Multifunctional MXene for Thermal Management in Perovskite Solar Cells
Corresponding Author: Chunyang Jia
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 18
Abstract
Perovskite solar cells (PSCs) have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency (PCE). However, heat accumulation under continuous illumination remains a critical bottleneck, severely affecting device stability and long-term operational performance. Herein, we present a multifunctional strategy by incorporating highly thermally conductive Ti3C2TX MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties. The Ti3C2TX nanosheets, embedded at perovskite grain boundaries, construct efficient thermal conduction pathways, significantly improving the thermal conductivity and diffusivity of the film. This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 °C under 100 mW cm−2 illumination, thereby alleviating heat-induced performance degradation. Beyond thermal regulation, Ti3C2TX, with high conductivity and negatively charged surface terminations, also serves as an effective defect passivation agent, reducing trap-assisted recombination, while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment. As a result, the Ti3C2TX-modified PSC achieve a champion PCE of 25.13% and exhibit outstanding thermal stability, retaining 80% of the initial PCE after 500 h of thermal aging at 85 °C and 30 ± 5% relative humidity. (In contrast, control PSC retain only 58% after 200 h.) Moreover, under continuous maximum power point tracking in N2 atmosphere, Ti3C2TX-modified PSC retained 70% of the initial PCE after 500 h, whereas the control PSC drop sharply to 20%. These findings highlight the synergistic role of Ti3C2TX in thermal management and optoelectronic performance, paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.
Highlights:
1 Incorporating Ti3C2TX nanosheets enhanced perovskite thermal conductivity (from 0.236 to 0.413 W m−1 K−1) and reduced operating temperature by ~3 °C under illumination, mitigating heat-induced degradation.
2 Ti3C2TX offers multiple additional functionalities, including defect passivation, improved charge transfer efficiency, and optimized energy level alignment.
3 Champion power conversion efficiency (PCE) reached 25.13% (vs. 23.70% control). Retained 80% PCE after 500 h at 85 °C/RH = 30 ± 5%, outperforming control (58% after 200 h). MPP tracking showed 70% PCE retention after 500 h in N2 (vs. 20% control).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- N. Wu, D. Walter, A. Fell, Y. Wu, K. Weber, The impact of mobile ions on the steady-state performance of perovskite solar cells. J. Phys. Chem. C 124(1), 219–229 (2020). https://doi.org/10.1021/acs.jpcc.9b10578
- P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620(7973), 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
- W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016). https://doi.org/10.1038/nenergy.2016.48
- T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016). https://doi.org/10.1039/c5ee02733k
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu et al., Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412 (2020). https://doi.org/10.1126/science.aba2412
- R. Li, S. Zhang, H. Zhang, Z. Wang, X. Feng et al., Customizing aniline-derived molecular structures to attain beyond 22 % efficient inorganic perovskite solar cells. Angew. Chem. Int. Ed. 63(42), e202410600 (2024). https://doi.org/10.1002/anie.202410600
- H. Zhang, Q. Tian, W. Xiang, Y. Du, Z. Wang et al., Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells. Adv. Mater. 35(31), 2301140 (2023). https://doi.org/10.1002/adma.202301140
- S. Zhang, L. Zhang, Q. Tian, X. Gu, Y. Du et al., Spontaneous construction of multidimensional heterostructure enables enhanced hole extraction for inorganic perovskite solar cells to exceed 20% efficiency. Adv. Energy Mater. 12(1), 2103007 (2022). https://doi.org/10.1002/aenm.202103007
- B. Chen, J. Song, X. Dai, Y. Liu, P.N. Rudd et al., Synergistic effect of elevated device temperature and excess charge carriers on the rapid light-induced degradation of perovskite solar cells. Adv. Mater. 31(35), e1902413 (2019). https://doi.org/10.1002/adma.201902413
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- Z. Dong, W. Li, H. Wang, X. Jiang, H. Liu et al., High-temperature perovskite solar cells. Sol. RRL 5(9), 2100370 (2021). https://doi.org/10.1002/solr.202100370
- G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379(6630), 399–403 (2023). https://doi.org/10.1126/science.add7331
- F. Wang, Z. Qiu, Y. Chen, Y. Zhang, Z. Huang et al., Temperature-insensitive efficient inorganic perovskite photovoltaics by bulk heterojunctions. Adv. Mater. 34(9), e2108357 (2022). https://doi.org/10.1002/adma.202108357
- Y. An, C. Wang, G. Cao, X. Li, Heterojunction perovskite solar cells: opto-electro-thermal physics, modeling, and experiment. ACS Nano 14(4), 5017–5026 (2020). https://doi.org/10.1021/acsnano.0c01392
- S. Zandi, P. Saxena, N.E. Gorji, Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020). https://doi.org/10.1016/j.solener.2019.12.050
- S. Anandan, V. Ramalingam, Thermal management of electronics: a review of literature. Therm. Sci. 12(2), 5–26 (2008). https://doi.org/10.2298/tsci0802005a
- R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
- H. Yu, X. Cheng, Y. Wang, Y. Liu, K. Rong et al., Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature. ACS Photonics 5(11), 4520–4528 (2018). https://doi.org/10.1021/acsphotonics.8b00977
- L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32(25), e2000752 (2020). https://doi.org/10.1002/adma.202000752
- L. Fu, T. Wang, J. Yu, W. Dai, H. Sun et al., An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets. 2D Mater. 4(2), 025047 (2017). https://doi.org/10.1088/2053-1583/aa636e
- Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
- W. Guo, G. Li, Y. Zheng, C. Dong, Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochim. Acta 661, 84–97 (2018). https://doi.org/10.1016/j.tca.2018.01.008
- N. Wang, Q. Sun, T. Zhang, A. Mayoral, L. Li et al., Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J. Am. Chem. Soc. 143(18), 6905–6914 (2021). https://doi.org/10.1021/jacs.1c00578
- K. Choi, J. Lee, H. Choi, G.-W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13(12), 5059–5067 (2020). https://doi.org/10.1039/D0EE02859B
- F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
- W. Wang, J. Zhang, K. Lin, J. Wang, B. Hu et al., Heat diffusion optimization in high performance perovskite solar cells integrated with zeolite. J. Energy Chem. 86, 308–317 (2023). https://doi.org/10.1016/j.jechem.2023.07.001
- N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12(24), 2200869 (2022). https://doi.org/10.1002/aenm.202200869
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Y. Cao, Q. Deng, Z. Liu, D. Shen, T. Wang et al., Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 7(33), 20494–20501 (2017). https://doi.org/10.1039/c7ra00184c
- T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
- X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
- Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
- S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
- Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
- Y. Zhao, X. Zhang, X. Han, C. Hou, H. Wang et al., Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chem. Eng. J. 417, 127912 (2021). https://doi.org/10.1016/j.cej.2020.127912
- Q. Zhuang, C. Zhang, C. Gong, H. Li, H. Li et al., Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 102, 107747 (2022). https://doi.org/10.1016/j.nanoen.2022.107747
- J.H. Heo, F. Zhang, J.K. Park, H.J. Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
- L. Yang, D. Kan, C. Dall’ Agnese, Y. Dall’ Agnese, B. Wang et al., Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air. J. Mater. Chem. A 9(8), 5016–5025 (2021). https://doi.org/10.1039/D0TA11397B
- T. Liu, S.-Y. Yue, S. Ratnasingham, T. Degousée, P. Varsini et al., Unusual thermal boundary resistance in halide perovskites: a way to tune ultralow thermal conductivity for thermoelectrics. ACS Appl. Mater. Interfaces 11(50), 47507–47515 (2019). https://doi.org/10.1021/acsami.9b14174
- P. Saxena, N.E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical–electrical–thermal 3-D analysis. IEEE J. Photovolt. 9(6), 1693–1698 (2019). https://doi.org/10.1109/JPHOTOV.2019.2940886
- Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015). https://doi.org/10.1002/adma.201502597
- Y. Zhao, B. Li, C. Tian, X. Han, Y. Qiu et al., Anhydrous organic etching derived fluorine-rich terminated MXene nanosheets for efficient and stable perovskite solar cells. Chem. Eng. J. 469, 143862 (2023). https://doi.org/10.1016/j.cej.2023.143862
References
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
N. Wu, D. Walter, A. Fell, Y. Wu, K. Weber, The impact of mobile ions on the steady-state performance of perovskite solar cells. J. Phys. Chem. C 124(1), 219–229 (2020). https://doi.org/10.1021/acs.jpcc.9b10578
P. Shi, Y. Ding, B. Ding, Q. Xing, T. Kodalle et al., Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620(7973), 323–327 (2023). https://doi.org/10.1038/s41586-023-06208-z
W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016). https://doi.org/10.1038/nenergy.2016.48
T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016). https://doi.org/10.1039/c5ee02733k
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu et al., Gas chromatography-mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412 (2020). https://doi.org/10.1126/science.aba2412
R. Li, S. Zhang, H. Zhang, Z. Wang, X. Feng et al., Customizing aniline-derived molecular structures to attain beyond 22 % efficient inorganic perovskite solar cells. Angew. Chem. Int. Ed. 63(42), e202410600 (2024). https://doi.org/10.1002/anie.202410600
H. Zhang, Q. Tian, W. Xiang, Y. Du, Z. Wang et al., Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells. Adv. Mater. 35(31), 2301140 (2023). https://doi.org/10.1002/adma.202301140
S. Zhang, L. Zhang, Q. Tian, X. Gu, Y. Du et al., Spontaneous construction of multidimensional heterostructure enables enhanced hole extraction for inorganic perovskite solar cells to exceed 20% efficiency. Adv. Energy Mater. 12(1), 2103007 (2022). https://doi.org/10.1002/aenm.202103007
B. Chen, J. Song, X. Dai, Y. Liu, P.N. Rudd et al., Synergistic effect of elevated device temperature and excess charge carriers on the rapid light-induced degradation of perovskite solar cells. Adv. Mater. 31(35), e1902413 (2019). https://doi.org/10.1002/adma.201902413
Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17(6), 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
Z. Dong, W. Li, H. Wang, X. Jiang, H. Liu et al., High-temperature perovskite solar cells. Sol. RRL 5(9), 2100370 (2021). https://doi.org/10.1002/solr.202100370
G. Li, Z. Su, L. Canil, D. Hughes, M.H. Aldamasy et al., Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science 379(6630), 399–403 (2023). https://doi.org/10.1126/science.add7331
F. Wang, Z. Qiu, Y. Chen, Y. Zhang, Z. Huang et al., Temperature-insensitive efficient inorganic perovskite photovoltaics by bulk heterojunctions. Adv. Mater. 34(9), e2108357 (2022). https://doi.org/10.1002/adma.202108357
Y. An, C. Wang, G. Cao, X. Li, Heterojunction perovskite solar cells: opto-electro-thermal physics, modeling, and experiment. ACS Nano 14(4), 5017–5026 (2020). https://doi.org/10.1021/acsnano.0c01392
S. Zandi, P. Saxena, N.E. Gorji, Numerical simulation of heat distribution in RGO-contacted perovskite solar cells using COMSOL. Sol. Energy 197, 105–110 (2020). https://doi.org/10.1016/j.solener.2019.12.050
S. Anandan, V. Ramalingam, Thermal management of electronics: a review of literature. Therm. Sci. 12(2), 5–26 (2008). https://doi.org/10.2298/tsci0802005a
R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585(7824), 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
H. Yu, X. Cheng, Y. Wang, Y. Liu, K. Rong et al., Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature. ACS Photonics 5(11), 4520–4528 (2018). https://doi.org/10.1021/acsphotonics.8b00977
L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki et al., Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32(25), e2000752 (2020). https://doi.org/10.1002/adma.202000752
L. Fu, T. Wang, J. Yu, W. Dai, H. Sun et al., An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets. 2D Mater. 4(2), 025047 (2017). https://doi.org/10.1088/2053-1583/aa636e
Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004
W. Guo, G. Li, Y. Zheng, C. Dong, Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochim. Acta 661, 84–97 (2018). https://doi.org/10.1016/j.tca.2018.01.008
N. Wang, Q. Sun, T. Zhang, A. Mayoral, L. Li et al., Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets. J. Am. Chem. Soc. 143(18), 6905–6914 (2021). https://doi.org/10.1021/jacs.1c00578
K. Choi, J. Lee, H. Choi, G.-W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13(12), 5059–5067 (2020). https://doi.org/10.1039/D0EE02859B
F. Pei, N. Li, Y. Chen, X. Niu, Y. Zhang et al., Thermal management enables more efficient and stable perovskite solar cells. ACS Energy Lett. 6(9), 3029–3036 (2021). https://doi.org/10.1021/acsenergylett.1c00999
W. Wang, J. Zhang, K. Lin, J. Wang, B. Hu et al., Heat diffusion optimization in high performance perovskite solar cells integrated with zeolite. J. Energy Chem. 86, 308–317 (2023). https://doi.org/10.1016/j.jechem.2023.07.001
N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang et al., Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater. 12(24), 2200869 (2022). https://doi.org/10.1002/aenm.202200869
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Y. Cao, Q. Deng, Z. Liu, D. Shen, T. Wang et al., Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 7(33), 20494–20501 (2017). https://doi.org/10.1039/c7ra00184c
T. Chen, G. Tong, E. Xu, H. Li, P. Li et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J. Mater. Chem. A 7(36), 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A
X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan et al., Dual interfacial modification engineering with 2D MXene quantum dots and copper sulphide nanocrystals enabled high-performance perovskite solar cells. Adv. Funct. Mater. 30(30), 2003295 (2020). https://doi.org/10.1002/adfm.202003295
Z. Guo, L. Gao, Z. Xu, S. Teo, C. Zhang et al., High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 14(47), 1802738 (2018). https://doi.org/10.1002/smll.201802738
S. Palei, G. Murali, C.-H. Kim, I. In, S.-Y. Lee et al., A review on interface engineering of MXenes for perovskite solar cells. Nano-Micro Lett. 15(1), 123 (2023). https://doi.org/10.1007/s40820-023-01083-9
Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong et al., Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14(6), 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J
Y. Zhao, X. Zhang, X. Han, C. Hou, H. Wang et al., Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells. Chem. Eng. J. 417, 127912 (2021). https://doi.org/10.1016/j.cej.2020.127912
Q. Zhuang, C. Zhang, C. Gong, H. Li, H. Li et al., Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 102, 107747 (2022). https://doi.org/10.1016/j.nanoen.2022.107747
J.H. Heo, F. Zhang, J.K. Park, H.J. Lee, D.S. Lee et al., Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7), 1672–1688 (2022). https://doi.org/10.1016/j.joule.2022.05.013
L. Yang, D. Kan, C. Dall’ Agnese, Y. Dall’ Agnese, B. Wang et al., Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air. J. Mater. Chem. A 9(8), 5016–5025 (2021). https://doi.org/10.1039/D0TA11397B
T. Liu, S.-Y. Yue, S. Ratnasingham, T. Degousée, P. Varsini et al., Unusual thermal boundary resistance in halide perovskites: a way to tune ultralow thermal conductivity for thermoelectrics. ACS Appl. Mater. Interfaces 11(50), 47507–47515 (2019). https://doi.org/10.1021/acsami.9b14174
P. Saxena, N.E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical–electrical–thermal 3-D analysis. IEEE J. Photovolt. 9(6), 1693–1698 (2019). https://doi.org/10.1109/JPHOTOV.2019.2940886
Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015). https://doi.org/10.1002/adma.201502597
Y. Zhao, B. Li, C. Tian, X. Han, Y. Qiu et al., Anhydrous organic etching derived fluorine-rich terminated MXene nanosheets for efficient and stable perovskite solar cells. Chem. Eng. J. 469, 143862 (2023). https://doi.org/10.1016/j.cej.2023.143862