An Efficient Deep Learning Framework for Revealing the Evolution of Characterization Methods in Nanoscience
Corresponding Author: Yang Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 295
Abstract
Text mining has emerged as a powerful strategy for extracting domain knowledge structure from large amounts of text data. To date, most text mining methods are restricted to specific literature information, resulting in incomplete knowledge graphs. Here, we report a method that combines citation analysis with topic modeling to describe the hidden development patterns in the history of science. Leveraging this method, we construct a knowledge graph in the field of Raman spectroscopy. The traditional Latent DirichletAllocation model is chosen as the baseline model for comparison to validate the performance of our model. Our method improves the topic coherence with a minimum growth rate of 100% compared to the traditional text mining method. It outperforms the traditional text mining method on the diversity, and its growth rate ranges from 0 to 126%. The results show the effectiveness of rule-based tokenizer we designed in solving the word tokenizer problem caused by entity naming rules in the field of chemistry. It is versatile in revealing the distribution of topics, establishing the similarity and inheritance relationships, and identifying the important moments in the history of Raman spectroscopy. Our work provides a comprehensive tool for the science of science research and promises to offer new insights into the historical survey and development forecast of a research field.
Highlights:
1 A framework combining the citation analysis with topic modeling is designed to construct the knowledge graph of a research field.
2 An extensible tokenizer is designed to improve the universality of the framework, and the performance of topic recognition is superior to that of the traditional method.
3 The detailed evolutionary paths of Raman spectroscopy technology are demonstrated, and the significant publications in the Raman spectroscopy are identified.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Fortunato, C.T. Bergstrom, K. Börner, J.A. Evans, D. Helbing et al., Science of science. Science 359, eaao0185 (2018). https://doi.org/10.1126/science.aao0185
- S. Sharifi, N.N. Mahmoud, E. Voke, M.P. Landry, M. Mahmoudi, Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature. Nano-Micro Lett. 14(1), 172 (2022). https://doi.org/10.1007/s40820-022-00922-5
- D. Kozlowski, V. Larivière, C.R. Sugimoto, T. Monroe-White, Intersectional inequalities in science. Proc. Natl. Acad. Sci. U.S.A. 119(2), e2113067119 (2022). https://doi.org/10.1073/pnas.2113067119
- A. Manjunath, N. Kahrobai, J. Manjunath, A. Seffens, A. Gowda et al., Who counts as an inventor? Seniority and gender in 430, 000 biomedical inventor-researcher teams. Nat. Biotechnol. 41(5), 610–614 (2023). https://doi.org/10.1038/s41587-023-01771-2
- B.B. Mendes, Z. Zhang, J. Conniot, D.P. Sousa, J.M.J.M. Ravasco et al., A large-scale machine learning analysis of inorganic nanops in preclinical cancer research. Nat. Nanotechnol. 19(6), 867–878 (2024). https://doi.org/10.1038/s41565-024-01673-7
- D. Abel, J. Lieth, S. Jünger, Mapping the spatial turn in social science energy research. a computational literature review. Renew. Sustain. Energy Rev. 201, 114607 (2024). https://doi.org/10.1016/j.rser.2024.114607
- Y. Zhu, X. Lu, J. Hong, F. Wang, Joint dynamic topic model for recognition of lead-lag relationship in two text corpora. Data Min. Knowl. Discov. 36(6), 2272–2298 (2022). https://doi.org/10.1007/s10618-022-00873-w
- A. Gupta, Z. Zhang, Neural topic modeling via discrete variational inference. ACM Trans. Intell. Syst. Technol. 14(2), 1–33 (2023). https://doi.org/10.1145/3570509
- A. Sharma, N.P. Rana, R. Nunkoo, Fifty years of information management research: a conceptual structure analysis using structural topic modeling. Int. J. Inf. Manag. 58, 102316 (2021). https://doi.org/10.1016/j.ijinfomgt.2021.102316
- S. Huang, W. Lu, Q. Cheng, Z. Luo, Y. Huang, Evolutions of semantic consistency in research topic via contextualized word embedding. Inf. Process. Manag. 61(6), 103859 (2024). https://doi.org/10.1016/j.ipm.2024.103859
- X. Wu, T. Nguyen, A.T. Luu, A survey on neural topic models: methods, applications, and challenges. Artif. Intell. Rev. 57(2), 18 (2024). https://doi.org/10.1007/s10462-023-10661-7
- A. Gerow, Y. Hu, J. Boyd-Graber, D.M. Blei, J.A. Evans, Measuring discursive influence across scholarship. Proc. Natl. Acad. Sci. U.S.A. 115(13), 3308–3313 (2018). https://doi.org/10.1073/pnas.1719792115
- M. Grootendorst, BERTopic: Neural topic modeling with a class-based TF-IDF procedure. 2203.05794. (2022).
- F.H. van Veen, L. Ornago, H.S.J. van der Zant, M. El Abbassi, Benchmark study of alkane molecular chains. J. Phys. Chem. C 126(20), 8801–8806 (2022). https://doi.org/10.1021/acs.jpcc.1c09684
- H. Wang, F. Hu, A. Adijiang, R. Emusani, J. Zhang et al., Gating the rectifying direction of tunneling current through single-molecule junctions. J. Am. Chem. Soc. 146(51), 35347–35355 (2024). https://doi.org/10.1021/jacs.4c13773
- T. Kiss, J. Strunk, Unsupervised multilingual sentence boundary detection. Comput. Linguist. 32(4), 485–525 (2006). https://doi.org/10.1162/coli.2006.32.4.485
- H. Zhang, T. Daim, Y. Zhang, Integrating patent analysis into technology roadmapping: a latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. Change 167, 120729 (2021). https://doi.org/10.1016/j.techfore.2021.120729
- U. Chauhan, A. Shah, Topic modeling using latent dirichlet allocation. ACM Comput. Surv. 54(7), 1–35 (2022). https://doi.org/10.1145/3462478
- J.H. Lau, D. Newman, T. Baldwin, Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. Proceedings of the 14th Conference of the european chapter of the association for computational linguistics. Gothenburg, Sweden. Stroudsburg, PA, USA: ACL, (2014). 530–539. https://doi.org/10.3115/v1/e14-1056
- W. Cui, S. Liu, L. Tan, C. Shi, Y. Song et al., TextFlow: towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011). https://doi.org/10.1109/TVCG.2011.239
- H.T. Quang, H.V.H. Tien, H.N. Le, T.H. Trung, P. Do, Finding the cluster of actors in social network based on the topic of messages, in Intelligent Information and Database Systems. ed. by N.T. Nguyen, B. Attachoo, B. Trawiński, K. Somboonviwat (Springer International Publishing, Cham, 2014), pp.183–190. https://doi.org/10.1007/978-3-319-05476-6_19
- Q. Liao, L. Sun, H. Du, Y. Yang, An incremental algorithm for estimating average clustering coefficient based on random walk, in Asia-Pacific Web and Web-Age Information Management Joint Conference on Web and Big Data (APWeb-WAIM), Beijing, China (Jul, 2017), pp. 7–9.
- W. Wang, Q. Shen, Y. Chen, in Advances in Grey Systems Research. ed. By S. Liu, J. Y.-L. Forrest (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 561–569.
- C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121(3048), 501–502 (1928). https://doi.org/10.1038/121501c0
- T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960). https://doi.org/10.1038/187493a0
- M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1
- D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6
- M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977). https://doi.org/10.1021/ja00457a071
- M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978). https://doi.org/10.1063/1.437095
- A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4(5), 1143–1212 (1992). https://doi.org/10.1088/0953-8984/4/5/001
- L.W.H. Leung, M.J. Weaver, Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc. 109(17), 5113–5119 (1987). https://doi.org/10.1021/ja00251a011
- Z.Q. Tian, B. Ren, B.W. Mao, Extending surface Raman spectroscopy to transition metal surfaces for practical applications .1. vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 101(8), 1338–1346 (1997). https://doi.org/10.1021/jp962049q
- W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu et al., Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf. Sci. 406(1–3), 9–22 (1998). https://doi.org/10.1016/S0039-6028(97)01030-3
- P.G. Cao, J.L. Yao, B. Ren, B.W. Mao, R.A. Gu et al., Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chem. Phys. Lett. 316(1–2), 1–5 (2000). https://doi.org/10.1016/S0009-2614(99)01207-5
- Q.J. Huang, X.Q. Li, J.L. Yao, B. Ren, W.B. Cai et al., Extending surface Raman spectroscopic studies to transition metals for practical applications III. Effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes. Surf. Sci. 427, 162–166 (1999). https://doi.org/10.1016/S0039-6028(99)00258-7
- J.S. Gao, Z.Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(10), 1595–1600 (1997). https://doi.org/10.1016/S1386-1425(96)01855-0
- S. Zou, M.J. Weaver, X.Q. Li, B. Ren, Z.Q. Tian, New strategies for surface-enhanced Raman scattering at transition-metal interfaces: thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon. J. Phys. Chem. B 103(21), 4218–4222 (1999). https://doi.org/10.1021/jp984827f
- J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
- H. Li, W. Ali, Z. Wang, M.F. Mideksa, F. Wang et al., Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy 63, 103873 (2019). https://doi.org/10.1016/j.nanoen.2019.103873
- S. Nie, S.R. Emory, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
- H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999). https://doi.org/10.1103/physrevlett.83.4357
- E. Hao, G.C. Schatz, Electromagnetic fields around silver nanops and dimers. J. Chem. Phys. 120(1), 357–366 (2004). https://doi.org/10.1063/1.1629280
- R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318(1–3), 131–136 (2000). https://doi.org/10.1016/S0009-2614(99)01451-7
- R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang et al., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452), 82–86 (2013). https://doi.org/10.1038/nature12151
- F. Benz, M.K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang et al., Single-molecule optomechanics in “picocavities.” Science 354(6313), 726–729 (2016). https://doi.org/10.1126/science.aah5243
- C.-Y. Li, S. Duan, B.-Y. Wen, S.-B. Li, M. Kathiresan et al., Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol. 15(11), 922–926 (2020). https://doi.org/10.1038/s41565-020-0753-y
- Z. Sun, J. Yang, H. Xu, C. Jiang, Y. Niu et al., Enabling an inorganic-rich interface via cationic surfactant for high-performance lithium metal batteries. Nano-Micro Lett. 16(1), 141 (2024). https://doi.org/10.1007/s40820-024-01364-x
- F. Yang, J. Xie, D. Rao, X. Liu, J. Jiang et al., Octahedral distortion enhances exceptional oxygen catalytic activity of calcium manganite for advanced Zn-Air batteries. Nano Energy 85, 106020 (2021). https://doi.org/10.1016/j.nanoen.2021.106020
References
S. Fortunato, C.T. Bergstrom, K. Börner, J.A. Evans, D. Helbing et al., Science of science. Science 359, eaao0185 (2018). https://doi.org/10.1126/science.aao0185
S. Sharifi, N.N. Mahmoud, E. Voke, M.P. Landry, M. Mahmoudi, Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature. Nano-Micro Lett. 14(1), 172 (2022). https://doi.org/10.1007/s40820-022-00922-5
D. Kozlowski, V. Larivière, C.R. Sugimoto, T. Monroe-White, Intersectional inequalities in science. Proc. Natl. Acad. Sci. U.S.A. 119(2), e2113067119 (2022). https://doi.org/10.1073/pnas.2113067119
A. Manjunath, N. Kahrobai, J. Manjunath, A. Seffens, A. Gowda et al., Who counts as an inventor? Seniority and gender in 430, 000 biomedical inventor-researcher teams. Nat. Biotechnol. 41(5), 610–614 (2023). https://doi.org/10.1038/s41587-023-01771-2
B.B. Mendes, Z. Zhang, J. Conniot, D.P. Sousa, J.M.J.M. Ravasco et al., A large-scale machine learning analysis of inorganic nanops in preclinical cancer research. Nat. Nanotechnol. 19(6), 867–878 (2024). https://doi.org/10.1038/s41565-024-01673-7
D. Abel, J. Lieth, S. Jünger, Mapping the spatial turn in social science energy research. a computational literature review. Renew. Sustain. Energy Rev. 201, 114607 (2024). https://doi.org/10.1016/j.rser.2024.114607
Y. Zhu, X. Lu, J. Hong, F. Wang, Joint dynamic topic model for recognition of lead-lag relationship in two text corpora. Data Min. Knowl. Discov. 36(6), 2272–2298 (2022). https://doi.org/10.1007/s10618-022-00873-w
A. Gupta, Z. Zhang, Neural topic modeling via discrete variational inference. ACM Trans. Intell. Syst. Technol. 14(2), 1–33 (2023). https://doi.org/10.1145/3570509
A. Sharma, N.P. Rana, R. Nunkoo, Fifty years of information management research: a conceptual structure analysis using structural topic modeling. Int. J. Inf. Manag. 58, 102316 (2021). https://doi.org/10.1016/j.ijinfomgt.2021.102316
S. Huang, W. Lu, Q. Cheng, Z. Luo, Y. Huang, Evolutions of semantic consistency in research topic via contextualized word embedding. Inf. Process. Manag. 61(6), 103859 (2024). https://doi.org/10.1016/j.ipm.2024.103859
X. Wu, T. Nguyen, A.T. Luu, A survey on neural topic models: methods, applications, and challenges. Artif. Intell. Rev. 57(2), 18 (2024). https://doi.org/10.1007/s10462-023-10661-7
A. Gerow, Y. Hu, J. Boyd-Graber, D.M. Blei, J.A. Evans, Measuring discursive influence across scholarship. Proc. Natl. Acad. Sci. U.S.A. 115(13), 3308–3313 (2018). https://doi.org/10.1073/pnas.1719792115
M. Grootendorst, BERTopic: Neural topic modeling with a class-based TF-IDF procedure. 2203.05794. (2022).
F.H. van Veen, L. Ornago, H.S.J. van der Zant, M. El Abbassi, Benchmark study of alkane molecular chains. J. Phys. Chem. C 126(20), 8801–8806 (2022). https://doi.org/10.1021/acs.jpcc.1c09684
H. Wang, F. Hu, A. Adijiang, R. Emusani, J. Zhang et al., Gating the rectifying direction of tunneling current through single-molecule junctions. J. Am. Chem. Soc. 146(51), 35347–35355 (2024). https://doi.org/10.1021/jacs.4c13773
T. Kiss, J. Strunk, Unsupervised multilingual sentence boundary detection. Comput. Linguist. 32(4), 485–525 (2006). https://doi.org/10.1162/coli.2006.32.4.485
H. Zhang, T. Daim, Y. Zhang, Integrating patent analysis into technology roadmapping: a latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. Change 167, 120729 (2021). https://doi.org/10.1016/j.techfore.2021.120729
U. Chauhan, A. Shah, Topic modeling using latent dirichlet allocation. ACM Comput. Surv. 54(7), 1–35 (2022). https://doi.org/10.1145/3462478
J.H. Lau, D. Newman, T. Baldwin, Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. Proceedings of the 14th Conference of the european chapter of the association for computational linguistics. Gothenburg, Sweden. Stroudsburg, PA, USA: ACL, (2014). 530–539. https://doi.org/10.3115/v1/e14-1056
W. Cui, S. Liu, L. Tan, C. Shi, Y. Song et al., TextFlow: towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011). https://doi.org/10.1109/TVCG.2011.239
H.T. Quang, H.V.H. Tien, H.N. Le, T.H. Trung, P. Do, Finding the cluster of actors in social network based on the topic of messages, in Intelligent Information and Database Systems. ed. by N.T. Nguyen, B. Attachoo, B. Trawiński, K. Somboonviwat (Springer International Publishing, Cham, 2014), pp.183–190. https://doi.org/10.1007/978-3-319-05476-6_19
Q. Liao, L. Sun, H. Du, Y. Yang, An incremental algorithm for estimating average clustering coefficient based on random walk, in Asia-Pacific Web and Web-Age Information Management Joint Conference on Web and Big Data (APWeb-WAIM), Beijing, China (Jul, 2017), pp. 7–9.
W. Wang, Q. Shen, Y. Chen, in Advances in Grey Systems Research. ed. By S. Liu, J. Y.-L. Forrest (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 561–569.
C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121(3048), 501–502 (1928). https://doi.org/10.1038/121501c0
T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960). https://doi.org/10.1038/187493a0
M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1
D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6
M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215–5217 (1977). https://doi.org/10.1021/ja00457a071
M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978). https://doi.org/10.1063/1.437095
A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering. J. Phys. Condens. Matter 4(5), 1143–1212 (1992). https://doi.org/10.1088/0953-8984/4/5/001
L.W.H. Leung, M.J. Weaver, Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc. 109(17), 5113–5119 (1987). https://doi.org/10.1021/ja00251a011
Z.Q. Tian, B. Ren, B.W. Mao, Extending surface Raman spectroscopy to transition metal surfaces for practical applications .1. vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 101(8), 1338–1346 (1997). https://doi.org/10.1021/jp962049q
W.B. Cai, B. Ren, X.Q. Li, C.X. She, F.M. Liu et al., Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf. Sci. 406(1–3), 9–22 (1998). https://doi.org/10.1016/S0039-6028(97)01030-3
P.G. Cao, J.L. Yao, B. Ren, B.W. Mao, R.A. Gu et al., Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chem. Phys. Lett. 316(1–2), 1–5 (2000). https://doi.org/10.1016/S0009-2614(99)01207-5
Q.J. Huang, X.Q. Li, J.L. Yao, B. Ren, W.B. Cai et al., Extending surface Raman spectroscopic studies to transition metals for practical applications III. Effects of surface roughening procedure on surface-enhanced Raman spectroscopy from nickel and platinum electrodes. Surf. Sci. 427, 162–166 (1999). https://doi.org/10.1016/S0039-6028(99)00258-7
J.S. Gao, Z.Q. Tian, Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(10), 1595–1600 (1997). https://doi.org/10.1016/S1386-1425(96)01855-0
S. Zou, M.J. Weaver, X.Q. Li, B. Ren, Z.Q. Tian, New strategies for surface-enhanced Raman scattering at transition-metal interfaces: thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon. J. Phys. Chem. B 103(21), 4218–4222 (1999). https://doi.org/10.1021/jp984827f
J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
H. Li, W. Ali, Z. Wang, M.F. Mideksa, F. Wang et al., Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy 63, 103873 (2019). https://doi.org/10.1016/j.nanoen.2019.103873
S. Nie, S.R. Emory, Probing single molecules and single nanops by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102
H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83(21), 4357–4360 (1999). https://doi.org/10.1103/physrevlett.83.4357
E. Hao, G.C. Schatz, Electromagnetic fields around silver nanops and dimers. J. Chem. Phys. 120(1), 357–366 (2004). https://doi.org/10.1063/1.1629280
R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318(1–3), 131–136 (2000). https://doi.org/10.1016/S0009-2614(99)01451-7
R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang et al., Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452), 82–86 (2013). https://doi.org/10.1038/nature12151
F. Benz, M.K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang et al., Single-molecule optomechanics in “picocavities.” Science 354(6313), 726–729 (2016). https://doi.org/10.1126/science.aah5243
C.-Y. Li, S. Duan, B.-Y. Wen, S.-B. Li, M. Kathiresan et al., Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat. Nanotechnol. 15(11), 922–926 (2020). https://doi.org/10.1038/s41565-020-0753-y
Z. Sun, J. Yang, H. Xu, C. Jiang, Y. Niu et al., Enabling an inorganic-rich interface via cationic surfactant for high-performance lithium metal batteries. Nano-Micro Lett. 16(1), 141 (2024). https://doi.org/10.1007/s40820-024-01364-x
F. Yang, J. Xie, D. Rao, X. Liu, J. Jiang et al., Octahedral distortion enhances exceptional oxygen catalytic activity of calcium manganite for advanced Zn-Air batteries. Nano Energy 85, 106020 (2021). https://doi.org/10.1016/j.nanoen.2021.106020