2022). https://doi.org/10.1016/j.mtener.2022.101056
Z. Jiang, Z. Du, R. Pan, F. Cui, G. Zhang et al., Electrosynthesis of metal–organic framework interlayer to realize highly stable and kinetics-enhanced Zn metal anode. Adv. Energy Mater. 14(44), 2402150 (2024). https://doi.org/10.1002/aenm.202402150
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
B. Li, Y. Zeng, W. Zhang, B. Lu, Q. Yang et al., Separator designs for aqueous zinc-ion batteries. Sci. Bull. 69(5), 688–703 (2024). https://doi.org/10.1016/j.scib.2024.01.011
S. Bai, Z. Huang, G. Liang, R. Yang, D. Liu et al., Electrolyte additives for stable Zn anodes. Adv. Sci. 11(4), 2304549 (2024). https://doi.org/10.1002/advs.202304549
L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/d1ee02021h
X. Zhang, Z. Deng, C. Xu, Y. Deng, Y. Jia et al., Electrolyte engineering via competitive solvation structures for developing longevous zinc ion batteries. Adv. Energy Mater. 13(48), 2302749 (2023). https://doi.org/10.1002/aenm.202302749
X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
Q. Meng, R. Zhao, P. Cao, Q. Bai, J. Tang et al., Stabilization of Zn anode via a multifunctional cysteine additive. Chem. Eng. J. 447, 137471 (2022). https://doi.org/10.1016/j.cej.2022.137471
L. Yao, J. Liu, F. Zhang, B. Wen, X. Chi et al., Reconstruction of zinc-metal battery solvation structures operating from-50 ~ +100 °C. Nat. Commun. 15(1), 6249 (2024). https://doi.org/10.1038/s41467-024-50219-x
Y. Geng, Y. Han, T. Zhang, L. Zhang, W. Xin et al., Resolving the zincophilicity-desolvation dilemma of electrolyte additives via molecular engineering for achieving high-rate zinc anodes with minimized polarization. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202501537
Q. Meng, Q. Bai, R. Zhao, P. Cao, G. Zhang et al., Attenuating water activity through impeded proton transfer resulting from hydrogen bond enhancement effect for fast and ultra-stable Zn metal anode. Adv. Energy Mater. 13(44), 2302828 (2023). https://doi.org/10.1002/aenm.202302828
H. Yang, D. Chen, R. Zhao, G. Li, H. Xu et al., Reunderstanding aqueous Zn electrochemistry from interfacial specific adsorption of solvation structures. Energy Environ. Sci. 16(7), 2910–2923 (2023). https://doi.org/10.1039/d3ee00658a
T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8(8), 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
J. Luo, L. Xu, Y. Yang, S. Huang, Y. Zhou et al., Stable zinc anode solid electrolyte interphase via inner Helmholtz plane engineering. Nat. Commun. 15(1), 6471 (2024). https://doi.org/10.1038/s41467-024-50890-0
H. Peng, C. Wang, D. Wang, X. Song, C. Zhang et al., Dynamic Zn/electrolyte interphase and enhanced cation transfer of Sol electrolyte for all-climate aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(34), e202308068 (2023). https://doi.org/10.1002/anie.202308068
Y. Huang, H. Yan, W. Liu, F. Kang, Transforming zinc-ion batteries with DTPA-Na: a synergistic SEI and CEI engineering approach for exceptional cycling stability and self-discharge inhibition. Angew. Chem. Int. Ed. 63(48), e202409642 (2024). https://doi.org/10.1002/anie.202409642
R. Chen, W. Zhang, C. Guan, Y. Zhou, I. Gilmore et al., Rational design of an In-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 63(21), e202401987 (2024). https://doi.org/10.1002/anie.202401987
X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022). https://doi.org/10.1007/s40820-022-00939-w
C. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu et al., Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Mater. 53, 322–330 (2022). https://doi.org/10.1016/j.ensm.2022.09.014
W. Fu, G. Zhang, T. Qiu, J. Liu, X. Sun, A facile in situ etching–coating of artificial solid-electrolyte interphase on Zn metal anode for aqueous batteries. Adv. Funct. Mater. 35(2), 2412733 (2025). https://doi.org/10.1002/adfm.202412733
J. Ren, C. Li, P. Li, S. Liu, L. Wang, Amorphous MOF as smart artificial solid/electrolyte interphase for highly-stable Zn-ion batteries. Chem. Eng. J. 462, 142270 (2023). https://doi.org/10.1016/j.cej.2023.142270
Q. Ren, X. Tang, Y. Guo, X. Liao, C. Zhang et al., Achieving the dendrite-free Zn anode by inducing the (101)-preferred electrodeposition of Zn crystals. Adv. Energy Mater. 15(9), 2403961 (2025). https://doi.org/10.1002/aenm.202403961
S. Liu, Q. Han, C. He, Z. Xu, P. Huang et al., Ion-sieving separator functionalized by natural mineral coating toward ultrastable Zn metal anodes. ACS Nano 18(37), 25880–25892 (2024). https://doi.org/10.1021/acsnano.4c09678
J. Yang, S. Wang, L. Du, S. Bi, J. Zhu et al., Thermal-cyclized polyacrylonitrile artificial protective layers toward stable zinc anodes for aqueous zinc-based batteries. Adv. Funct. Mater. 34(21), 2314426 (2024). https://doi.org/10.1002/adfm.202314426
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of anin situmultifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm–2 and 30 mAh cm–2. Energy Environ. Sci. 14(11), 5947–5957 (2021). https://doi.org/10.1039/d1ee01851e
M. Zhao, Y. Lv, J. Qi, Y. Zhang, Y. Du et al., Crystallographic reorientation induced by gradient solid-electrolyte interphase for highly stable zinc anode. Adv. Mater. 36(52), 2412667 (2024). https://doi.org/10.1002/adma.202412667
Y. Liang, M. Qiu, P. Sun, W. Mai, Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes. Adv. Funct. Mater. 33(51), 2304878 (2023). https://doi.org/10.1002/adfm.202304878
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III., W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992). https://doi.org/10.1021/ja00051a040
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al., Gaussian 16 rev. C.01. (2016).
Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41(2), 157–167 (2008). https://doi.org/10.1021/ar700111a
F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple Zeta valence and quadruple Zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297 (2005). https://doi.org/10.1039/b508541a
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
M. Luo, C. Wang, H. Lu, Y. Lu, B.X. Ben et al., Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater. 41, 515–521 (2021). https://doi.org/10.1016/j.ensm.2021.06.026
M. Shi, C. Lei, H. Wang, P. Jiang, C. Xu et al., Molecule engineering of sugar derivatives as electrolyte additives for deep-reversible Zn metal anode. Angew. Chem. Int. Ed. 63(35), e202407261 (2024). https://doi.org/10.1002/anie.202407261
Z. Peng, L. Tang, S. Li, L. Tan, Y. Chen, Strong replaces weak: hydrogen bond-anchored electrolyte enabling ultra-stable and wide-temperature aqueous zinc-ion capacitors. Angew. Chem. Int. Ed. 64(6), e202418242 (2025). https://doi.org/10.1002/anie.202418242
S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14(1), 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
K. Qi, P. Liang, S. Wei, H. Ao, X. Ding et al., Trade-off between H2O-rich and H2O-poor electric double layers enables highly reversible Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(7), 2566–2575 (2024). https://doi.org/10.1039/d4ee00147h
Y. Li, X. Liu, M. Zhang, D. Sheng, P. Ren et al., Optimization strategy of surface and interface in electrolyte structure of aqueous zinc-ion battery. ACS Mater. Lett. 6(5), 1938–1960 (2024). https://doi.org/10.1021/acsmaterialslett.4c00308
H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13(1), 2203254 (2023). https://doi.org/10.1002/aenm.202203254
S. Zhao, Y. Zhang, J. Li, L. Qi, Y. Tang et al., A heteroanionic zinc ion conductor for dendrite-free Zn metal anodes. Adv. Mater. 35(18), e2300195 (2023). https://doi.org/10.1002/adma.202300195
J. Das, S.K. Pradhan, D.R. Sahu, D.K. Mishra, S.N. Sarangi et al., Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter 405(10), 2492–2497 (2010). https://doi.org/10.1016/j.physb.2010.03.020
Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
S. Guo, L. Qin, C. Hu, L. Li, Z. Luo et al., Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery. Adv. Energy Mater. 12(25), 2200730 (2022). https://doi.org/10.1002/aenm.202200730
R. Sun, D. Han, C. Cui, Z. Han, X. Guo et al., A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew. Chem. Int. Ed. 62(28), e202303557 (2023). https://doi.org/10.1002/anie.202303557
C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv. Funct. Mater. 32(18), 2112091 (2022). https://doi.org/10.1002/adfm.202112091
W. Xin, J. Xiao, J. Li, L. Zhang, H. Peng et al., Metal-organic frameworks with carboxyl functionalized channels as multifunctional ion-conductive interphase for highly reversible Zn anode. Energy Storage Mater. 56, 76–86 (2023). https://doi.org/10.1016/j.ensm.2023.01.006
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15(1), 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119(24), e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), e2100187 (2021). https://doi.org/10.1002/adma.202100187
M. Zhang, W. Xu, X. Han, H. Fan, T. Chen et al., Unveiling the mechanism of the dendrite nucleation and growth in aqueous zinc ion batteries. Adv. Energy Mater. 14(9), 2303737 (2024). https://doi.org/10.1002/aenm.202303737
Z. Hou, Y. Gao, R. Zhou, B. Zhang, Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 32(7), 2107584 (2022). https://doi.org/10.1002/adfm.202107584
G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), e2400370 (2024). https://doi.org/10.1002/adma.202400370
H. Ren, S. Li, B. Wang, Y. Zhang, T. Wang et al., Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv. Mater. 35(1), e2208237 (2023). https://doi.org/10.1002/adma.202208237
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), e2207344 (2022). https://doi.org/10.1002/adma.202207344
Y. Qiu, X. Zheng, R. Zhang, Q. Lin, M. Li et al., Boosting zinc-ion batteries with innovative ternary electrolyte for enhanced interfacial electrochemistry and temperature-resilient performance. Adv. Funct. Mater. 34(4), 2310825 (2024). https://doi.org/10.1002/adfm.202310825
Y. Wang, S. Wei, Z.-H. Qi, S. Chen, K. Zhu et al., Intercalant-induced V t2g orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 120(13), e2217208120 (2023). https://doi.org/10.1073/pnas.2217208120
Z. Li, Y. Xu, L. Wu, J. Cui, H. Dou et al., Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 14(1), 6816 (2023). https://doi.org/10.1038/s41467-023-42492-z