Optimizing Exciton and Charge-Carrier Behavior in Thick-Film Organic Photovoltaics: A Comprehensive Review
Corresponding Author: Hongzhen Chen
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 10
Abstract
Organic photovoltaics (OPVs) have achieved remarkable progress, with laboratory-scale single-junction devices now demonstrating power conversion efficiencies (PCEs) exceeding 20%. However, these efficiencies are highly dependent on the thickness of the photoactive layer, which is typically around 100 nm. This sensitivity poses a challenge for industrial-scale fabrication. Achieving high PCEs in thick-film OPVs is therefore essential. This review systematically examines recent advancements in thick-film OPVs, focusing on the fundamental mechanisms that lead to efficiency loss and strategies to enhance performance. We provide a comprehensive analysis spanning the complete photovoltaic process chain: from initial exciton generation and diffusion dynamics, through dissociation mechanisms, to subsequent charge-carrier transport, balance optimization, and final collection efficiency. Particular emphasis is placed on cutting-edge solutions in molecular engineering and device architecture optimization. By synthesizing these interdisciplinary approaches and investigating the potential contributions in stability, cost, and machine learning aspects, this work establishes comprehensive guidelines for designing high-performance OPVs devices with minimal thickness dependence, ultimately aiming to bridge the gap between laboratory achievements and industrial manufacturing requirements.
Highlights:
1 Research progress summary: Provides a systematic review of recent advancements in thick-film organic photovoltaics (OPVs) with a focus on molecular design and device engineering strategies.
2 Efficiency enhancement strategies: Explores the mechanisms limiting efficiency in thick-film devices, analyzes exciton and charge-carrier dynamics, and identifies effective approaches to improve device performance.
3 Industrialization contributions and outlook: Summarizes the potential contributions of thick-film OPVs to industrial applications and offers insights into future development directions (in stability, cost, and machine learning aspects).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu, J. Wang, L. Ai, W. Song, K.N. Hui, X. Fan, Y. Li, Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-micro letters 13, 1–14 (2021). https://doi.org/10.1007/s40820-020-00566-3
- S. Li, Z. Li, X. Wan, Y. Chen, Recent progress in flexible organic solar cells. Escience 3(1), 100085 (2023). https://doi.org/10.1016/j.esci.2022.10.010
- Y. Li, G. Xu, C. Cui, Y. Li, Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8(7), 1701791 (2018). https://doi.org/10.1002/aenm.201701791
- X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing et al., A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 31(41), e1903649 (2019). https://doi.org/10.1002/adma.201903649
- Q. Chen, Y.H. Han, L.R. Franco, C.F.N. Marchiori, Z. Genene et al., Effects of flexible conjugation-break spacers of non-conjugated polymer acceptors on photovoltaic and mechanical properties of all-polymer solar cells. Nano-Micro Lett 14(1), 164 (2022). https://doi.org/10.1007/s40820-022-00884-8
- J. Wang, C. Han, J. Han, F. Bi, X. Sun et al., Synergetic strategy for highly efficient and super flexible thick-film organic solar cells. Adv. Energy Mater. 12(31), 2201614 (2022). https://doi.org/10.1002/aenm.202201614
- W. Huang, Z. Jiang, K. Fukuda, X. Jiao, C.R. McNeill et al., Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors. Joule 4(1), 128–141 (2020). https://doi.org/10.1016/j.joule.2019.10.007
- K.W. Seo, J. Lee, J. Jo, C. Cho, J.Y. Lee, Highly efficient (>10%) flexible organic solar cells on PEDOT-free and ITO-free transparent electrodes. Adv. Mater. 31(36), e1902447 (2019). https://doi.org/10.1002/adma.201902447
- W. Song, Q. Ye, S. Yang, L. Xie, Y. Meng et al., Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor. Angew. Chem. Int. Ed. 62(41), e202310034 (2023). https://doi.org/10.1002/anie.202310034
- X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), e1908478 (2020). https://doi.org/10.1002/adma.201908478
- W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30(26), e1800075 (2018). https://doi.org/10.1002/adma.201800075
- Y.-F. Shen, H. Zhang, J. Zhang, C. Tian, Y. Shi et al., In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 35(10), e2209030 (2023). https://doi.org/10.1002/adma.202209030
- J. Zhang, H. Mao, K. Zhou, L. Zhang, D. Luo et al., Polymer-entangled spontaneous pseudo-planar heterojunction for constructing efficient flexible organic solar cells. Adv. Mater. 36(7), e2309379 (2024). https://doi.org/10.1002/adma.202309379
- K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano-Micro Lett 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
- G. Pacchioni, Hydrogen bonding makes organic solar cells stretchy. Nat. Rev. Mater. 7(11), 846 (2022). https://doi.org/10.1038/s41578-022-00499-w
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
- H. Yao, J. Hou, Recent advances in single-junction organic solar cells. Angew. Chem. Int. Ed. 61(37), e202209021 (2022). https://doi.org/10.1002/anie.202209021
- Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye et al., Fibril network strategy enables high-performance semitransparent organic solar cells. Adv. Funct. Mater. 30(28), 2002181 (2020). https://doi.org/10.1002/adfm.202002181
- S. Sun, W. Zha, C. Tian, Z. Wei, Q. Luo et al., Solution processed semi-transparent organic solar cells over 50% visible transmittance enabled by silver nanowire electrode with sandwich structure. Adv. Mater. 35(46), e2305092 (2023). https://doi.org/10.1002/adma.202305092
- T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: present challenges and future development. Nano-Micro Lett. 17(1), 49 (2024). https://doi.org/10.1007/s40820-024-01547-6
- D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan et al., High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 5(4), 945–957 (2021). https://doi.org/10.1016/j.joule.2021.02.010
- R. Xia, C.J. Brabec, H.-L. Yip, Y. Cao, High-throughput optical screening for efficient semitransparent organic solar cells. Joule 3(9), 2241–2254 (2019). https://doi.org/10.1016/j.joule.2019.06.016
- P. Yin, Z. Yin, Y. Ma, Q. Zheng, Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy Environ. Sci. 13(12), 5177–5185 (2020). https://doi.org/10.1039/d0ee03378b
- X. Duan, C. Liu, Y. Cai, L. Ye, J. Xue et al., Longitudinal through-hole architecture for efficient and thickness-insensitive semitransparent organic solar cells. Adv. Mater. 35(32), e2302927 (2023). https://doi.org/10.1002/adma.202302927
- D. Wang, R. Qin, G. Zhou, X. Li, R. Xia et al., High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32(32), e2001621 (2020). https://doi.org/10.1002/adma.202001621
- Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang et al., Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. Adv. Mater. 29(43), 1703080 (2017). https://doi.org/10.1002/adma.201703080
- X. Huang, Y. Cheng, Y. Fang, L. Zhang, X. Hu et al., A molecular weight-regulated sequential deposition strategy enabling semitransparent organic solar cells with the light utilization efficiency of over 5%. Energy Environ. Sci. 15(11), 4776–4788 (2022). https://doi.org/10.1039/d2ee02392j
- X. Huang, X. Ren, Y. Cheng, Y. Zhang, Z. Sun et al., Collaborative regulation strategy of donor and acceptor analogues realizes multifunctional semitransparent organic solar cells with excellent comprehensive performance. Energy Environ. Sci. 17(8), 2825–2836 (2024). https://doi.org/10.1039/d3ee04476a
- Z. Wu, B. Shi, J. Yu, M. Sha, J. Sun et al., Human-friendly semitransparent organic solar cells achieving high performance. Energy Environ. Sci. 17(16), 6013 (2024). https://doi.org/10.1039/D4EE01659A
- L. Xiao, Y. Li, H. Zhang, G. Huang, Q. Cheng et al., Semitransparent organic solar cells with homogeneous transmission and colorful reflection enabled by an ITO-free microcavity architecture. Adv. Mater. 36(22), e2303844 (2024). https://doi.org/10.1002/adma.202303844
- Z. Li, Y. Xiang, J. Li, L. Feng, M. Zhang et al., Solution-processing induced H-aggregate of perylene-diimide zwitterion exhibiting compact molecular stacking toward efficient cathode modification in organic solar cells. Angew. Chem. Int. Ed. 64(2), e202413986 (2025). https://doi.org/10.1002/anie.202413986
- M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan et al., Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11(2), 85–90 (2017). https://doi.org/10.1038/nphoton.2016.240
- L. Sun, W. Zeng, C. Xie, L. Hu, X. Dong et al., Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers. Adv. Mater. 32(14), e1907840 (2020). https://doi.org/10.1002/adma.201907840
- X. Du, O. Lytken, M.S. Killian, J. Cao, T. Stubhan et al., Overcoming interfacial losses in solution-processed organic multi-junction solar cells. Adv. Energy Mater. 7(5), 1601959 (2017). https://doi.org/10.1002/aenm.201601959
- Y. Zhang, A. Chen, M.W. Kim, A. Alaei, S.S. Lee, Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem. Soc. Rev. 50(17), 9375–9390 (2021). https://doi.org/10.1039/d1cs00430a
- P. Meredith, A. Armin, Scaling of next generation solution processed organic and perovskite solar cells. Nat. Commun. 9(1), 5261 (2018). https://doi.org/10.1038/s41467-018-05514-9
- R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia et al., Organic solar cells: beyond 20%. J. Sci. China Mater. 68, 1689–1701 (2025). https://doi.org/10.1007/s40843-025-3366-9
- H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen et al., Enhancing molecular stacking and fiber morphology of biaxially conjugated acceptors via cyano substitution to achieve 19.71% efficiency in binary organic solar cells. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-025-2671-6
- L. Zhang, S. Yang, B. Ning, F. Yang, W. Deng et al., Modulation of vertical component distribution for large-area thick-film organic solar cells. Sol. RRL 6(1), 2100838 (2022). https://doi.org/10.1002/solr.202100838
- J. Zhang, Y. Zhao, J. Fang, L. Yuan, B. Xia et al., Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small 13(21), 201700388 (2017). https://doi.org/10.1002/smll.201700388
- X. Zhu, B. Xia, K. Lu, H. Li, R. Zhou et al., Naphtho [1, 2-b: 5, 6-b’] dithiophene-based small molecules for thick-film organic solar cells with high fill factors. Chem. Mater. 28(3), 943–950 (2016). https://doi.org/10.1021/acs.chemmater.5b04668
- M. Riede, D. Spoltore, K. Leo, Organic solar cells: the path to commercial success. Adv. Energy Mater. 11(1), 2002653 (2021). https://doi.org/10.1002/aenm.202002653
- F. Yang, Y. Huang, Y. Li, Y. Li, Large-area flexible organic solar cells. NPJ Flex. Electron. 5, 30 (2021). https://doi.org/10.1038/s41528-021-00128-6
- A. Guerrero, G. Garcia-Belmonte, Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett 9(1), 10 (2017). https://doi.org/10.1007/s40820-016-0107-3
- W. Xue, Z. Liang, Y. Tang, C. Zhao, L. Yan et al., Solid solvation assisted electrical doping conserves high-performance in 500 nm active layer organic solar cells. Adv. Funct. Mater. 33(42), 2304960 (2023). https://doi.org/10.1002/adfm.202304960
- J. Wang, Y. Xie, K. Chen, H. Wu, J.M. Hodgkiss et al., Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 6(6), 365–381 (2024). https://doi.org/10.1038/s42254-024-00719-y
- P. Bi, J. Wang, Y. Cui, J. Zhang, T. Zhang et al., Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35(16), e2210865 (2023). https://doi.org/10.1002/adma.202210865
- R. Basu, F. Gumpert, J. Lohbreier, P.-O. Morin, V. Vohra et al., Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule 8(4), 970–978 (2024). https://doi.org/10.1016/j.joule.2024.02.016
- J. Qin, L. Zhang, Z. Xiao, S. Chen, K. Sun et al., Over 16% efficiency from thick-film organic solar cells. Sci. Bull. Beijing 65(23), 1979–1982 (2020). https://doi.org/10.1016/j.scib.2020.08.027
- A.K.Y. Jen, Realizing high-performance ternary organic solar cell with thick active layer via incorporating a liquid crystalline small molecule as a third component. Sci. China Chem. 60(4), 435–436 (2017). https://doi.org/10.1007/s11426-017-9015-8
- L. Yang, J. Qin, S. Li, J. Zhang, Y. Yang et al., Optimized charge transport channel enables thick-film all-small-molecule organic solar cells. Energy Fuels 35(23), 19756–19764 (2021). https://doi.org/10.1021/acs.energyfuels.1c03579
- K. Wang, X. Song, X. Guo, Y. Wang, X. Lai et al., Efficient as-cast thick film small-molecule organic solar cell with less fluorination on the donor. Mater. Chem. Front. 4(1), 206–212 (2020). https://doi.org/10.1039/c9qm00605b
- L. Ma, S. Zhang, J. Wang, Y. Xu, J. Hou, Recent advances in non-fullerene organic solar cells: from lab to fab. Chem Commun Camb 56(92), 14337–14352 (2020). https://doi.org/10.1039/d0cc05528j
- J. Lee, D.H. Sin, B. Moon, J. Shin, H.G. Kim et al., Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10(1), 247–257 (2017). https://doi.org/10.1039/c6ee02466a
- J. Yu, X. Liu, H. Wang, P.-C. Lin, C.-C. Chueh et al., Efficient thick film non-fullerene organic solar cells enabled by using a strong temperature-dependent aggregative wide bandgap polymer. Chem. Eng. J. 405, 127033 (2021). https://doi.org/10.1016/j.cej.2020.127033
- R.R. Attab, A.H. Fllayh, High performance and efficiency enhancement for organic solar cell: layers thickness optimization. IOP Conf. Ser. Mater. Sci. Eng. 928(7), 072025 (2020). https://doi.org/10.1088/1757-899x/928/7/072025
- C.H.Y. Ho, Y. Pei, Y. Qin, C. Zhang, Z. Peng et al., Importance of electric-field-independent mobilities in thick-film organic solar cells. ACS Appl. Mater. Interfaces 14(42), 47961–47970 (2022). https://doi.org/10.1021/acsami.2c11265
- Y. Jin, Z. Chen, M. Xiao, J. Peng, B. Fan et al., Thick film polymer solar cells based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 7(22), 1700944 (2017). https://doi.org/10.1002/aenm.201700944
- T. Gokulnath, S.S. Reddy, H.-Y. Park, J. Kim, J. Kim et al., Nonhalogenated solvent-processed thick-film ternary nonfullerene organic solar cells with power conversion efficiency >13% enabled by a new wide-bandgap polymer. Sol. RRL 5(3), 2000787 (2021). https://doi.org/10.1002/solr.202000787
- S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50(21), 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
- P. Hartnagel, S. Ravishankar, B. Klingebiel, O. Thimm, T. Kirchartz, Comparing methods of characterizing energetic disorder in organic solar cells. Adv. Energy Mater. 13(15), 2300329 (2023). https://doi.org/10.1002/aenm.202300329
- N. Gasparini, L. Lucera, M. Salvador, M. Prosa, G.D. Spyropoulos et al., High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10(4), 885–892 (2017). https://doi.org/10.1039/c6ee03599j
- C. Göhler, A. Wagenpfahl, C. Deibel, Nongeminate recombination in organic solar cells. Adv. Electron. Mater. 4(10), 1700505 (2018). https://doi.org/10.1002/aelm.201700505
- J.D. Major, L.J. Phillips, M. Al Turkestani, L. Bowen, T.J. Whittles et al., P3HT as a pinhole blocking back contact for CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 172, 1–10 (2017). https://doi.org/10.1016/j.solmat.2017.07.005
- S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
- B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
- P.R. Somani, S.P. Somani, M. Umeno, Toward organic thick film solar cells: Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods. Appl. Phys. Lett. 91(17), 173503 (2007). https://doi.org/10.1063/1.2801624
- Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao et al., Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 12(1), 4815 (2021). https://doi.org/10.1038/s41467-021-25148-8
- H. Wang, Z. Zhang, J. Yu, X. Liu, W. Tang, High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chem. Eng. J. 418, 129539 (2021). https://doi.org/10.1016/j.cej.2021.129539
- J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
- J. Wang, N. Yao, D. Zhang, Z. Zheng, H. Zhou et al., Fast field-insensitive charge extraction enables high fill factors in polymer solar cells. ACS Appl. Mater. Interfaces 12(34), 38460–38469 (2020). https://doi.org/10.1021/acsami.0c09123
- D. Bartesaghi, C. Pérez Idel, J. Kniepert, S. Roland, M. Turbiez et al., Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6, 7083 (2015). https://doi.org/10.1038/ncomms8083
- X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice et al., Polymer solar cells with enhanced fill factors. Nat. Photonics 7(10), 825–833 (2013). https://doi.org/10.1038/nphoton.2013.207
- K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells. Chem. Soc. Rev. 45(10), 2937–2975 (2016). https://doi.org/10.1039/c5cs00831j
- X. Zhang, P. Fan, Z. Wang, D. Zheng, J. Yu, Morphology regulation by upside-down thermal annealing based on blend thick-film organic solar cells. J. Phys. Chem. C 125(28), 15194–15199 (2021). https://doi.org/10.1021/acs.jpcc.1c03994
- C. Liu, L. Shao, S. Chen, Z. Hu, H. Cai et al., Recent progress in π-conjugated polymers for organic photovoltaics: solar cells and photodetectors. Prog. Polym. Sci. 143, 101711 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101711
- P. Bi, X. Hao, Versatile ternary approach for novel organic solar cells: a review. Sol. RRL 3(1), 1800263 (2019). https://doi.org/10.1002/solr.201800263
- W. Li, S. Zeiske, O.J. Sandberg, D.B. Riley, P. Meredith et al., Organic solar cells with near-unity charge generation yield. Energy Environ. Sci. 14(12), 6484–6493 (2021). https://doi.org/10.1039/d1ee01367j
- T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich et al., Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008). https://doi.org/10.1063/1.2902804
- M. Katayama, T. Kaji, S. Nakao, M. Hiramoto, Ultra-thick organic pigment layer up to 10 μm activated by crystallization in organic photovoltaic cells. Front. Energy Res. 8, 4 (2020). https://doi.org/10.3389/fenrg.2020.00004
- A. Armin, A. Yazmaciyan, M. Hambsch, J. Li, P.L. Burn et al., Electro-optics of conventional and inverted thick junction organic solar cells. ACS Photonics 2(12), 1745–1754 (2015). https://doi.org/10.1021/acsphotonics.5b00441
- A.A. Mohapatra, V. Kim, B. Puttaraju, A. Sadhanala, X. Jiao et al., Förster resonance energy transfer drives higher efficiency in ternary blend organic solar cells. ACS Appl. Energy Mater. 1(9), 4874–4882 (2018). https://doi.org/10.1021/acsaem.8b00896
- G. Oklem, X. Song, L. Toppare, D. Baran, G. Gunbas, A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C 6(12), 2957–2961 (2018). https://doi.org/10.1039/c8tc00113h
- N. Camaioni, C. Carbonera, L. Ciammaruchi, G. Corso, J. Mwaura et al., Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta-analysis. Adv. Mater. 35(8), e2210146 (2023). https://doi.org/10.1002/adma.202210146
- X. Yi, Z. Liu, M. Zhao, M. Huang, J. Wu et al., Additive-assisted molecular aggregation manipulation towards efficient thick organic solar cells. J. Mater. Chem. C 12(42), 17078–17088 (2024). https://doi.org/10.1039/d4tc03060e
- Y. Zhang, M.T. Sajjad, O. Blaszczyk, A.J. Parnell, A. Ruseckas et al., Large crystalline domains and an enhanced exciton diffusion length enable efficient organic solar cells. Chem. Mater. 31(17), 6548–6557 (2019). https://doi.org/10.1021/acs.chemmater.8b05293
- B. Siegmund, M.T. Sajjad, J. Widmer, D. Ray, C. Koerner et al., Exciton diffusion length and charge extraction yield in organic bilayer solar cells. Adv. Mater. 29(12), 1604424 (2017). https://doi.org/10.1002/adma.201604424
- W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao et al., Extending exciton diffusion length via an organic-metal platinum complex additive for high-performance thick-film organic solar cells. Adv. Mater. 37(8), e2413125 (2025). https://doi.org/10.1002/adma.202413125
- D.B. Riley, P. Meredith, A. Armin, O.J. Sandberg, Role of exciton diffusion and lifetime in organic solar cells with a low energy offset. J. Phys. Chem. Lett. 13(20), 4402–4409 (2022). https://doi.org/10.1021/acs.jpclett.2c00791
- N. Tokmoldin, S.M. Hosseini, M. Raoufi, L.Q. Phuong, O.J. Sandberg et al., Extraordinarily long diffusion length in PM6: Y6 organic solar cells. J. Mater. Chem. A 8(16), 7854–7860 (2020). https://doi.org/10.1039/d0ta03016c
- S. Feng, C.-E. Zhang, Z. Bi, Y. Liu, P. Jiang et al., Controlling molecular packing and orientation via constructing a ladder-type electron acceptor with asymmetric substituents for thick-film nonfullerene solar cells. ACS Appl. Mater. Interfaces 11(3), 3098–3106 (2019). https://doi.org/10.1021/acsami.8b19596
- Y. Cai, Q. Li, G. Lu, H.S. Ryu, Y. Li et al., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13(1), 2369 (2022). https://doi.org/10.1038/s41467-022-29803-6
- D. Luo, Z. Jiang, W.L. Tan, L. Zhang, L. Li et al., Non-fused ring acceptors achieving over 15.6% efficiency organic solar cell by long exciton diffusion length of alloy-like phase and vertical phase separation induced by hole transport layer. Adv. Energy Mater. 13(6), 2203402 (2023). https://doi.org/10.1002/aenm.202203402
- L. Li, Y. Wang, Z. Suo, W. Feng, W. Zhao et al., Efficient organic solar cells fabricated with a high-boiling solvent via morphology modulation using a small molecule guest donor. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505192
- Z. Fu, J.W. Qiao, F.Z. Cui, W.Q. Zhang, L.H. Wang et al., π-π stacking modulation via polymer adsorption for elongated exciton diffusion in high-efficiency thick-film organic solar cells. Adv. Mater. 36(21), e2313532 (2024). https://doi.org/10.1002/adma.202313532
- F. Sun, X. Zheng, T. Hu, J. Wu, M. Wan et al., 1, 5-Diiodocycloctane: a cyclane solvent additive that can extend the exciton diffusion length in thick film organic solar cells. Energy Environ. Sci. 17(5), 1916–1930 (2024). https://doi.org/10.1039/d3ee04281b
- L. Zhang, B. Lin, Z. Ke, J. Chen, W. Li et al., A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Nano Energy 41, 609–617 (2017). https://doi.org/10.1016/j.nanoen.2017.10.014
- W. Liu, J. Chen, X. Tang, Z. Wei, G. Lu et al., Blended solvent for tuning vertical phase separation in layer-by-layer processed thick-film organic solar cells. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2467-8
- Y. Chang, X. Zhu, K. Lu, Z. Wei, Progress and prospects of thick-film organic solar cells. J. Mater. Chem. A 9(6), 3125–3150 (2021). https://doi.org/10.1039/d0ta10594e
- D. Zhang, B. Fan, L. Ying, N. Li, C.J. Brabec et al., Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1(1), 4–23 (2021). https://doi.org/10.1002/sus2.10
- Z. Liu, T. Li, Y. Lin, Thick active-layer organic solar cells. Chin. J. Chem. 41(24), 3739–3750 (2023). https://doi.org/10.1002/cjoc.202300402
- C. Duan, F. Huang, Y. Cao, Solution processed thick film organic solar cells. Polym. Chem. 6(47), 8081–8098 (2015). https://doi.org/10.1039/c5py01340b
- J. Gao, J. Wang, C. Xu, Z. Hu, X. Ma et al., A critical review on efficient thick-film organic solar cells. Sol. RRL 4(11), 2000364 (2020). https://doi.org/10.1002/solr.202000364
- M. Nyman, O.J. Sandberg, W. Li, S. Zeiske, R. Kerremans et al., Requirements for making thick junctions of organic solar cells based on nonfullerene acceptors. Sol. RRL 5(5), 2100018 (2021). https://doi.org/10.1002/solr.202100018
- X. Fu, H. Xu, D. Zhou, X. Cheng, L. Huang et al., Ternary thick active layer for efficient organic solar cells. J. Mater. Sci. 53(11), 8398–8408 (2018). https://doi.org/10.1007/s10853-018-2130-x
- Y. Ye, J. Zhu, Y. Huang, Diverse C-P cross-couplings of arylsulfonium salts with diarylphosphines via selective C-S bond cleavage. Org. Lett. 23(6), 2386–2391 (2021). https://doi.org/10.1021/acs.orglett.1c00748
- T. Wang, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, L. Feng et al., Effective exciton dissociation and reduced charge recombination in thick-film organic solar cells via incorporation of insulating polypropylene. Sol. RRL 3(8), 1900087 (2019). https://doi.org/10.1002/solr.201900087
- H. Wu, H. Lu, Y. Li, X. Zhou, G. Zhou et al., Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells. Nat. Commun. 15(1), 2693 (2024). https://doi.org/10.1038/s41467-024-46797-5
- L. Zhu, Y. Yi, Z. Wei, Exciton binding energies of nonfullerene small molecule acceptors: implication for exciton dissociation driving forces in organic solar cells. J. Phys. Chem. C 122(39), 22309–22316 (2018). https://doi.org/10.1021/acs.jpcc.8b07197
- K. Weng, L. Ye, C. Li, Z. Shen, J. Xu et al., High-efficiency organic solar cells with wide toleration of active layer thickness. Sol. RRL 4(10), 2000476 (2020). https://doi.org/10.1002/solr.202000476
- T. Dai, J. Lu, A. Tang, Y. Meng, P. Cong et al., Reduced exciton binding energy and diverse molecular stacking enable high-performance organic solar cells with VOC over 1.1 V. Sci. China Chem. 67(9), 3140–3152 (2024). https://doi.org/10.1007/s11426-024-2060-9
- Y. Wei, X. Zhou, Y. Cai, Y. Li, S. Wang et al., High performance as-cast organic solar cells enabled by a refined double-fibril network morphology and improved dielectric constant of active layer. Adv. Mater. 36(28), e2403294 (2024). https://doi.org/10.1002/adma.202403294
- W. Jiang, H. Jin, M. Babazadeh, A.S. Loch, A. Raynor et al., Dielectric constant engineering of organic semiconductors: effect of planarity and conjugation length. Adv. Funct. Mater. 32(3), 2104259 (2022). https://doi.org/10.1002/adfm.202104259
- J. Zhou, X. Zhou, H. Jia, L. Tu, S. Wu et al., 20.0% efficiency of ternary organic solar cells enabled by a novel wide band gap polymer guest donor. Energy Environ. Sci. 18(7), 3341–3351 (2025). https://doi.org/10.1039/d4ee05848h
- H. Zhang, Y. Liu, G. Ran, H. Li, W. Zhang et al., Sequentially processed bulk-heterojunction-buried structure for efficient organic solar cells with 500 nm thickness. Adv. Mater. 36(25), e2400521 (2024). https://doi.org/10.1002/adma.202400521
- H. Tian, W. Xu, Z. Liu, Y. Xie, W. Zhang et al., Over 18 8% efficiency of layer-by-layer organic photovoltaics enabled by ameliorating exciton utilization in acceptor layer. Adv. Funct. Mater. 34(16), 2313751 (2024). https://doi.org/10.1002/adfm.202313751
- G. Zhang, R. Xia, Z. Chen, J. Xiao, X. Zhao et al., Overcoming space-charge effect for efficient thick-film non-fullerene organic solar cells. Adv. Energy Mater. 8(25), 1801609 (2018). https://doi.org/10.1002/aenm.201801609
- L. Ma, Y. Xu, Y. Zu, Q. Liao, B. Xu et al., A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem. 63(1), 21–27 (2020). https://doi.org/10.1007/s11426-019-9556-7
- T. Wang, M.S. Niu, Z.C. Wen, Z.N. Jiang, C.C. Qin et al., High-efficiency thickness-insensitive organic solar cells with an insulating polymer. ACS Appl. Mater. Interfaces 13(9), 11134–11143 (2021). https://doi.org/10.1021/acsami.0c22452
- D. Jiang, J. Sun, R. Ma, V.K. Wong, J. Yuan et al., Extracting charge carrier mobility in organic solar cells through space-charge-limited current measurements. Mater. Sci. Eng. R. Rep. 157, 100772 (2024). https://doi.org/10.1016/j.mser.2024.100772
- D. Chi, S. Huang, S. Yue, K. Liu, S. Lu et al., Ultra-thin ZnO film as an electron transport layer for realizing the high efficiency of organic solar cells. RSC Adv. 7(24), 14694–14700 (2017). https://doi.org/10.1039/c6ra27543e
- J.A. Bartelt, D. Lam, T.M. Burke, S.M. Sweetnam, M.D. McGehee, Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater. 5(15), 1500577 (2015). https://doi.org/10.1002/aenm.201500577
- Y. Tang, H. Zheng, X. Zhou, Z. Tang, W. Ma et al., N-dopants optimize the utilization of spontaneously formed photocharges in organic solar cells. Energy Environ. Sci. 16(2), 653–662 (2023). https://doi.org/10.1039/d2ee03612f
- B. Zhao, X. Huang, S. Chung, M. Zhang, Y. Zhong et al., Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT: PSS for efficient organic solar cells. EScience 5(1), 100305 (2025). https://doi.org/10.1016/j.esci.2024.100305
- J. Jing, S. Dong, K. Zhang, Z. Zhou, J. Zhang et al., Self-organized anode interlayer enables PEDOT: PSS-free structure for thick-film organic solar cells over 16% efficiency. Sol. RRL 6(12), 2200682 (2022). https://doi.org/10.1002/solr.202200682
- M. Cui, Y. Li, N. Li, X. Hao, Y. Zhang et al., Combining ZnO and organosilica nanodots as a thick cathode interlayer for highly efficient and stable inverted polymer solar cells. ACS Appl. Energy Mater. 6(7), 3915–3923 (2023). https://doi.org/10.1021/acsaem.3c00068
- T. Zhang, X. Zhao, D. Yang, Y. Tian, X. Yang, Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8(4), 1701691 (2018). https://doi.org/10.1002/aenm.201701691
- Y. Fu, L. Wang, C. Guo, D. Li, J. Cai et al., Side chain length and interaction mediated charge transport networks of non-fullerene acceptors for efficient organic solar cells. ACS Mater. Lett. 4(10), 2009–2018 (2022). https://doi.org/10.1021/acsmaterialslett.2c00764
- X. Zhang, J. Guo, F. Lu, H. Wu, T. Luan et al., Simple inverted annealing process to improve charge transport capability of organic photovoltaic devices with thick active layers. J. Phys. Chem. C 122(20), 10706–10713 (2018). https://doi.org/10.1021/acs.jpcc.8b01281
- H. Feng, X. Song, Z. Zhang, R. Geng, J. Yu et al., Molecular orientation unified nonfullerene acceptor enabling 14% efficiency As-cast organic solar cells. Adv. Funct. Mater. 29(36), 1903269 (2019). https://doi.org/10.1002/adfm.201903269
- J. Li, J. Liu, J. Zhang, J. Ma, Y. Hu et al., Efficient non-fullerene organic solar cells based on thickness-insensitive conjugated small molecule cathode interface. Sol. Energy 191, 219–226 (2019). https://doi.org/10.1016/j.solener.2019.08.009
- T. Kirchartz, T. Agostinelli, M. Campoy-Quiles, W. Gong, J. Nelson, Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: the influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3(23), 3470–3475 (2012). https://doi.org/10.1021/jz301639y
- S. Wilken, O.J. Sandberg, D. Scheunemann, R. Österbacka, Watching space charge build up in an organic solar cell. Sol. RRL 4(3), 1900505 (2020). https://doi.org/10.1002/solr.201900505
- K.N. Schwarz, P.B. Geraghty, V.D. Mitchell, S.U. Khan, O.J. Sandberg et al., Reduced recombination and capacitor-like charge buildup in an organic heterojunction. J. Am. Chem. Soc. 142(5), 2562–2571 (2020). https://doi.org/10.1021/jacs.9b12526
- T. Zhang, X. Zhao, D. Yang, Y. Tian, X. Yang, Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8(4), 1701691 (2017). https://doi.org/10.1002/solr.201900079
- Z. Luo, C. Sun, S. Chen, Z.-G. Zhang, K. Wu et al., Side-chain impact on molecular orientation of organic semiconductor acceptors: high performance nonfullerene polymer solar cells with thick active layer over 400 nm. Adv. Energy Mater. 8(23), 1800856 (2018). https://doi.org/10.1002/aenm.201800856
- Z. Wang, X. Liu, H. Jiang, X. Zhou, L. Zhang et al., Organic solar cells based on high hole mobility conjugated polymer and nonfullerene acceptor with comparable bandgaps and suitable energy level offsets showing significant suppression of jsc–voc trade-off. Sol. RRL 3(7), 1900079 (2019). https://doi.org/10.1002/solr.201900079
- J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao et al., A difluorobenzoxadiazole building block for efficient polymer solar cells. Adv. Mater. 28(9), 1868–1873 (2016). https://doi.org/10.1002/adma.201504611
- D. Mo, H. Wang, H. Chen, S. Qu, P. Chao et al., Chlorination of low-band-gap polymers: toward high-performance polymer solar cells. Chem. Mater. 29(7), 2819–2830 (2017). https://doi.org/10.1021/acs.chemmater.6b04828
- P. Chen, S. Shi, H. Wang, F. Qiu, Y. Wang et al., Aggregation strength tuning in difluorobenzoxadiazole-based polymeric semiconductors for high-performance thick-film polymer solar cells. ACS Appl. Mater. Interfaces 10(25), 21481–21491 (2018). https://doi.org/10.1021/acsami.8b05231
- X. Wang, Z. Zhang, L. Kong, M. Luo, M. Chen et al., Dithienoquinoxaline-quaterthiophene wide bandgap donor polymers with strong interchain aggregation for efficient organic solar cells processed with a non-halogenated solvent. J. Mater. Chem. A 12(10), 5731–5739 (2024). https://doi.org/10.1039/d3ta08020j
- W. Gao, Q. An, M. Hao, R. Sun, J. Yuan et al., Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 30(10), 1908336 (2020). https://doi.org/10.1002/adfm.201908336
- L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13(2), 635–645 (2020). https://doi.org/10.1039/c9ee03710a
- Y. Li, L. Yu, L. Chen, C. Han, H. Jiang et al., Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics. Innovation 2(1), 100090 (2021). https://doi.org/10.1016/j.xinn.2021.100090
- X. Yang, Y. Gao, L.-Y. Xu, X. Wu, X. Chen et al., Efficient and stable all-small-molecule solar cells enabled by incorporating a designed giant molecule acceptor. Energy Environ. Sci. 17(16), 5962–5971 (2024). https://doi.org/10.1039/d4ee01705f
- C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue et al., A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9(1), 743 (2018). https://doi.org/10.1038/s41467-018-03207-x
- W. Zhang, C. Sun, I. Angunawela, L. Meng, S. Qin et al., 16.52% efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness. Adv. Mater. 34(20), e2108749 (2022). https://doi.org/10.1002/adma.202108749
- J. Xiao, X. Jia, C. Duan, F. Huang, H.L. Yip et al., Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv. Mater. 33(25), e2008158 (2021). https://doi.org/10.1002/adma.202008158
- W. Zou, C. Han, X. Zhang, J. Qiao, J. Yu et al., A bithiazole-substituted donor for high-efficiency thick ternary organic solar cells via regulation of crystallinity and miscibility. Adv. Energy Mater. 13(23), 2300784 (2023). https://doi.org/10.1002/aenm.202300784
- X. Xie, R. Ma, Y. Luo, T.A. Dela Peña, P.W. Fong et al., Thickness insensitive organic solar cells with high figure-of-merit-X enabled by simultaneous D/a interpenetration and stratification. Adv. Energy Mater. 14(35), 2401355 (2024). https://doi.org/10.1002/aenm.202401355
- Y. Wang, C. Zhao, Z. Cai, L. Wang, L. Zhu et al., All-polymer solar cells sequentially solution processed from hydrocarbon solvent with a thick active layer. Polymers 15(16), 3462 (2023). https://doi.org/10.3390/polym15163462
- L. Wang, C. Chen, Y. Fu, C. Guo, D. Li et al., Donor–acceptor mutually diluted heterojunctions for layer-by-layer fabrication of high-performance organic solar cells. Nat. Energy 9(2), 208–218 (2024). https://doi.org/10.1038/s41560-023-01436-z
- X. Du, X. Li, H. Lin, L. Zhou, C. Zheng et al., High performance opaque and semi-transparent organic solar cells with good tolerance to film thickness realized by a unique solid additive. J. Mater. Chem. A 7(13), 7437–7450 (2019). https://doi.org/10.1039/c9ta00164f
- G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
- S. Chen, L. Hong, M. Dong, W. Deng, L. Shao et al., A polyfluoroalkyl-containing non-fullerene acceptor enables self-stratification in organic solar cells. Angew. Chem. Int. Ed. 62(1), e202213869 (2023). https://doi.org/10.1002/anie.202213869
- C. Xie, X. Zeng, C. Li, X. Sun, S. Liang et al., Water-based layer-by-layer processing enables 19% efficient binary organic solar cells with minimized thickness sensitivity. Energy Environ. Sci. 17(7), 2441–2452 (2024). https://doi.org/10.1039/d4ee00068d
- J. Fu, H. Chen, P. Huang, Q. Yu, H. Tang et al., Eutectic phase behavior induced by a simple additive contributes to efficient organic solar cells. Nano Energy 84, 105862 (2021). https://doi.org/10.1016/j.nanoen.2021.105862
- L. Zhang, X. Guo, W. Deng, Y. He, B. Ning et al., Regulating pre-aggregation in non-halogenated solvent to enhance the efficiency of organic solar cells. Appl. Phys. Lett. 124(1), 013902 (2024). https://doi.org/10.1063/5.0184403
- A.K. Dikshit, S. Maity, N. Mukherjee, P. Chakrabarti, Hybrid inorganic–organic inverted solar cells with ZnO/ZnMgO barrier layer and effective organic active layer for low leakage current, enhanced efficiency, and reliability. IEEE J. Photovolt. 11(4), 983–990 (2021). https://doi.org/10.1109/JPHOTOV.2021.3067828
- K. Xian, K. Zhang, T. Zhang, K. Zhou, Z. Zhang et al., Simultaneously improving efficiency, stability and intrinsic stretchability of organic photovoltaic films via molecular toughening. Energy Environ. Sci. 18(5), 2570–2583 (2025). https://doi.org/10.1039/d4ee05893c
- Q. Zhang, B. Kan, X. Wan, H. Zhang, F. Liu et al., Large active layer thickness toleration of high-efficiency small molecule solar cells. J. Mater. Chem. A 3(44), 22274–22279 (2015). https://doi.org/10.1039/c5ta06627a
- C. Guo, Y. Fu, D. Li, L. Wang, B. Zhou et al., A polycrystalline polymer donor as pre-aggregate toward ordered molecular aggregation for 19.3% efficiency binary organic solar cells. Adv. Mater. 35(41), e2304921 (2023). https://doi.org/10.1002/adma.202304921
- X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou et al., Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy Environ. Sci. 16(8), 3441–3452 (2023). https://doi.org/10.1039/d3ee01320k
- O. Alqahtani, S.M. Hosseini, T. Ferron, V. Murcia, T. McAfee et al., Evidence that sharp interfaces suppress recombination in thick organic solar cells. ACS Appl. Mater. Interfaces 13(47), 56394–56403 (2021). https://doi.org/10.1021/acsami.1c15570
- C.K. Lyu, F. Zheng, B.H. Babu, M.S. Niu, L. Feng et al., Functionalized graphene oxide enables a high-performance bulk heterojunction organic solar cell with a thick active layer. J. Phys. Chem. Lett. 9(21), 6238–6248 (2018). https://doi.org/10.1021/acs.jpclett.8b02701
- A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
- L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88(5), 052104 (2006). https://doi.org/10.1063/1.2170424
- L.J. Koster, M. Kemerink, M.M. Wienk, K. Maturová, R.A. Janssen, Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 23(14), 1670–1674 (2011). https://doi.org/10.1002/adma.201004311
- W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952). https://doi.org/10.1103/physrev.87.835
- T. Krebs, C. Göhler, M. Kemerink, Traps, tail states and their consequences on the open-circuit voltage in organic solar cells. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202405087
- Y. Dou, S. Luo, P. Zhu, L. Zhu, G. Zhang et al., Distributions and evolution of trap states in non-fullerene organic solar cells. Joule 9(1), 101774 (2025). https://doi.org/10.1016/j.joule.2024.10.006
- A.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke et al., Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 7(5), 4569–4577 (2013). https://doi.org/10.1021/nn401267s
- W. Huang, M. Li, F. Lin, Y. Wu, Z. Ke et al., Rational design of conjugated side chains for high-performance all-polymer solar cells. Mol. Syst. Des. Eng. 3(1), 103–112 (2018). https://doi.org/10.1039/c7me00088j
- C. Zhang, J. Li, W. Deng, J. Dai, J. Yu et al., 18 9% efficiency ternary organic solar cells enabled by isomerization engineering of chlorine-substitution on small molecule donors. Adv. Funct. Mater. 33(30), 2301108 (2023). https://doi.org/10.1002/adfm.202301108
- X. Cheng, Z. Liang, S. Liang, X. Zhang, J. Xu et al., “Twisted” small molecule donors with enhanced intermolecular interactions in the condensed phase towards efficient and thick-film all-small-molecule organic solar cells. J. Mater. Chem. A 11(26), 13984–13993 (2023). https://doi.org/10.1039/d3ta01893h
- S. Riera-Galindo, M. Sanz-Lleó, E. Gutiérrez-Fernández, N. Ramos, M. Mas-Torrent et al., High polymer molecular weight yields solar cells with simultaneously improved performance and thermal stability. Small 20(26), e2311735 (2024). https://doi.org/10.1002/smll.202311735
- X. Chen, M. Chen, J. Liang, H. Liu, X. Xie et al., Polymer donor with a simple skeleton and minor siloxane decoration enables 19% efficiency of organic solar cells. Adv. Mater. 36(16), e2313074 (2024). https://doi.org/10.1002/adma.202313074
- X. Lu, L. Cao, X. Du, H. Lin, C. Zheng et al., Hydrogen-bond-induced high performance semitransparent ternary organic solar cells with 14% efficiency and enhanced stability. Adv. Opt. Mater. 9(12), 2100064 (2021). https://doi.org/10.1002/adom.202100064
- H. Yin, S.H. Cheung, J.H.L. Ngai, C.H.Y. Ho, K.L. Chiu et al., Thick-film high-performance bulk-heterojunction solar cells retaining 90% PCEs of the optimized thin film cells. Adv. Electron. Mater. 3(4), 1700007 (2017). https://doi.org/10.1002/aelm.201700007
- S. Gao, Y. Zhang, S. Jeong, X. Zhou, H. Xu et al., Ameliorated trap density and energetic disorder via a strengthened intermolecular interaction strategy to construct efficient non-halogenated organic solar cells. Energy Environ. Sci. 17(15), 5542–5551 (2024). https://doi.org/10.1039/d4ee00291a
- Z. Fu, J.W. Qiao, F.Z. Cui, R.H. Gui, P. Lu et al., Suppressing static and dynamic disorder for high-efficiency and stable thick-film organic solar cells via synergistic dilution strategy. Adv. Mater. 36(52), e2413317 (2024). https://doi.org/10.1002/adma.202413317
- J. Wu, J. Luke, H.K.H. Lee, P. Shakya Tuladhar, H. Cha et al., Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nat. Commun. 10(1), 5159 (2019). https://doi.org/10.1038/s41467-019-12951-7
- G. Wang, M.A. Adil, J. Zhang, Z. Wei, Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 31(45), e1805089 (2019). https://doi.org/10.1002/adma.201805089
- H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
- A. Armin, M. Hambsch, P. Wolfer, H. Jin, J. Li et al., Efficient, large arh ea, and thick junction polymer solar cells with balanced mobilities and low defect densities. Adv. Energy Mater. 5(3), 1401221 (2015). https://doi.org/10.1002/aenm.201401221
- K. Zhang, Z. Chen, A. Armin, S. Dong, R. Xia et al., Efficient large area organic solar cells processed by blade-coating with single-component green solvent. Sol. RRL 2(1), 1700169 (2018). https://doi.org/10.1002/solr.201700169
- J.H. Yun, H. Ahn, P. Lee, M.J. Ko, H.J. Son, Development of highly crystalline donor–acceptor-type random polymers for high performance large-area organic solar cells. Macromolecules 50(19), 7567–7576 (2017). https://doi.org/10.1021/acs.macromol.7b01613
- S.H.K. Paleti, S. Hultmark, J. Han, Y. Wen, H. Xu et al., Hexanary blends: a strategy towards thermally stable organic photovoltaics. Nat. Commun. 14(1), 4608 (2023). https://doi.org/10.1038/s41467-023-39830-6
- I. Shin, H.J. Ahn, J.H. Yun, J.W. Jo, S. Park et al., High-performance and uniform 1 cm2 polymer solar cells with D1-A-D2-A-type random terpolymers. Adv. Energy Mater. 8(7), 1701405 (2018). https://doi.org/10.1002/aenm.201701405
- T. Zhang, G. Zeng, F. Ye, X. Zhao, X. Yang, Efficient non-fullerene organic photovoltaic modules incorporating As-cast and thickness-insensitive photoactive layers. Adv. Energy Mater. 8(25), 1801387 (2018). https://doi.org/10.1002/aenm.201801387
- Y. Cai, C. Xie, Q. Li, C. Liu, J. Gao et al., Improved molecular ordering in a ternary blend enables all-polymer solar cells over 18% efficiency. Adv. Mater. 35(8), e2208165 (2023). https://doi.org/10.1002/adma.202208165
- J. Yeop, K.H. Park, S. Rasool, H.M. Lee, S. Jeon et al., Thickness tolerance in large-area organic photovoltaics with fluorine-substituted regioregular conjugated polymer. ACS Appl. Mater. Interfaces 16(1), 704–711 (2024). https://doi.org/10.1021/acsami.3c14790
- L. Ma, S. Zhang, H. Yao, Y. Xu, J. Wang et al., High-efficiency nonfullerene organic solar cells enabled by 1000 nm thick active layers with a low trap-state density. ACS Appl. Mater. Interfaces 12(16), 18777–18784 (2020). https://doi.org/10.1021/acsami.0c05172
- L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), e2206269 (2022). https://doi.org/10.1002/adma.202206269
- Y. Li, Z. Jia, P. Huang, C. Gao, Y. Wang et al., Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules. Energy Environ. Sci. 18(1), 256–263 (2025). https://doi.org/10.1039/d4ee04378b
- W. Yang, W. Wang, Y. Wang, R. Sun, J. Guo et al., Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 5(5), 1209–1230 (2021). https://doi.org/10.1016/j.joule.2021.03.014
- M. Xiao, C. Wang, Y. Xu, W. Zhang, Z. Fu et al., Enhance photo-stability of up-scalable organic solar cells: suppressing radical generation in polymer donors. Adv. Mater. 37(5), e2412746 (2025). https://doi.org/10.1002/adma.202412746
- K. Zhang, X. Xu, J. Qiao, Y. Xu, W. Zhang et al., Donoracceptor interfacial dipole polarization for efficient and stable thick-film organic photovoltaics. Nano Energy 134, 110546 (2025). https://doi.org/10.1016/j.nanoen.2024.110546
- S. Oh, S. Badgujar, D.H. Kim, W.-E. Lee, N. Khan et al., A thermally and mechanically stable solar cell made of a small-molecule donor and a polymer acceptor. J. Mater. Chem. A 5(30), 15923–15931 (2017). https://doi.org/10.1039/c7ta04445c
- R. Sun, X. Yuan, X. Yang, Y. Wu, Y. Shao et al., Cost-efficient recycling of organic photovoltaic devices. Joule 8(9), 2523–2538 (2024). https://doi.org/10.1016/j.joule.2024.06.006
- J. Kalowekamo, E. Baker, Estimating the manufacturing cost of purely organic solar cells. Sol. Energy 83(8), 1224–1231 (2009). https://doi.org/10.1016/j.solener.2009.02.003
- C.J. Brabec, Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
- J.J. Rech, J. Neu, Y. Qin, S. Samson, J. Shanahan et al., Designing simple conjugated polymers for scalable and efficient organic solar cells. Chemsuschem 14(17), 3561–3568 (2021). https://doi.org/10.1002/cssc.202100910
- Z. Li, X. Zhang, X. Kong, J. Zhang, R. Sun et al., Ultrafast charge transfer and suppressed non-radiative energy loss enabled by trifluoromethyl-substituted low-cost polymer donors for efficient organic solar cells. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-024-2563-0
- L. Zhang, Y. Chang, X. Zhu, C. Yang, Y. Shi et al., Electron-deficient TVT unit-based D-A polymer donor for high-efficiency thick-film OSCs. Nanotechnology 33(6), 065401 (2021). https://doi.org/10.1088/1361-6528/ac335a
- N. Yang, S. Zhang, Y. Cui, J. Wang, S. Cheng et al., Molecular design for low-cost organic photovoltaic materials. Nat. Rev. Mater. 10(6), 404–424 (2025). https://doi.org/10.1038/s41578-025-00792-4
- H. Wang, J. Feng, Z. Dong, L. Jin, M. Li et al., Efficient screening framework for organic solar cells with deep learning and ensemble learning. NPJ Comput. Mater. 9, 200 (2023). https://doi.org/10.1038/s41524-023-01155-9
- Ding Z, Zhang T, Li Y, Shi J, Zhang C, RingFormer: a ring-enhanced graph transformer for organic solar cell property prediction. arXiv preprint arXiv:2305.12345. https://doi.org/10.48550/arXiv.2412.09030
- X. Rodríguez-Martínez, C. Tormann, M. Sanz-Lleó, B. Dörling, M. Gibert-Roca et al., What makes thickness-tolerant organic solar cells. Adv. Mater. 35, 2210146 (2023). https://doi.org/10.1002/adma.202210146
References
J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu, J. Wang, L. Ai, W. Song, K.N. Hui, X. Fan, Y. Li, Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency. Nano-micro letters 13, 1–14 (2021). https://doi.org/10.1007/s40820-020-00566-3
S. Li, Z. Li, X. Wan, Y. Chen, Recent progress in flexible organic solar cells. Escience 3(1), 100085 (2023). https://doi.org/10.1016/j.esci.2022.10.010
Y. Li, G. Xu, C. Cui, Y. Li, Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8(7), 1701791 (2018). https://doi.org/10.1002/aenm.201701791
X. Meng, L. Zhang, Y. Xie, X. Hu, Z. Xing et al., A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 31(41), e1903649 (2019). https://doi.org/10.1002/adma.201903649
Q. Chen, Y.H. Han, L.R. Franco, C.F.N. Marchiori, Z. Genene et al., Effects of flexible conjugation-break spacers of non-conjugated polymer acceptors on photovoltaic and mechanical properties of all-polymer solar cells. Nano-Micro Lett 14(1), 164 (2022). https://doi.org/10.1007/s40820-022-00884-8
J. Wang, C. Han, J. Han, F. Bi, X. Sun et al., Synergetic strategy for highly efficient and super flexible thick-film organic solar cells. Adv. Energy Mater. 12(31), 2201614 (2022). https://doi.org/10.1002/aenm.202201614
W. Huang, Z. Jiang, K. Fukuda, X. Jiao, C.R. McNeill et al., Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors. Joule 4(1), 128–141 (2020). https://doi.org/10.1016/j.joule.2019.10.007
K.W. Seo, J. Lee, J. Jo, C. Cho, J.Y. Lee, Highly efficient (>10%) flexible organic solar cells on PEDOT-free and ITO-free transparent electrodes. Adv. Mater. 31(36), e1902447 (2019). https://doi.org/10.1002/adma.201902447
W. Song, Q. Ye, S. Yang, L. Xie, Y. Meng et al., Ultra robust and highly efficient flexible organic solar cells with over 18% efficiency realized by incorporating a linker dimerized acceptor. Angew. Chem. Int. Ed. 62(41), e202310034 (2023). https://doi.org/10.1002/anie.202310034
X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), e1908478 (2020). https://doi.org/10.1002/adma.201908478
W. Song, X. Fan, B. Xu, F. Yan, H. Cui et al., All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 30(26), e1800075 (2018). https://doi.org/10.1002/adma.201800075
Y.-F. Shen, H. Zhang, J. Zhang, C. Tian, Y. Shi et al., In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater. 35(10), e2209030 (2023). https://doi.org/10.1002/adma.202209030
J. Zhang, H. Mao, K. Zhou, L. Zhang, D. Luo et al., Polymer-entangled spontaneous pseudo-planar heterojunction for constructing efficient flexible organic solar cells. Adv. Mater. 36(7), e2309379 (2024). https://doi.org/10.1002/adma.202309379
K.A. Nirmal, T.D. Dongale, A.C. Khot, C. Yao, N. Kim et al., Ultra-transparent and multifunctional IZVO mesh electrodes for next-generation flexible optoelectronics. Nano-Micro Lett 17(1), 12 (2024). https://doi.org/10.1007/s40820-024-01525-y
G. Pacchioni, Hydrogen bonding makes organic solar cells stretchy. Nat. Rev. Mater. 7(11), 846 (2022). https://doi.org/10.1038/s41578-022-00499-w
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
H. Yao, J. Hou, Recent advances in single-junction organic solar cells. Angew. Chem. Int. Ed. 61(37), e202209021 (2022). https://doi.org/10.1002/anie.202209021
Y. Xie, Y. Cai, L. Zhu, R. Xia, L. Ye et al., Fibril network strategy enables high-performance semitransparent organic solar cells. Adv. Funct. Mater. 30(28), 2002181 (2020). https://doi.org/10.1002/adfm.202002181
S. Sun, W. Zha, C. Tian, Z. Wei, Q. Luo et al., Solution processed semi-transparent organic solar cells over 50% visible transmittance enabled by silver nanowire electrode with sandwich structure. Adv. Mater. 35(46), e2305092 (2023). https://doi.org/10.1002/adma.202305092
T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: present challenges and future development. Nano-Micro Lett. 17(1), 49 (2024). https://doi.org/10.1007/s40820-024-01547-6
D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan et al., High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 5(4), 945–957 (2021). https://doi.org/10.1016/j.joule.2021.02.010
R. Xia, C.J. Brabec, H.-L. Yip, Y. Cao, High-throughput optical screening for efficient semitransparent organic solar cells. Joule 3(9), 2241–2254 (2019). https://doi.org/10.1016/j.joule.2019.06.016
P. Yin, Z. Yin, Y. Ma, Q. Zheng, Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy Environ. Sci. 13(12), 5177–5185 (2020). https://doi.org/10.1039/d0ee03378b
X. Duan, C. Liu, Y. Cai, L. Ye, J. Xue et al., Longitudinal through-hole architecture for efficient and thickness-insensitive semitransparent organic solar cells. Adv. Mater. 35(32), e2302927 (2023). https://doi.org/10.1002/adma.202302927
D. Wang, R. Qin, G. Zhou, X. Li, R. Xia et al., High-performance semitransparent organic solar cells with excellent infrared reflection and see-through functions. Adv. Mater. 32(32), e2001621 (2020). https://doi.org/10.1002/adma.202001621
Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang et al., Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. Adv. Mater. 29(43), 1703080 (2017). https://doi.org/10.1002/adma.201703080
X. Huang, Y. Cheng, Y. Fang, L. Zhang, X. Hu et al., A molecular weight-regulated sequential deposition strategy enabling semitransparent organic solar cells with the light utilization efficiency of over 5%. Energy Environ. Sci. 15(11), 4776–4788 (2022). https://doi.org/10.1039/d2ee02392j
X. Huang, X. Ren, Y. Cheng, Y. Zhang, Z. Sun et al., Collaborative regulation strategy of donor and acceptor analogues realizes multifunctional semitransparent organic solar cells with excellent comprehensive performance. Energy Environ. Sci. 17(8), 2825–2836 (2024). https://doi.org/10.1039/d3ee04476a
Z. Wu, B. Shi, J. Yu, M. Sha, J. Sun et al., Human-friendly semitransparent organic solar cells achieving high performance. Energy Environ. Sci. 17(16), 6013 (2024). https://doi.org/10.1039/D4EE01659A
L. Xiao, Y. Li, H. Zhang, G. Huang, Q. Cheng et al., Semitransparent organic solar cells with homogeneous transmission and colorful reflection enabled by an ITO-free microcavity architecture. Adv. Mater. 36(22), e2303844 (2024). https://doi.org/10.1002/adma.202303844
Z. Li, Y. Xiang, J. Li, L. Feng, M. Zhang et al., Solution-processing induced H-aggregate of perylene-diimide zwitterion exhibiting compact molecular stacking toward efficient cathode modification in organic solar cells. Angew. Chem. Int. Ed. 64(2), e202413986 (2025). https://doi.org/10.1002/anie.202413986
M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan et al., Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11(2), 85–90 (2017). https://doi.org/10.1038/nphoton.2016.240
L. Sun, W. Zeng, C. Xie, L. Hu, X. Dong et al., Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers. Adv. Mater. 32(14), e1907840 (2020). https://doi.org/10.1002/adma.201907840
X. Du, O. Lytken, M.S. Killian, J. Cao, T. Stubhan et al., Overcoming interfacial losses in solution-processed organic multi-junction solar cells. Adv. Energy Mater. 7(5), 1601959 (2017). https://doi.org/10.1002/aenm.201601959
Y. Zhang, A. Chen, M.W. Kim, A. Alaei, S.S. Lee, Nanoconfining solution-processed organic semiconductors for emerging optoelectronics. Chem. Soc. Rev. 50(17), 9375–9390 (2021). https://doi.org/10.1039/d1cs00430a
P. Meredith, A. Armin, Scaling of next generation solution processed organic and perovskite solar cells. Nat. Commun. 9(1), 5261 (2018). https://doi.org/10.1038/s41467-018-05514-9
R. Ma, Z. Luo, Y. Zhang, L. Zhan, T. Jia et al., Organic solar cells: beyond 20%. J. Sci. China Mater. 68, 1689–1701 (2025). https://doi.org/10.1007/s40843-025-3366-9
H. Tian, K. Sun, D. Luo, Y. Wang, Z. Chen et al., Enhancing molecular stacking and fiber morphology of biaxially conjugated acceptors via cyano substitution to achieve 19.71% efficiency in binary organic solar cells. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-025-2671-6
L. Zhang, S. Yang, B. Ning, F. Yang, W. Deng et al., Modulation of vertical component distribution for large-area thick-film organic solar cells. Sol. RRL 6(1), 2100838 (2022). https://doi.org/10.1002/solr.202100838
J. Zhang, Y. Zhao, J. Fang, L. Yuan, B. Xia et al., Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small 13(21), 201700388 (2017). https://doi.org/10.1002/smll.201700388
X. Zhu, B. Xia, K. Lu, H. Li, R. Zhou et al., Naphtho [1, 2-b: 5, 6-b’] dithiophene-based small molecules for thick-film organic solar cells with high fill factors. Chem. Mater. 28(3), 943–950 (2016). https://doi.org/10.1021/acs.chemmater.5b04668
M. Riede, D. Spoltore, K. Leo, Organic solar cells: the path to commercial success. Adv. Energy Mater. 11(1), 2002653 (2021). https://doi.org/10.1002/aenm.202002653
F. Yang, Y. Huang, Y. Li, Y. Li, Large-area flexible organic solar cells. NPJ Flex. Electron. 5, 30 (2021). https://doi.org/10.1038/s41528-021-00128-6
A. Guerrero, G. Garcia-Belmonte, Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett 9(1), 10 (2017). https://doi.org/10.1007/s40820-016-0107-3
W. Xue, Z. Liang, Y. Tang, C. Zhao, L. Yan et al., Solid solvation assisted electrical doping conserves high-performance in 500 nm active layer organic solar cells. Adv. Funct. Mater. 33(42), 2304960 (2023). https://doi.org/10.1002/adfm.202304960
J. Wang, Y. Xie, K. Chen, H. Wu, J.M. Hodgkiss et al., Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 6(6), 365–381 (2024). https://doi.org/10.1038/s42254-024-00719-y
P. Bi, J. Wang, Y. Cui, J. Zhang, T. Zhang et al., Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35(16), e2210865 (2023). https://doi.org/10.1002/adma.202210865
R. Basu, F. Gumpert, J. Lohbreier, P.-O. Morin, V. Vohra et al., Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule 8(4), 970–978 (2024). https://doi.org/10.1016/j.joule.2024.02.016
J. Qin, L. Zhang, Z. Xiao, S. Chen, K. Sun et al., Over 16% efficiency from thick-film organic solar cells. Sci. Bull. Beijing 65(23), 1979–1982 (2020). https://doi.org/10.1016/j.scib.2020.08.027
A.K.Y. Jen, Realizing high-performance ternary organic solar cell with thick active layer via incorporating a liquid crystalline small molecule as a third component. Sci. China Chem. 60(4), 435–436 (2017). https://doi.org/10.1007/s11426-017-9015-8
L. Yang, J. Qin, S. Li, J. Zhang, Y. Yang et al., Optimized charge transport channel enables thick-film all-small-molecule organic solar cells. Energy Fuels 35(23), 19756–19764 (2021). https://doi.org/10.1021/acs.energyfuels.1c03579
K. Wang, X. Song, X. Guo, Y. Wang, X. Lai et al., Efficient as-cast thick film small-molecule organic solar cell with less fluorination on the donor. Mater. Chem. Front. 4(1), 206–212 (2020). https://doi.org/10.1039/c9qm00605b
L. Ma, S. Zhang, J. Wang, Y. Xu, J. Hou, Recent advances in non-fullerene organic solar cells: from lab to fab. Chem Commun Camb 56(92), 14337–14352 (2020). https://doi.org/10.1039/d0cc05528j
J. Lee, D.H. Sin, B. Moon, J. Shin, H.G. Kim et al., Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10(1), 247–257 (2017). https://doi.org/10.1039/c6ee02466a
J. Yu, X. Liu, H. Wang, P.-C. Lin, C.-C. Chueh et al., Efficient thick film non-fullerene organic solar cells enabled by using a strong temperature-dependent aggregative wide bandgap polymer. Chem. Eng. J. 405, 127033 (2021). https://doi.org/10.1016/j.cej.2020.127033
R.R. Attab, A.H. Fllayh, High performance and efficiency enhancement for organic solar cell: layers thickness optimization. IOP Conf. Ser. Mater. Sci. Eng. 928(7), 072025 (2020). https://doi.org/10.1088/1757-899x/928/7/072025
C.H.Y. Ho, Y. Pei, Y. Qin, C. Zhang, Z. Peng et al., Importance of electric-field-independent mobilities in thick-film organic solar cells. ACS Appl. Mater. Interfaces 14(42), 47961–47970 (2022). https://doi.org/10.1021/acsami.2c11265
Y. Jin, Z. Chen, M. Xiao, J. Peng, B. Fan et al., Thick film polymer solar cells based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 7(22), 1700944 (2017). https://doi.org/10.1002/aenm.201700944
T. Gokulnath, S.S. Reddy, H.-Y. Park, J. Kim, J. Kim et al., Nonhalogenated solvent-processed thick-film ternary nonfullerene organic solar cells with power conversion efficiency >13% enabled by a new wide-bandgap polymer. Sol. RRL 5(3), 2000787 (2021). https://doi.org/10.1002/solr.202000787
S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini et al., Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50(21), 11870–11965 (2021). https://doi.org/10.1039/d1cs00106j
P. Hartnagel, S. Ravishankar, B. Klingebiel, O. Thimm, T. Kirchartz, Comparing methods of characterizing energetic disorder in organic solar cells. Adv. Energy Mater. 13(15), 2300329 (2023). https://doi.org/10.1002/aenm.202300329
N. Gasparini, L. Lucera, M. Salvador, M. Prosa, G.D. Spyropoulos et al., High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10(4), 885–892 (2017). https://doi.org/10.1039/c6ee03599j
C. Göhler, A. Wagenpfahl, C. Deibel, Nongeminate recombination in organic solar cells. Adv. Electron. Mater. 4(10), 1700505 (2018). https://doi.org/10.1002/aelm.201700505
J.D. Major, L.J. Phillips, M. Al Turkestani, L. Bowen, T.J. Whittles et al., P3HT as a pinhole blocking back contact for CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 172, 1–10 (2017). https://doi.org/10.1016/j.solmat.2017.07.005
S. Xu, Y. Zhang, Y. Sun, P. Cheng, Z. Yao et al., An unprecedented efficiency with approaching 21% enabled by additive-assisted layer-by-layer processing in organic solar cells. Nano-Micro Lett. 17(1), 37 (2024). https://doi.org/10.1007/s40820-024-01529-8
B. Zou, W. Wu, T.A. Dela Peña, R. Ma, Y. Luo et al., Step-by-step modulation of crystalline features and exciton kinetics for 19.2% efficiency ortho-xylene processed organic solar cells. Nano-Micro Lett. 16(1), 30 (2023). https://doi.org/10.1007/s40820-023-01241-z
P.R. Somani, S.P. Somani, M. Umeno, Toward organic thick film solar cells: Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods. Appl. Phys. Lett. 91(17), 173503 (2007). https://doi.org/10.1063/1.2801624
Y. Zhang, K. Liu, J. Huang, X. Xia, J. Cao et al., Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 12(1), 4815 (2021). https://doi.org/10.1038/s41467-021-25148-8
H. Wang, Z. Zhang, J. Yu, X. Liu, W. Tang, High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chem. Eng. J. 418, 129539 (2021). https://doi.org/10.1016/j.cej.2021.129539
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip et al., Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4), 1140–1151 (2019). https://doi.org/10.1016/j.joule.2019.01.004
J. Wang, N. Yao, D. Zhang, Z. Zheng, H. Zhou et al., Fast field-insensitive charge extraction enables high fill factors in polymer solar cells. ACS Appl. Mater. Interfaces 12(34), 38460–38469 (2020). https://doi.org/10.1021/acsami.0c09123
D. Bartesaghi, C. Pérez Idel, J. Kniepert, S. Roland, M. Turbiez et al., Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6, 7083 (2015). https://doi.org/10.1038/ncomms8083
X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice et al., Polymer solar cells with enhanced fill factors. Nat. Photonics 7(10), 825–833 (2013). https://doi.org/10.1038/nphoton.2013.207
K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells. Chem. Soc. Rev. 45(10), 2937–2975 (2016). https://doi.org/10.1039/c5cs00831j
X. Zhang, P. Fan, Z. Wang, D. Zheng, J. Yu, Morphology regulation by upside-down thermal annealing based on blend thick-film organic solar cells. J. Phys. Chem. C 125(28), 15194–15199 (2021). https://doi.org/10.1021/acs.jpcc.1c03994
C. Liu, L. Shao, S. Chen, Z. Hu, H. Cai et al., Recent progress in π-conjugated polymers for organic photovoltaics: solar cells and photodetectors. Prog. Polym. Sci. 143, 101711 (2023). https://doi.org/10.1016/j.progpolymsci.2023.101711
P. Bi, X. Hao, Versatile ternary approach for novel organic solar cells: a review. Sol. RRL 3(1), 1800263 (2019). https://doi.org/10.1002/solr.201800263
W. Li, S. Zeiske, O.J. Sandberg, D.B. Riley, P. Meredith et al., Organic solar cells with near-unity charge generation yield. Energy Environ. Sci. 14(12), 6484–6493 (2021). https://doi.org/10.1039/d1ee01367j
T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich et al., Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells. J. Appl. Phys. 103(8), 084506 (2008). https://doi.org/10.1063/1.2902804
M. Katayama, T. Kaji, S. Nakao, M. Hiramoto, Ultra-thick organic pigment layer up to 10 μm activated by crystallization in organic photovoltaic cells. Front. Energy Res. 8, 4 (2020). https://doi.org/10.3389/fenrg.2020.00004
A. Armin, A. Yazmaciyan, M. Hambsch, J. Li, P.L. Burn et al., Electro-optics of conventional and inverted thick junction organic solar cells. ACS Photonics 2(12), 1745–1754 (2015). https://doi.org/10.1021/acsphotonics.5b00441
A.A. Mohapatra, V. Kim, B. Puttaraju, A. Sadhanala, X. Jiao et al., Förster resonance energy transfer drives higher efficiency in ternary blend organic solar cells. ACS Appl. Energy Mater. 1(9), 4874–4882 (2018). https://doi.org/10.1021/acsaem.8b00896
G. Oklem, X. Song, L. Toppare, D. Baran, G. Gunbas, A new NIR absorbing DPP-based polymer for thick organic solar cells. J. Mater. Chem. C 6(12), 2957–2961 (2018). https://doi.org/10.1039/c8tc00113h
N. Camaioni, C. Carbonera, L. Ciammaruchi, G. Corso, J. Mwaura et al., Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta-analysis. Adv. Mater. 35(8), e2210146 (2023). https://doi.org/10.1002/adma.202210146
X. Yi, Z. Liu, M. Zhao, M. Huang, J. Wu et al., Additive-assisted molecular aggregation manipulation towards efficient thick organic solar cells. J. Mater. Chem. C 12(42), 17078–17088 (2024). https://doi.org/10.1039/d4tc03060e
Y. Zhang, M.T. Sajjad, O. Blaszczyk, A.J. Parnell, A. Ruseckas et al., Large crystalline domains and an enhanced exciton diffusion length enable efficient organic solar cells. Chem. Mater. 31(17), 6548–6557 (2019). https://doi.org/10.1021/acs.chemmater.8b05293
B. Siegmund, M.T. Sajjad, J. Widmer, D. Ray, C. Koerner et al., Exciton diffusion length and charge extraction yield in organic bilayer solar cells. Adv. Mater. 29(12), 1604424 (2017). https://doi.org/10.1002/adma.201604424
W. Zou, Y. Sun, L. Sun, X. Wang, C. Gao et al., Extending exciton diffusion length via an organic-metal platinum complex additive for high-performance thick-film organic solar cells. Adv. Mater. 37(8), e2413125 (2025). https://doi.org/10.1002/adma.202413125
D.B. Riley, P. Meredith, A. Armin, O.J. Sandberg, Role of exciton diffusion and lifetime in organic solar cells with a low energy offset. J. Phys. Chem. Lett. 13(20), 4402–4409 (2022). https://doi.org/10.1021/acs.jpclett.2c00791
N. Tokmoldin, S.M. Hosseini, M. Raoufi, L.Q. Phuong, O.J. Sandberg et al., Extraordinarily long diffusion length in PM6: Y6 organic solar cells. J. Mater. Chem. A 8(16), 7854–7860 (2020). https://doi.org/10.1039/d0ta03016c
S. Feng, C.-E. Zhang, Z. Bi, Y. Liu, P. Jiang et al., Controlling molecular packing and orientation via constructing a ladder-type electron acceptor with asymmetric substituents for thick-film nonfullerene solar cells. ACS Appl. Mater. Interfaces 11(3), 3098–3106 (2019). https://doi.org/10.1021/acsami.8b19596
Y. Cai, Q. Li, G. Lu, H.S. Ryu, Y. Li et al., Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13(1), 2369 (2022). https://doi.org/10.1038/s41467-022-29803-6
D. Luo, Z. Jiang, W.L. Tan, L. Zhang, L. Li et al., Non-fused ring acceptors achieving over 15.6% efficiency organic solar cell by long exciton diffusion length of alloy-like phase and vertical phase separation induced by hole transport layer. Adv. Energy Mater. 13(6), 2203402 (2023). https://doi.org/10.1002/aenm.202203402
L. Li, Y. Wang, Z. Suo, W. Feng, W. Zhao et al., Efficient organic solar cells fabricated with a high-boiling solvent via morphology modulation using a small molecule guest donor. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202505192
Z. Fu, J.W. Qiao, F.Z. Cui, W.Q. Zhang, L.H. Wang et al., π-π stacking modulation via polymer adsorption for elongated exciton diffusion in high-efficiency thick-film organic solar cells. Adv. Mater. 36(21), e2313532 (2024). https://doi.org/10.1002/adma.202313532
F. Sun, X. Zheng, T. Hu, J. Wu, M. Wan et al., 1, 5-Diiodocycloctane: a cyclane solvent additive that can extend the exciton diffusion length in thick film organic solar cells. Energy Environ. Sci. 17(5), 1916–1930 (2024). https://doi.org/10.1039/d3ee04281b
L. Zhang, B. Lin, Z. Ke, J. Chen, W. Li et al., A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Nano Energy 41, 609–617 (2017). https://doi.org/10.1016/j.nanoen.2017.10.014
W. Liu, J. Chen, X. Tang, Z. Wei, G. Lu et al., Blended solvent for tuning vertical phase separation in layer-by-layer processed thick-film organic solar cells. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-024-2467-8
Y. Chang, X. Zhu, K. Lu, Z. Wei, Progress and prospects of thick-film organic solar cells. J. Mater. Chem. A 9(6), 3125–3150 (2021). https://doi.org/10.1039/d0ta10594e
D. Zhang, B. Fan, L. Ying, N. Li, C.J. Brabec et al., Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 1(1), 4–23 (2021). https://doi.org/10.1002/sus2.10
Z. Liu, T. Li, Y. Lin, Thick active-layer organic solar cells. Chin. J. Chem. 41(24), 3739–3750 (2023). https://doi.org/10.1002/cjoc.202300402
C. Duan, F. Huang, Y. Cao, Solution processed thick film organic solar cells. Polym. Chem. 6(47), 8081–8098 (2015). https://doi.org/10.1039/c5py01340b
J. Gao, J. Wang, C. Xu, Z. Hu, X. Ma et al., A critical review on efficient thick-film organic solar cells. Sol. RRL 4(11), 2000364 (2020). https://doi.org/10.1002/solr.202000364
M. Nyman, O.J. Sandberg, W. Li, S. Zeiske, R. Kerremans et al., Requirements for making thick junctions of organic solar cells based on nonfullerene acceptors. Sol. RRL 5(5), 2100018 (2021). https://doi.org/10.1002/solr.202100018
X. Fu, H. Xu, D. Zhou, X. Cheng, L. Huang et al., Ternary thick active layer for efficient organic solar cells. J. Mater. Sci. 53(11), 8398–8408 (2018). https://doi.org/10.1007/s10853-018-2130-x
Y. Ye, J. Zhu, Y. Huang, Diverse C-P cross-couplings of arylsulfonium salts with diarylphosphines via selective C-S bond cleavage. Org. Lett. 23(6), 2386–2391 (2021). https://doi.org/10.1021/acs.orglett.1c00748
T. Wang, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, L. Feng et al., Effective exciton dissociation and reduced charge recombination in thick-film organic solar cells via incorporation of insulating polypropylene. Sol. RRL 3(8), 1900087 (2019). https://doi.org/10.1002/solr.201900087
H. Wu, H. Lu, Y. Li, X. Zhou, G. Zhou et al., Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells. Nat. Commun. 15(1), 2693 (2024). https://doi.org/10.1038/s41467-024-46797-5
L. Zhu, Y. Yi, Z. Wei, Exciton binding energies of nonfullerene small molecule acceptors: implication for exciton dissociation driving forces in organic solar cells. J. Phys. Chem. C 122(39), 22309–22316 (2018). https://doi.org/10.1021/acs.jpcc.8b07197
K. Weng, L. Ye, C. Li, Z. Shen, J. Xu et al., High-efficiency organic solar cells with wide toleration of active layer thickness. Sol. RRL 4(10), 2000476 (2020). https://doi.org/10.1002/solr.202000476
T. Dai, J. Lu, A. Tang, Y. Meng, P. Cong et al., Reduced exciton binding energy and diverse molecular stacking enable high-performance organic solar cells with VOC over 1.1 V. Sci. China Chem. 67(9), 3140–3152 (2024). https://doi.org/10.1007/s11426-024-2060-9
Y. Wei, X. Zhou, Y. Cai, Y. Li, S. Wang et al., High performance as-cast organic solar cells enabled by a refined double-fibril network morphology and improved dielectric constant of active layer. Adv. Mater. 36(28), e2403294 (2024). https://doi.org/10.1002/adma.202403294
W. Jiang, H. Jin, M. Babazadeh, A.S. Loch, A. Raynor et al., Dielectric constant engineering of organic semiconductors: effect of planarity and conjugation length. Adv. Funct. Mater. 32(3), 2104259 (2022). https://doi.org/10.1002/adfm.202104259
J. Zhou, X. Zhou, H. Jia, L. Tu, S. Wu et al., 20.0% efficiency of ternary organic solar cells enabled by a novel wide band gap polymer guest donor. Energy Environ. Sci. 18(7), 3341–3351 (2025). https://doi.org/10.1039/d4ee05848h
H. Zhang, Y. Liu, G. Ran, H. Li, W. Zhang et al., Sequentially processed bulk-heterojunction-buried structure for efficient organic solar cells with 500 nm thickness. Adv. Mater. 36(25), e2400521 (2024). https://doi.org/10.1002/adma.202400521
H. Tian, W. Xu, Z. Liu, Y. Xie, W. Zhang et al., Over 18 8% efficiency of layer-by-layer organic photovoltaics enabled by ameliorating exciton utilization in acceptor layer. Adv. Funct. Mater. 34(16), 2313751 (2024). https://doi.org/10.1002/adfm.202313751
G. Zhang, R. Xia, Z. Chen, J. Xiao, X. Zhao et al., Overcoming space-charge effect for efficient thick-film non-fullerene organic solar cells. Adv. Energy Mater. 8(25), 1801609 (2018). https://doi.org/10.1002/aenm.201801609
L. Ma, Y. Xu, Y. Zu, Q. Liao, B. Xu et al., A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem. 63(1), 21–27 (2020). https://doi.org/10.1007/s11426-019-9556-7
T. Wang, M.S. Niu, Z.C. Wen, Z.N. Jiang, C.C. Qin et al., High-efficiency thickness-insensitive organic solar cells with an insulating polymer. ACS Appl. Mater. Interfaces 13(9), 11134–11143 (2021). https://doi.org/10.1021/acsami.0c22452
D. Jiang, J. Sun, R. Ma, V.K. Wong, J. Yuan et al., Extracting charge carrier mobility in organic solar cells through space-charge-limited current measurements. Mater. Sci. Eng. R. Rep. 157, 100772 (2024). https://doi.org/10.1016/j.mser.2024.100772
D. Chi, S. Huang, S. Yue, K. Liu, S. Lu et al., Ultra-thin ZnO film as an electron transport layer for realizing the high efficiency of organic solar cells. RSC Adv. 7(24), 14694–14700 (2017). https://doi.org/10.1039/c6ra27543e
J.A. Bartelt, D. Lam, T.M. Burke, S.M. Sweetnam, M.D. McGehee, Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater. 5(15), 1500577 (2015). https://doi.org/10.1002/aenm.201500577
Y. Tang, H. Zheng, X. Zhou, Z. Tang, W. Ma et al., N-dopants optimize the utilization of spontaneously formed photocharges in organic solar cells. Energy Environ. Sci. 16(2), 653–662 (2023). https://doi.org/10.1039/d2ee03612f
B. Zhao, X. Huang, S. Chung, M. Zhang, Y. Zhong et al., Hole-selective-molecule doping improves the layer thickness tolerance of PEDOT: PSS for efficient organic solar cells. EScience 5(1), 100305 (2025). https://doi.org/10.1016/j.esci.2024.100305
J. Jing, S. Dong, K. Zhang, Z. Zhou, J. Zhang et al., Self-organized anode interlayer enables PEDOT: PSS-free structure for thick-film organic solar cells over 16% efficiency. Sol. RRL 6(12), 2200682 (2022). https://doi.org/10.1002/solr.202200682
M. Cui, Y. Li, N. Li, X. Hao, Y. Zhang et al., Combining ZnO and organosilica nanodots as a thick cathode interlayer for highly efficient and stable inverted polymer solar cells. ACS Appl. Energy Mater. 6(7), 3915–3923 (2023). https://doi.org/10.1021/acsaem.3c00068
T. Zhang, X. Zhao, D. Yang, Y. Tian, X. Yang, Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8(4), 1701691 (2018). https://doi.org/10.1002/aenm.201701691
Y. Fu, L. Wang, C. Guo, D. Li, J. Cai et al., Side chain length and interaction mediated charge transport networks of non-fullerene acceptors for efficient organic solar cells. ACS Mater. Lett. 4(10), 2009–2018 (2022). https://doi.org/10.1021/acsmaterialslett.2c00764
X. Zhang, J. Guo, F. Lu, H. Wu, T. Luan et al., Simple inverted annealing process to improve charge transport capability of organic photovoltaic devices with thick active layers. J. Phys. Chem. C 122(20), 10706–10713 (2018). https://doi.org/10.1021/acs.jpcc.8b01281
H. Feng, X. Song, Z. Zhang, R. Geng, J. Yu et al., Molecular orientation unified nonfullerene acceptor enabling 14% efficiency As-cast organic solar cells. Adv. Funct. Mater. 29(36), 1903269 (2019). https://doi.org/10.1002/adfm.201903269
J. Li, J. Liu, J. Zhang, J. Ma, Y. Hu et al., Efficient non-fullerene organic solar cells based on thickness-insensitive conjugated small molecule cathode interface. Sol. Energy 191, 219–226 (2019). https://doi.org/10.1016/j.solener.2019.08.009
T. Kirchartz, T. Agostinelli, M. Campoy-Quiles, W. Gong, J. Nelson, Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: the influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3(23), 3470–3475 (2012). https://doi.org/10.1021/jz301639y
S. Wilken, O.J. Sandberg, D. Scheunemann, R. Österbacka, Watching space charge build up in an organic solar cell. Sol. RRL 4(3), 1900505 (2020). https://doi.org/10.1002/solr.201900505
K.N. Schwarz, P.B. Geraghty, V.D. Mitchell, S.U. Khan, O.J. Sandberg et al., Reduced recombination and capacitor-like charge buildup in an organic heterojunction. J. Am. Chem. Soc. 142(5), 2562–2571 (2020). https://doi.org/10.1021/jacs.9b12526
T. Zhang, X. Zhao, D. Yang, Y. Tian, X. Yang, Ternary organic solar cells with >11% efficiency incorporating thick photoactive layer and nonfullerene small molecule acceptor. Adv. Energy Mater. 8(4), 1701691 (2017). https://doi.org/10.1002/solr.201900079
Z. Luo, C. Sun, S. Chen, Z.-G. Zhang, K. Wu et al., Side-chain impact on molecular orientation of organic semiconductor acceptors: high performance nonfullerene polymer solar cells with thick active layer over 400 nm. Adv. Energy Mater. 8(23), 1800856 (2018). https://doi.org/10.1002/aenm.201800856
Z. Wang, X. Liu, H. Jiang, X. Zhou, L. Zhang et al., Organic solar cells based on high hole mobility conjugated polymer and nonfullerene acceptor with comparable bandgaps and suitable energy level offsets showing significant suppression of jsc–voc trade-off. Sol. RRL 3(7), 1900079 (2019). https://doi.org/10.1002/solr.201900079
J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao et al., A difluorobenzoxadiazole building block for efficient polymer solar cells. Adv. Mater. 28(9), 1868–1873 (2016). https://doi.org/10.1002/adma.201504611
D. Mo, H. Wang, H. Chen, S. Qu, P. Chao et al., Chlorination of low-band-gap polymers: toward high-performance polymer solar cells. Chem. Mater. 29(7), 2819–2830 (2017). https://doi.org/10.1021/acs.chemmater.6b04828
P. Chen, S. Shi, H. Wang, F. Qiu, Y. Wang et al., Aggregation strength tuning in difluorobenzoxadiazole-based polymeric semiconductors for high-performance thick-film polymer solar cells. ACS Appl. Mater. Interfaces 10(25), 21481–21491 (2018). https://doi.org/10.1021/acsami.8b05231
X. Wang, Z. Zhang, L. Kong, M. Luo, M. Chen et al., Dithienoquinoxaline-quaterthiophene wide bandgap donor polymers with strong interchain aggregation for efficient organic solar cells processed with a non-halogenated solvent. J. Mater. Chem. A 12(10), 5731–5739 (2024). https://doi.org/10.1039/d3ta08020j
W. Gao, Q. An, M. Hao, R. Sun, J. Yuan et al., Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv. Funct. Mater. 30(10), 1908336 (2020). https://doi.org/10.1002/adfm.201908336
L. Zhan, S. Li, T.-K. Lau, Y. Cui, X. Lu et al., Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13(2), 635–645 (2020). https://doi.org/10.1039/c9ee03710a
Y. Li, L. Yu, L. Chen, C. Han, H. Jiang et al., Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics. Innovation 2(1), 100090 (2021). https://doi.org/10.1016/j.xinn.2021.100090
X. Yang, Y. Gao, L.-Y. Xu, X. Wu, X. Chen et al., Efficient and stable all-small-molecule solar cells enabled by incorporating a designed giant molecule acceptor. Energy Environ. Sci. 17(16), 5962–5971 (2024). https://doi.org/10.1039/d4ee01705f
C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue et al., A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9(1), 743 (2018). https://doi.org/10.1038/s41467-018-03207-x
W. Zhang, C. Sun, I. Angunawela, L. Meng, S. Qin et al., 16.52% efficiency all-polymer solar cells with high tolerance of the photoactive layer thickness. Adv. Mater. 34(20), e2108749 (2022). https://doi.org/10.1002/adma.202108749
J. Xiao, X. Jia, C. Duan, F. Huang, H.L. Yip et al., Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv. Mater. 33(25), e2008158 (2021). https://doi.org/10.1002/adma.202008158
W. Zou, C. Han, X. Zhang, J. Qiao, J. Yu et al., A bithiazole-substituted donor for high-efficiency thick ternary organic solar cells via regulation of crystallinity and miscibility. Adv. Energy Mater. 13(23), 2300784 (2023). https://doi.org/10.1002/aenm.202300784
X. Xie, R. Ma, Y. Luo, T.A. Dela Peña, P.W. Fong et al., Thickness insensitive organic solar cells with high figure-of-merit-X enabled by simultaneous D/a interpenetration and stratification. Adv. Energy Mater. 14(35), 2401355 (2024). https://doi.org/10.1002/aenm.202401355
Y. Wang, C. Zhao, Z. Cai, L. Wang, L. Zhu et al., All-polymer solar cells sequentially solution processed from hydrocarbon solvent with a thick active layer. Polymers 15(16), 3462 (2023). https://doi.org/10.3390/polym15163462
L. Wang, C. Chen, Y. Fu, C. Guo, D. Li et al., Donor–acceptor mutually diluted heterojunctions for layer-by-layer fabrication of high-performance organic solar cells. Nat. Energy 9(2), 208–218 (2024). https://doi.org/10.1038/s41560-023-01436-z
X. Du, X. Li, H. Lin, L. Zhou, C. Zheng et al., High performance opaque and semi-transparent organic solar cells with good tolerance to film thickness realized by a unique solid additive. J. Mater. Chem. A 7(13), 7437–7450 (2019). https://doi.org/10.1039/c9ta00164f
G. Ding, T. Chen, M. Wang, X. Xia, C. He et al., Solid additive-assisted layer-by-layer processing for 19% efficiency binary organic solar cells. Nano-Micro Lett 15(1), 92 (2023). https://doi.org/10.1007/s40820-023-01057-x
S. Chen, L. Hong, M. Dong, W. Deng, L. Shao et al., A polyfluoroalkyl-containing non-fullerene acceptor enables self-stratification in organic solar cells. Angew. Chem. Int. Ed. 62(1), e202213869 (2023). https://doi.org/10.1002/anie.202213869
C. Xie, X. Zeng, C. Li, X. Sun, S. Liang et al., Water-based layer-by-layer processing enables 19% efficient binary organic solar cells with minimized thickness sensitivity. Energy Environ. Sci. 17(7), 2441–2452 (2024). https://doi.org/10.1039/d4ee00068d
J. Fu, H. Chen, P. Huang, Q. Yu, H. Tang et al., Eutectic phase behavior induced by a simple additive contributes to efficient organic solar cells. Nano Energy 84, 105862 (2021). https://doi.org/10.1016/j.nanoen.2021.105862
L. Zhang, X. Guo, W. Deng, Y. He, B. Ning et al., Regulating pre-aggregation in non-halogenated solvent to enhance the efficiency of organic solar cells. Appl. Phys. Lett. 124(1), 013902 (2024). https://doi.org/10.1063/5.0184403
A.K. Dikshit, S. Maity, N. Mukherjee, P. Chakrabarti, Hybrid inorganic–organic inverted solar cells with ZnO/ZnMgO barrier layer and effective organic active layer for low leakage current, enhanced efficiency, and reliability. IEEE J. Photovolt. 11(4), 983–990 (2021). https://doi.org/10.1109/JPHOTOV.2021.3067828
K. Xian, K. Zhang, T. Zhang, K. Zhou, Z. Zhang et al., Simultaneously improving efficiency, stability and intrinsic stretchability of organic photovoltaic films via molecular toughening. Energy Environ. Sci. 18(5), 2570–2583 (2025). https://doi.org/10.1039/d4ee05893c
Q. Zhang, B. Kan, X. Wan, H. Zhang, F. Liu et al., Large active layer thickness toleration of high-efficiency small molecule solar cells. J. Mater. Chem. A 3(44), 22274–22279 (2015). https://doi.org/10.1039/c5ta06627a
C. Guo, Y. Fu, D. Li, L. Wang, B. Zhou et al., A polycrystalline polymer donor as pre-aggregate toward ordered molecular aggregation for 19.3% efficiency binary organic solar cells. Adv. Mater. 35(41), e2304921 (2023). https://doi.org/10.1002/adma.202304921
X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou et al., Film-formation dynamics coordinated by intermediate state engineering enables efficient thickness-insensitive organic solar cells. Energy Environ. Sci. 16(8), 3441–3452 (2023). https://doi.org/10.1039/d3ee01320k
O. Alqahtani, S.M. Hosseini, T. Ferron, V. Murcia, T. McAfee et al., Evidence that sharp interfaces suppress recombination in thick organic solar cells. ACS Appl. Mater. Interfaces 13(47), 56394–56403 (2021). https://doi.org/10.1021/acsami.1c15570
C.K. Lyu, F. Zheng, B.H. Babu, M.S. Niu, L. Feng et al., Functionalized graphene oxide enables a high-performance bulk heterojunction organic solar cell with a thick active layer. J. Phys. Chem. Lett. 9(21), 6238–6248 (2018). https://doi.org/10.1021/acs.jpclett.8b02701
A. Liang, Y. Sun, S. Chung, J. Shin, K. Sun et al., Dual-donor-induced crystallinity modulation enables 19.23% efficiency organic solar cells. Nano-Micro Lett. 17(1), 72 (2024). https://doi.org/10.1007/s40820-024-01576-1
L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88(5), 052104 (2006). https://doi.org/10.1063/1.2170424
L.J. Koster, M. Kemerink, M.M. Wienk, K. Maturová, R.A. Janssen, Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells. Adv. Mater. 23(14), 1670–1674 (2011). https://doi.org/10.1002/adma.201004311
W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835–842 (1952). https://doi.org/10.1103/physrev.87.835
T. Krebs, C. Göhler, M. Kemerink, Traps, tail states and their consequences on the open-circuit voltage in organic solar cells. Adv. Energy Mater. (2025). https://doi.org/10.1002/aenm.202405087
Y. Dou, S. Luo, P. Zhu, L. Zhu, G. Zhang et al., Distributions and evolution of trap states in non-fullerene organic solar cells. Joule 9(1), 101774 (2025). https://doi.org/10.1016/j.joule.2024.10.006
A.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke et al., Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 7(5), 4569–4577 (2013). https://doi.org/10.1021/nn401267s
W. Huang, M. Li, F. Lin, Y. Wu, Z. Ke et al., Rational design of conjugated side chains for high-performance all-polymer solar cells. Mol. Syst. Des. Eng. 3(1), 103–112 (2018). https://doi.org/10.1039/c7me00088j
C. Zhang, J. Li, W. Deng, J. Dai, J. Yu et al., 18 9% efficiency ternary organic solar cells enabled by isomerization engineering of chlorine-substitution on small molecule donors. Adv. Funct. Mater. 33(30), 2301108 (2023). https://doi.org/10.1002/adfm.202301108
X. Cheng, Z. Liang, S. Liang, X. Zhang, J. Xu et al., “Twisted” small molecule donors with enhanced intermolecular interactions in the condensed phase towards efficient and thick-film all-small-molecule organic solar cells. J. Mater. Chem. A 11(26), 13984–13993 (2023). https://doi.org/10.1039/d3ta01893h
S. Riera-Galindo, M. Sanz-Lleó, E. Gutiérrez-Fernández, N. Ramos, M. Mas-Torrent et al., High polymer molecular weight yields solar cells with simultaneously improved performance and thermal stability. Small 20(26), e2311735 (2024). https://doi.org/10.1002/smll.202311735
X. Chen, M. Chen, J. Liang, H. Liu, X. Xie et al., Polymer donor with a simple skeleton and minor siloxane decoration enables 19% efficiency of organic solar cells. Adv. Mater. 36(16), e2313074 (2024). https://doi.org/10.1002/adma.202313074
X. Lu, L. Cao, X. Du, H. Lin, C. Zheng et al., Hydrogen-bond-induced high performance semitransparent ternary organic solar cells with 14% efficiency and enhanced stability. Adv. Opt. Mater. 9(12), 2100064 (2021). https://doi.org/10.1002/adom.202100064
H. Yin, S.H. Cheung, J.H.L. Ngai, C.H.Y. Ho, K.L. Chiu et al., Thick-film high-performance bulk-heterojunction solar cells retaining 90% PCEs of the optimized thin film cells. Adv. Electron. Mater. 3(4), 1700007 (2017). https://doi.org/10.1002/aelm.201700007
S. Gao, Y. Zhang, S. Jeong, X. Zhou, H. Xu et al., Ameliorated trap density and energetic disorder via a strengthened intermolecular interaction strategy to construct efficient non-halogenated organic solar cells. Energy Environ. Sci. 17(15), 5542–5551 (2024). https://doi.org/10.1039/d4ee00291a
Z. Fu, J.W. Qiao, F.Z. Cui, R.H. Gui, P. Lu et al., Suppressing static and dynamic disorder for high-efficiency and stable thick-film organic solar cells via synergistic dilution strategy. Adv. Mater. 36(52), e2413317 (2024). https://doi.org/10.1002/adma.202413317
J. Wu, J. Luke, H.K.H. Lee, P. Shakya Tuladhar, H. Cha et al., Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nat. Commun. 10(1), 5159 (2019). https://doi.org/10.1038/s41467-019-12951-7
G. Wang, M.A. Adil, J. Zhang, Z. Wei, Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 31(45), e1805089 (2019). https://doi.org/10.1002/adma.201805089
H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
A. Armin, M. Hambsch, P. Wolfer, H. Jin, J. Li et al., Efficient, large arh ea, and thick junction polymer solar cells with balanced mobilities and low defect densities. Adv. Energy Mater. 5(3), 1401221 (2015). https://doi.org/10.1002/aenm.201401221
K. Zhang, Z. Chen, A. Armin, S. Dong, R. Xia et al., Efficient large area organic solar cells processed by blade-coating with single-component green solvent. Sol. RRL 2(1), 1700169 (2018). https://doi.org/10.1002/solr.201700169
J.H. Yun, H. Ahn, P. Lee, M.J. Ko, H.J. Son, Development of highly crystalline donor–acceptor-type random polymers for high performance large-area organic solar cells. Macromolecules 50(19), 7567–7576 (2017). https://doi.org/10.1021/acs.macromol.7b01613
S.H.K. Paleti, S. Hultmark, J. Han, Y. Wen, H. Xu et al., Hexanary blends: a strategy towards thermally stable organic photovoltaics. Nat. Commun. 14(1), 4608 (2023). https://doi.org/10.1038/s41467-023-39830-6
I. Shin, H.J. Ahn, J.H. Yun, J.W. Jo, S. Park et al., High-performance and uniform 1 cm2 polymer solar cells with D1-A-D2-A-type random terpolymers. Adv. Energy Mater. 8(7), 1701405 (2018). https://doi.org/10.1002/aenm.201701405
T. Zhang, G. Zeng, F. Ye, X. Zhao, X. Yang, Efficient non-fullerene organic photovoltaic modules incorporating As-cast and thickness-insensitive photoactive layers. Adv. Energy Mater. 8(25), 1801387 (2018). https://doi.org/10.1002/aenm.201801387
Y. Cai, C. Xie, Q. Li, C. Liu, J. Gao et al., Improved molecular ordering in a ternary blend enables all-polymer solar cells over 18% efficiency. Adv. Mater. 35(8), e2208165 (2023). https://doi.org/10.1002/adma.202208165
J. Yeop, K.H. Park, S. Rasool, H.M. Lee, S. Jeon et al., Thickness tolerance in large-area organic photovoltaics with fluorine-substituted regioregular conjugated polymer. ACS Appl. Mater. Interfaces 16(1), 704–711 (2024). https://doi.org/10.1021/acsami.3c14790
L. Ma, S. Zhang, H. Yao, Y. Xu, J. Wang et al., High-efficiency nonfullerene organic solar cells enabled by 1000 nm thick active layers with a low trap-state density. ACS Appl. Mater. Interfaces 12(16), 18777–18784 (2020). https://doi.org/10.1021/acsami.0c05172
L. Zhan, S. Yin, Y. Li, S. Li, T. Chen et al., Multiphase morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Adv. Mater. 34(45), e2206269 (2022). https://doi.org/10.1002/adma.202206269
Y. Li, Z. Jia, P. Huang, C. Gao, Y. Wang et al., Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules. Energy Environ. Sci. 18(1), 256–263 (2025). https://doi.org/10.1039/d4ee04378b
W. Yang, W. Wang, Y. Wang, R. Sun, J. Guo et al., Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 5(5), 1209–1230 (2021). https://doi.org/10.1016/j.joule.2021.03.014
M. Xiao, C. Wang, Y. Xu, W. Zhang, Z. Fu et al., Enhance photo-stability of up-scalable organic solar cells: suppressing radical generation in polymer donors. Adv. Mater. 37(5), e2412746 (2025). https://doi.org/10.1002/adma.202412746
K. Zhang, X. Xu, J. Qiao, Y. Xu, W. Zhang et al., Donoracceptor interfacial dipole polarization for efficient and stable thick-film organic photovoltaics. Nano Energy 134, 110546 (2025). https://doi.org/10.1016/j.nanoen.2024.110546
S. Oh, S. Badgujar, D.H. Kim, W.-E. Lee, N. Khan et al., A thermally and mechanically stable solar cell made of a small-molecule donor and a polymer acceptor. J. Mater. Chem. A 5(30), 15923–15931 (2017). https://doi.org/10.1039/c7ta04445c
R. Sun, X. Yuan, X. Yang, Y. Wu, Y. Shao et al., Cost-efficient recycling of organic photovoltaic devices. Joule 8(9), 2523–2538 (2024). https://doi.org/10.1016/j.joule.2024.06.006
J. Kalowekamo, E. Baker, Estimating the manufacturing cost of purely organic solar cells. Sol. Energy 83(8), 1224–1231 (2009). https://doi.org/10.1016/j.solener.2009.02.003
C.J. Brabec, Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells 83(2–3), 273–292 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
J.J. Rech, J. Neu, Y. Qin, S. Samson, J. Shanahan et al., Designing simple conjugated polymers for scalable and efficient organic solar cells. Chemsuschem 14(17), 3561–3568 (2021). https://doi.org/10.1002/cssc.202100910
Z. Li, X. Zhang, X. Kong, J. Zhang, R. Sun et al., Ultrafast charge transfer and suppressed non-radiative energy loss enabled by trifluoromethyl-substituted low-cost polymer donors for efficient organic solar cells. Sci. China Chem. (2025). https://doi.org/10.1007/s11426-024-2563-0
L. Zhang, Y. Chang, X. Zhu, C. Yang, Y. Shi et al., Electron-deficient TVT unit-based D-A polymer donor for high-efficiency thick-film OSCs. Nanotechnology 33(6), 065401 (2021). https://doi.org/10.1088/1361-6528/ac335a
N. Yang, S. Zhang, Y. Cui, J. Wang, S. Cheng et al., Molecular design for low-cost organic photovoltaic materials. Nat. Rev. Mater. 10(6), 404–424 (2025). https://doi.org/10.1038/s41578-025-00792-4
H. Wang, J. Feng, Z. Dong, L. Jin, M. Li et al., Efficient screening framework for organic solar cells with deep learning and ensemble learning. NPJ Comput. Mater. 9, 200 (2023). https://doi.org/10.1038/s41524-023-01155-9
Ding Z, Zhang T, Li Y, Shi J, Zhang C, RingFormer: a ring-enhanced graph transformer for organic solar cell property prediction. arXiv preprint arXiv:2305.12345. https://doi.org/10.48550/arXiv.2412.09030
X. Rodríguez-Martínez, C. Tormann, M. Sanz-Lleó, B. Dörling, M. Gibert-Roca et al., What makes thickness-tolerant organic solar cells. Adv. Mater. 35, 2210146 (2023). https://doi.org/10.1002/adma.202210146