3D-Printed Boron-Nitrogen Doped Carbon Electrodes for Sustainable Wastewater Treatment via MPECVD
Corresponding Author: Mattia Pierpaoli
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 311
Abstract
This study proposes a novel and sustainable method for fabricating 3D-printed carbon-based electrodes for electrochemical wastewater treatment. We prepared B,N-doped carbon electrodes with hierarchical porosity and a significantly enhanced surface area-to-volume ratio (up to 180%) compared to non-optimized analogues using a synergistic combination of 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition. This process allows the metal-free growth of vertically aligned carbon nanostructures directly onto polymer-derived substrates, resulting in a 20-fold increase in the electrochemically active surface area. Computational fluid dynamics simulations were used to improve mass transport and reduce pressure drop. Electrochemical characterization demonstrated that the optimized electrodes performed significantly better, achieving 4.7-, 4-, and 6.5-fold increases in the degradation rates of atenolol, metoprolol, and propranolol, respectively, during electrochemical oxidation. These results highlight the efficacy of the integrated fabrication and simulation approach in producing high-performance electrodes for sustainable wastewater treatment applications.
Highlights:
1 A novel approach combining 3D printing, phase inversion, and microwave plasma-enhanced chemical vapor deposition is presented. This technique enables the creation of carbon-based electrodes with precise micro- and nanoscale control, offering potential for sustainable and high-performance wastewater treatment applications.
2 The synthesized 3D carbon scaffolds, enriched with B,N-doped carbon nanostructures, demonstrated superior performance in the electrochemical oxidation of β-blockers. Computational fluid dynamics simulations were used to optimize electrode design, leading to improved mass transport and reaction kinetics.
3 This research provides a sustainable and scalable solution for removing emerging contaminants from wastewater. The catalyst-free approach simplifies the fabrication process and reduces potential material contamination, making it a promising technology for advanced water treatment applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Xia, A. Afshar, H. Yang, C.M. Portela, D.M. Kochmann et al., Electrochemically reconfigurable architected materials. Nature 573(7773), 205–213 (2019). https://doi.org/10.1038/s41586-019-1538-z
- L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014). https://doi.org/10.1126/science.1255908
- L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12(1), 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
- Y. Zou, C. Qiao, J. Sun, Printable energy storage: stay or go? ACS Nano 17(18), 17624–17633 (2023). https://doi.org/10.1021/acsnano.3c06195
- L. Wu, Y. Li, Z. Fu, B.-L. Su, Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl. Sci. Rev. 7(11), 1667–1701 (2020). https://doi.org/10.1093/nsr/nwaa183
- L. Vernasqui, M.A. Montiel, N. Gomes Ferreira, P. Cañizares, M.A. Rodrigo, Design, validation, and fabrication of a tailored electrochemical reactor using 3D printing for studies of commercial boron-doped diamond electrodes. Ind. Eng. Chem. Res. 63(13), 5488–5498 (2024). https://doi.org/10.1021/acs.iecr.3c03123
- V.A. Beck, J.J. Wong, C.F. Jekel, D.A. Tortorelli, S.E. Baker et al., Computational design of microarchitected porous electrodes for redox flow batteries. J. Power. Sources 512, 230453 (2021). https://doi.org/10.1016/j.jpowsour.2021.230453
- J. Feng, J. Fu, X. Yao, Y. He, Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int. J. Extreme Manuf. 4(2), 022001 (2022). https://doi.org/10.1088/2631-7990/ac5be6
- F.M. Baena-Moreno, M. González-Castaño, J.C. Navarro de Miguel, K.U.M. Miah, R. Ossenbrink et al., Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry. ACS Sustain. Chem. Eng. 9(24), 8198–8206 (2021). https://doi.org/10.1021/acssuschemeng.1c01980
- H.-Y. Lei, J.-R. Li, Q.-H. Wang, Z.-J. Xu, W. Zhou et al., Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming. Int. J. Hydrog. Energy 44(45), 24782–24791 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.187
- N. Scharnagl, H. Buschatz, Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 139(1–3), 191–198 (2001). https://doi.org/10.1016/S0011-9164(01)00310-1
- A.K. Hołda, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 132(27), 42130 (2015). https://doi.org/10.1002/app.42130
- M. Kopeć, M. Lamson, R. Yuan, C. Tang, M. Kruk et al., Polyacrylonitrile-derived nanostructured carbon materials. Prog. Polym. Sci. 92, 89–134 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.003
- J. Liu, H. Zhang, C. Ma, J. Wang, W. Qiao et al., Controlled construction of cobalt-doped carbon nanofiber-carbon nanotubes as a freestanding interlayer for advanced lithium-sulfur batteries. ACS Omega 8(48), 45232–45244 (2023). https://doi.org/10.1021/acsomega.3c01851
- Y. Yue, Y. Wang, X. Xu, B. Cui, Z. Yao et al., Continuous growth of carbon nanotubes on the surface of carbon fibers for enhanced electromagnetic wave absorption properties. Ceram. Int. 48(2), 1869–1878 (2022). https://doi.org/10.1016/j.ceramint.2021.09.271
- Q. Wu, X. Yang, J. Yang, P. Liu, G. Ding et al., Size effect of ruthenium nanops on water cracking properties with different crystal planes for boosting electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 644, 238–245 (2023). https://doi.org/10.1016/j.jcis.2023.04.076
- J. Li, S. Su, L. Zhou, V. Kundrát, A.M. Abbot et al., Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J. Appl. Phys. 113(2), 024313 (2013). https://doi.org/10.1063/1.4774218
- M. Pierpaoli, P. Jakóbczyk, B. Dec, C. Giosuè, N. Czerwińska et al., A novel hierarchically-porous diamondized polyacrylonitrile sponge-like electrodes for acetaminophen electrochemical detection. Electrochim. Acta 430, 141083 (2022). https://doi.org/10.1016/j.electacta.2022.141083
- G. Liao, L. Zhang, C. Li, S.-Y. Liu, B. Fang et al., Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 5(10), 3341–3374 (2022). https://doi.org/10.1016/j.matt.2022.07.031
- Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 concerning urban wastewater treatment (recast) https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng [available 02.2025]
- B.K. Wilk, M. Szopińska, M. Sobaszek, M. Pierpaoli, A. Błaszczyk et al., Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. Environ. Sci. Pollut. Res. Int. 29(43), 65625–65641 (2022). https://doi.org/10.1007/s11356-022-19915-3
- K.C. de Freitas Araújo, E. Vieira dos Santos, M. Pierpaoli, M. Ficek, J.E.L. Santos et al., Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration. Electrochim. Acta 430, 141069 (2022). https://doi.org/10.1016/j.electacta.2022.141069
- C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 328, 122430 (2023). https://doi.org/10.1016/j.apcatb.2023.122430
- M. Pierpaoli, M. Rycewicz, A. Łuczkiewicz, S. Fudala-Ksiązek, R. Bogdanowicz et al., Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation. Manuf. Rev. 7, 7 (2020). https://doi.org/10.1051/mfreview/2020006
- C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 11, 62–71 (2018). https://doi.org/10.1016/j.coelec.2018.07.010
- M. Szopińska, J. Ryl, M. Pierpaoli, Closing the loop: upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals. Chemosphere 313, 137631 (2023). https://doi.org/10.1016/j.chemosphere.2022.137631
- O. Al-Ketan, R.K. Abu Al-Rub, MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3(6), e205 (2021). https://doi.org/10.1002/mdp2.205
- Y. Bleu, F. Bourquard, C. Farre, C. Chaix, J. Galipaud et al., Boron doped graphene synthesis using pulsed laser deposition and its electrochemical characterization. Diam. Relat. Mater. 115, 108382 (2021). https://doi.org/10.1016/j.diamond.2021.108382
- M.J. Głowacki, K. Karpienko, M.S. Wróbel, K. Szczodrowski, C. Giosuè et al., From ashes to porous hierarchical nanocarbon electrode: upcycling secondary waste materials through self-catalytic chemical vapour deposition. Sustain. Mater. Technol. 40, e00933 (2024). https://doi.org/10.1016/j.susmat.2024.e00933
- M. Pierpaoli, M. Ficek, P. Jakóbczyk, J. Karczewski, R. Bogdanowicz, Self-assembly of vertically orientated graphene nanostructures: multivariate characterisation by Minkowski functionals and fractal geometry. Acta Mater. 214, 116989 (2021). https://doi.org/10.1016/j.actamat.2021.116989
- GPL software, CloudCompare (2024). www.cloudcompare.org/
- H.-X. Shen, G.-Z. Wu, P.-J. Wang, The chiral asymmetry of R-(-)1, 3-butanediol as revealed by its Raman differential bond polarizabilities. Acta Phys. Sin. 62(15), 153301 (2013). https://doi.org/10.7498/aps.62.153301
- O.N. Tretinnikov, S.A. Zagorskaya, Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J. Appl. Spectrosc. 79(4), 521–526 (2012). https://doi.org/10.1007/s10812-012-9634-y
- H. Shi, Q. Ouyang, X. Wang, Y. Yang, T. Song et al., Insight into the formation of conjugated ladder structure of polyacrylonitrile by X-ray photoelectron spectroscopy. Measurement 200, 111565 (2022). https://doi.org/10.1016/j.measurement.2022.111565
- S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15(1), 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
- T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
- N. Hellgren, R.T. Haasch, S. Schmidt, L. Hultman, I. Petrov, Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: new insights from in situ XPS. Carbon 108, 242–252 (2016). https://doi.org/10.1016/j.carbon.2016.07.017
- M. Pierpaoli, P. Jakóbczyk, M. Ficek, B. Dec, J. Ryl et al., Tailoring defects in B, N-codoped carbon nanowalls for direct electrochemical oxidation of glyphosate and its metabolites. ACS Appl. Mater. Interfaces 16(28), 36784–36795 (2024). https://doi.org/10.1021/acsami.4c04478
- M. Pierpaoli, M. Szopińska, A. Olejnik, J. Ryl, S. Fudala-Ksiażek et al., Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. J. Hazard. Mater. 458, 131873 (2023). https://doi.org/10.1016/j.jhazmat.2023.131873
- C. Zhang, N. Huang, Z. Zhai, L. Liu, B. Chen et al., Nitrogen-doped carbon nanowalls/diamond films as efficient electrocatalysts toward oxygen reduction reaction. Nanotechnology 33(1), 015401 (2021). https://doi.org/10.1088/1361-6528/ac2a84
- L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
- A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
- A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925–3930 (2012). https://doi.org/10.1021/nl300901a
- M. Pierpaoli, P. Jakobczyk, M. Sawczak, A. Łuczkiewicz, S. Fudala-Książek et al., Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate. J. Hazard. Mater. 401, 123407 (2021). https://doi.org/10.1016/j.jhazmat.2020.123407
- M.D. Hernando, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. Trac Trends Anal. Chem. 26(6), 581–594 (2007). https://doi.org/10.1016/j.trac.2007.03.005
- M. Yi, Q. Sheng, Q. Sui, H. Lu, β-blockers in the environment: distribution, transformation, and ecotoxicity. Environ. Pollut. 266, 115269 (2020). https://doi.org/10.1016/j.envpol.2020.115269
- K. Kovács, T. Tóth, L. Wojnárovits, Evaluation of advanced oxidation processes for β-blockers degradation: a review. Water Sci. Technol. 85(2), 685–705 (2022). https://doi.org/10.2166/wst.2021.631
- Z.H. Mussa, F.F. Al-Qaim, A. Yuzir, K. Shameli, Electrochemical removal of metoprolol using graphite-polyvinyl chloride composite as anode. IOP Conf. Ser. Earth Environ. Sci. 479(1), 012022 (2020). https://doi.org/10.1088/1755-1315/479/1/012022
- E. Bączkowska, M. Pierpaoli, F. Gamoń, A. Luczkiewicz, S. Fudala-Ksiazek et al., On-site medical wastewater treatment enabling sustainable water reclamation: merged advanced oxidation process for disinfection, toxicity, and contaminants removal. J. Water Process. Eng. 72, 107562 (2025). https://doi.org/10.1016/j.jwpe.2025.107562
- H. Nsubuga, C. Basheer, M. Baseer Haider, An enhanced beta-blockers degradation method using copper-boron-ferrite supported graphite electrodes and continuous droplet flow-assisted electro-Fenton reactor. Sep. Purif. Technol. 221, 408–420 (2019). https://doi.org/10.1016/j.seppur.2019.03.095
- H.A. Nájera-Aguilar, R. Mayorga-Santis, R.F. Gutiérrez-Hernández, A. Santiesteban-Hernández, F.J. Rodríguez-Valadez et al., Propranolol degradation through processes based on the generation of hydroxyl free radical. J. Water Health 20(1), 216–226 (2022). https://doi.org/10.2166/wh.2021.156
- A. Balseviciute, I. Patiño-Cantero, J. Carrillo-Abad, J.J. Giner-Sanz, M. García-Gabaldón et al., Degradation of multicomponent pharmaceutical mixtures by electrochemical oxidation: insights about the process evolution at varying applied currents and concentrations of organics and supporting electrolyte. Sep. Purif. Technol. 362, 131697 (2025). https://doi.org/10.1016/j.seppur.2025.131697
- A.N. Arenhart Heberle, M. García-Gabaldón, E.M. Ortega, A.M. Bernardes, V. Pérez-Herranz, Study of the atenolol degradation using a Nb/BDD electrode in a filter-press reactor. Chemosphere 236, 124318 (2019). https://doi.org/10.1016/j.chemosphere.2019.07.049
- S.W. da Silva, J.M. do Prado, A.N.A. Heberle, D.E. Schneider, M.A.S. Rodrigues et al., Electrochemical advanced oxidation of Atenolol at Nb/BDD thin film anode. J. Electroanal. Chem. 844, 27–33 (2019). https://doi.org/10.1016/j.jelechem.2019.05.011
- J. Radjenović, C. Sirtori, M. Petrović, D. Barceló, S. Malato, Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: kinetics and characterization of major intermediate products. Appl. Catal. B Environ. 89(1–2), 255–264 (2009). https://doi.org/10.1016/j.apcatb.2009.02.013
- Y.-Q. Gao, N.-Y. Gao, J.-X. Chen, J. Zhang, D.-Q. Yin, Oxidation of β-blocker atenolol by a combination of UV light and chlorine: kinetics, degradation pathways and toxicity assessment. Sep. Purif. Technol. 231, 115927 (2020). https://doi.org/10.1016/j.seppur.2019.115927
- H. Olvera-Vargas, T. Cocerva, N. Oturan, D. Buisson, M.A. Oturan, Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: application to mineralization of metoprolol. J. Hazard. Mater. 319, 13–23 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.010
- E. Isarain-Chávez, P.L. Cabot, F. Centellas, R.M. Rodríguez, C. Arias et al., Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: identification and evolution of oxidation products. J. Hazard. Mater. 185(2–3), 1228–1235 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.035
References
X. Xia, A. Afshar, H. Yang, C.M. Portela, D.M. Kochmann et al., Electrochemically reconfigurable architected materials. Nature 573(7773), 205–213 (2019). https://doi.org/10.1038/s41586-019-1538-z
L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014). https://doi.org/10.1126/science.1255908
L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12(1), 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
Y. Zou, C. Qiao, J. Sun, Printable energy storage: stay or go? ACS Nano 17(18), 17624–17633 (2023). https://doi.org/10.1021/acsnano.3c06195
L. Wu, Y. Li, Z. Fu, B.-L. Su, Hierarchically structured porous materials: synthesis strategies and applications in energy storage. Natl. Sci. Rev. 7(11), 1667–1701 (2020). https://doi.org/10.1093/nsr/nwaa183
L. Vernasqui, M.A. Montiel, N. Gomes Ferreira, P. Cañizares, M.A. Rodrigo, Design, validation, and fabrication of a tailored electrochemical reactor using 3D printing for studies of commercial boron-doped diamond electrodes. Ind. Eng. Chem. Res. 63(13), 5488–5498 (2024). https://doi.org/10.1021/acs.iecr.3c03123
V.A. Beck, J.J. Wong, C.F. Jekel, D.A. Tortorelli, S.E. Baker et al., Computational design of microarchitected porous electrodes for redox flow batteries. J. Power. Sources 512, 230453 (2021). https://doi.org/10.1016/j.jpowsour.2021.230453
J. Feng, J. Fu, X. Yao, Y. He, Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. Int. J. Extreme Manuf. 4(2), 022001 (2022). https://doi.org/10.1088/2631-7990/ac5be6
F.M. Baena-Moreno, M. González-Castaño, J.C. Navarro de Miguel, K.U.M. Miah, R. Ossenbrink et al., Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry. ACS Sustain. Chem. Eng. 9(24), 8198–8206 (2021). https://doi.org/10.1021/acssuschemeng.1c01980
H.-Y. Lei, J.-R. Li, Q.-H. Wang, Z.-J. Xu, W. Zhou et al., Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming. Int. J. Hydrog. Energy 44(45), 24782–24791 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.187
N. Scharnagl, H. Buschatz, Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 139(1–3), 191–198 (2001). https://doi.org/10.1016/S0011-9164(01)00310-1
A.K. Hołda, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 132(27), 42130 (2015). https://doi.org/10.1002/app.42130
M. Kopeć, M. Lamson, R. Yuan, C. Tang, M. Kruk et al., Polyacrylonitrile-derived nanostructured carbon materials. Prog. Polym. Sci. 92, 89–134 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.003
J. Liu, H. Zhang, C. Ma, J. Wang, W. Qiao et al., Controlled construction of cobalt-doped carbon nanofiber-carbon nanotubes as a freestanding interlayer for advanced lithium-sulfur batteries. ACS Omega 8(48), 45232–45244 (2023). https://doi.org/10.1021/acsomega.3c01851
Y. Yue, Y. Wang, X. Xu, B. Cui, Z. Yao et al., Continuous growth of carbon nanotubes on the surface of carbon fibers for enhanced electromagnetic wave absorption properties. Ceram. Int. 48(2), 1869–1878 (2022). https://doi.org/10.1016/j.ceramint.2021.09.271
Q. Wu, X. Yang, J. Yang, P. Liu, G. Ding et al., Size effect of ruthenium nanops on water cracking properties with different crystal planes for boosting electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 644, 238–245 (2023). https://doi.org/10.1016/j.jcis.2023.04.076
J. Li, S. Su, L. Zhou, V. Kundrát, A.M. Abbot et al., Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. J. Appl. Phys. 113(2), 024313 (2013). https://doi.org/10.1063/1.4774218
M. Pierpaoli, P. Jakóbczyk, B. Dec, C. Giosuè, N. Czerwińska et al., A novel hierarchically-porous diamondized polyacrylonitrile sponge-like electrodes for acetaminophen electrochemical detection. Electrochim. Acta 430, 141083 (2022). https://doi.org/10.1016/j.electacta.2022.141083
G. Liao, L. Zhang, C. Li, S.-Y. Liu, B. Fang et al., Emerging carbon-supported single-atom catalysts for biomedical applications. Matter 5(10), 3341–3374 (2022). https://doi.org/10.1016/j.matt.2022.07.031
Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 concerning urban wastewater treatment (recast) https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng [available 02.2025]
B.K. Wilk, M. Szopińska, M. Sobaszek, M. Pierpaoli, A. Błaszczyk et al., Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. Environ. Sci. Pollut. Res. Int. 29(43), 65625–65641 (2022). https://doi.org/10.1007/s11356-022-19915-3
K.C. de Freitas Araújo, E. Vieira dos Santos, M. Pierpaoli, M. Ficek, J.E.L. Santos et al., Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration. Electrochim. Acta 430, 141069 (2022). https://doi.org/10.1016/j.electacta.2022.141069
C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 328, 122430 (2023). https://doi.org/10.1016/j.apcatb.2023.122430
M. Pierpaoli, M. Rycewicz, A. Łuczkiewicz, S. Fudala-Ksiązek, R. Bogdanowicz et al., Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation. Manuf. Rev. 7, 7 (2020). https://doi.org/10.1051/mfreview/2020006
C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation of organic pollutants for wastewater treatment. Curr. Opin. Electrochem. 11, 62–71 (2018). https://doi.org/10.1016/j.coelec.2018.07.010
M. Szopińska, J. Ryl, M. Pierpaoli, Closing the loop: upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals. Chemosphere 313, 137631 (2023). https://doi.org/10.1016/j.chemosphere.2022.137631
O. Al-Ketan, R.K. Abu Al-Rub, MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3(6), e205 (2021). https://doi.org/10.1002/mdp2.205
Y. Bleu, F. Bourquard, C. Farre, C. Chaix, J. Galipaud et al., Boron doped graphene synthesis using pulsed laser deposition and its electrochemical characterization. Diam. Relat. Mater. 115, 108382 (2021). https://doi.org/10.1016/j.diamond.2021.108382
M.J. Głowacki, K. Karpienko, M.S. Wróbel, K. Szczodrowski, C. Giosuè et al., From ashes to porous hierarchical nanocarbon electrode: upcycling secondary waste materials through self-catalytic chemical vapour deposition. Sustain. Mater. Technol. 40, e00933 (2024). https://doi.org/10.1016/j.susmat.2024.e00933
M. Pierpaoli, M. Ficek, P. Jakóbczyk, J. Karczewski, R. Bogdanowicz, Self-assembly of vertically orientated graphene nanostructures: multivariate characterisation by Minkowski functionals and fractal geometry. Acta Mater. 214, 116989 (2021). https://doi.org/10.1016/j.actamat.2021.116989
GPL software, CloudCompare (2024). www.cloudcompare.org/
H.-X. Shen, G.-Z. Wu, P.-J. Wang, The chiral asymmetry of R-(-)1, 3-butanediol as revealed by its Raman differential bond polarizabilities. Acta Phys. Sin. 62(15), 153301 (2013). https://doi.org/10.7498/aps.62.153301
O.N. Tretinnikov, S.A. Zagorskaya, Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. J. Appl. Spectrosc. 79(4), 521–526 (2012). https://doi.org/10.1007/s10812-012-9634-y
H. Shi, Q. Ouyang, X. Wang, Y. Yang, T. Song et al., Insight into the formation of conjugated ladder structure of polyacrylonitrile by X-ray photoelectron spectroscopy. Measurement 200, 111565 (2022). https://doi.org/10.1016/j.measurement.2022.111565
S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15(1), 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, F-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
N. Hellgren, R.T. Haasch, S. Schmidt, L. Hultman, I. Petrov, Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: new insights from in situ XPS. Carbon 108, 242–252 (2016). https://doi.org/10.1016/j.carbon.2016.07.017
M. Pierpaoli, P. Jakóbczyk, M. Ficek, B. Dec, J. Ryl et al., Tailoring defects in B, N-codoped carbon nanowalls for direct electrochemical oxidation of glyphosate and its metabolites. ACS Appl. Mater. Interfaces 16(28), 36784–36795 (2024). https://doi.org/10.1021/acsami.4c04478
M. Pierpaoli, M. Szopińska, A. Olejnik, J. Ryl, S. Fudala-Ksiażek et al., Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. J. Hazard. Mater. 458, 131873 (2023). https://doi.org/10.1016/j.jhazmat.2023.131873
C. Zhang, N. Huang, Z. Zhai, L. Liu, B. Chen et al., Nitrogen-doped carbon nanowalls/diamond films as efficient electrocatalysts toward oxygen reduction reaction. Nanotechnology 33(1), 015401 (2021). https://doi.org/10.1088/1361-6528/ac2a84
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000). https://doi.org/10.1103/physrevb.61.14095
A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12(8), 3925–3930 (2012). https://doi.org/10.1021/nl300901a
M. Pierpaoli, P. Jakobczyk, M. Sawczak, A. Łuczkiewicz, S. Fudala-Książek et al., Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate. J. Hazard. Mater. 401, 123407 (2021). https://doi.org/10.1016/j.jhazmat.2020.123407
M.D. Hernando, M.J. Gómez, A. Agüera, A.R. Fernández-Alba, LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water. Trac Trends Anal. Chem. 26(6), 581–594 (2007). https://doi.org/10.1016/j.trac.2007.03.005
M. Yi, Q. Sheng, Q. Sui, H. Lu, β-blockers in the environment: distribution, transformation, and ecotoxicity. Environ. Pollut. 266, 115269 (2020). https://doi.org/10.1016/j.envpol.2020.115269
K. Kovács, T. Tóth, L. Wojnárovits, Evaluation of advanced oxidation processes for β-blockers degradation: a review. Water Sci. Technol. 85(2), 685–705 (2022). https://doi.org/10.2166/wst.2021.631
Z.H. Mussa, F.F. Al-Qaim, A. Yuzir, K. Shameli, Electrochemical removal of metoprolol using graphite-polyvinyl chloride composite as anode. IOP Conf. Ser. Earth Environ. Sci. 479(1), 012022 (2020). https://doi.org/10.1088/1755-1315/479/1/012022
E. Bączkowska, M. Pierpaoli, F. Gamoń, A. Luczkiewicz, S. Fudala-Ksiazek et al., On-site medical wastewater treatment enabling sustainable water reclamation: merged advanced oxidation process for disinfection, toxicity, and contaminants removal. J. Water Process. Eng. 72, 107562 (2025). https://doi.org/10.1016/j.jwpe.2025.107562
H. Nsubuga, C. Basheer, M. Baseer Haider, An enhanced beta-blockers degradation method using copper-boron-ferrite supported graphite electrodes and continuous droplet flow-assisted electro-Fenton reactor. Sep. Purif. Technol. 221, 408–420 (2019). https://doi.org/10.1016/j.seppur.2019.03.095
H.A. Nájera-Aguilar, R. Mayorga-Santis, R.F. Gutiérrez-Hernández, A. Santiesteban-Hernández, F.J. Rodríguez-Valadez et al., Propranolol degradation through processes based on the generation of hydroxyl free radical. J. Water Health 20(1), 216–226 (2022). https://doi.org/10.2166/wh.2021.156
A. Balseviciute, I. Patiño-Cantero, J. Carrillo-Abad, J.J. Giner-Sanz, M. García-Gabaldón et al., Degradation of multicomponent pharmaceutical mixtures by electrochemical oxidation: insights about the process evolution at varying applied currents and concentrations of organics and supporting electrolyte. Sep. Purif. Technol. 362, 131697 (2025). https://doi.org/10.1016/j.seppur.2025.131697
A.N. Arenhart Heberle, M. García-Gabaldón, E.M. Ortega, A.M. Bernardes, V. Pérez-Herranz, Study of the atenolol degradation using a Nb/BDD electrode in a filter-press reactor. Chemosphere 236, 124318 (2019). https://doi.org/10.1016/j.chemosphere.2019.07.049
S.W. da Silva, J.M. do Prado, A.N.A. Heberle, D.E. Schneider, M.A.S. Rodrigues et al., Electrochemical advanced oxidation of Atenolol at Nb/BDD thin film anode. J. Electroanal. Chem. 844, 27–33 (2019). https://doi.org/10.1016/j.jelechem.2019.05.011
J. Radjenović, C. Sirtori, M. Petrović, D. Barceló, S. Malato, Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: kinetics and characterization of major intermediate products. Appl. Catal. B Environ. 89(1–2), 255–264 (2009). https://doi.org/10.1016/j.apcatb.2009.02.013
Y.-Q. Gao, N.-Y. Gao, J.-X. Chen, J. Zhang, D.-Q. Yin, Oxidation of β-blocker atenolol by a combination of UV light and chlorine: kinetics, degradation pathways and toxicity assessment. Sep. Purif. Technol. 231, 115927 (2020). https://doi.org/10.1016/j.seppur.2019.115927
H. Olvera-Vargas, T. Cocerva, N. Oturan, D. Buisson, M.A. Oturan, Bioelectro-Fenton: a sustainable integrated process for removal of organic pollutants from water: application to mineralization of metoprolol. J. Hazard. Mater. 319, 13–23 (2016). https://doi.org/10.1016/j.jhazmat.2015.12.010
E. Isarain-Chávez, P.L. Cabot, F. Centellas, R.M. Rodríguez, C. Arias et al., Electro-Fenton and photoelectro-Fenton degradations of the drug beta-blocker propranolol using a Pt anode: identification and evolution of oxidation products. J. Hazard. Mater. 185(2–3), 1228–1235 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.035