Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO2 Reduction Reaction
Corresponding Author: Zhonghua Wu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 26
Abstract
Using photoelectrocatalytic CO2 reduction reaction (CO2RR) to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises. Bismuth-based (Bi-based) catalysts have attracted widespread attention for CO2RR due to their high catalytic activity, selectivity, excellent stability, and low cost. However, they still need to be further improved to meet the needs of industrial applications. This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories: (1) defect engineering, (2) atomic doping engineering, (3) organic framework engineering, (4) inorganic heterojunction engineering, (5) crystal face engineering, and (6) alloying and polarization engineering. Meanwhile, the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail, aiming to enable researchers to understand the structure–property relationship of the improved Bi-based catalysts fundamentally. Finally, the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO2RR application field will also be featured from the perspectives of the (1) combination or synergy of multiple regulatory strategies, (2) revealing formation mechanism and realizing controllable synthesis, and (3) in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms. On the one hand, through the comparative analysis and mechanism explanation of the six major regulatory strategies, a multidimensional knowledge framework of the structure–activity relationship of Bi-based catalysts can be constructed for researchers, which not only deepens the atomic-level understanding of catalytic active sites, charge transport paths, and the adsorption behavior of intermediate products, but also provides theoretical guiding principles for the controllable design of new catalysts; on the other hand, the promising collaborative regulation strategies, controllable synthetic paths, and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts, conducive to facilitating the transition of photoelectrocatalytic CO2RR technology from the laboratory routes to industrial application.
Highlights:
1 Six major types of structural regulation strategies of various Bi-based catalysts used in photoelectrocatalytic CO2 reduction reaction (CO2RR) in recent years are comprehensively summarized.
2 The corresponding catalytic mechanisms of each regulation strategy are discussed in detail, aiming to enable researchers to understand the structure–property relationship of the improved Bi-based catalysts fundamentally.
3 The challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO2RR application field are featured from the perspectives of the combination of multiple regulatory strategies, revealing formation mechanism and realizing controllable synthesis, and in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, S. Wang, L. Li, Y. Sun, Y. Xie, Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142(21), 9567–9581 (2020). https://doi.org/10.1021/jacs.0c02973
- J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020). https://doi.org/10.1016/j.mattod.2019.06.009
- X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
- X. Shen, Q. Meng, M. Dong, J. Xiang, S. Li et al., Low-temperature reverse water–gas shift process and transformation of renewable carbon resources to value-added chemicals. Chemsuschem 12(23), 5149–5156 (2019). https://doi.org/10.1002/cssc.201902404
- D. Cui, W. Hao, J. Chen, The synergistic effect of heteroatom doping and vacancy on the reduction of CO2 by photocatalysts. ChemNanoMat 7(8), 894–901 (2021). https://doi.org/10.1002/cnma.202100148
- L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang et al., Research progress on CO2 capture and utilization technology. J. CO2 Util. 66, 102260 (2022). https://doi.org/10.1016/j.jcou.2022.102260
- S.S. Meryem, S. Nasreen, M. Siddique, R. Khan, An overview of the reaction conditions for an efficient photoconversion of CO2. Rev. Chem. Eng. 34(3), 409–425 (2018). https://doi.org/10.1515/revce-2016-0016
- C. Ren, W. Ni, H. Li, Recent progress in electrocatalytic reduction of CO2. Catalysts 13(4), 644 (2023). https://doi.org/10.3390/catal13040644
- F. Chen, Z.-C. Yao, Z.-H. Lyu, J. Fu, X. Zhang et al., Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction. eScience 4(2), 100172 (2024). https://doi.org/10.1016/j.esci.2023.100172
- H. Xie, Y. Wan, X. Wang, J. Liang, G. Lu et al., Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B Environ. 289, 119783 (2021). https://doi.org/10.1016/j.apcatb.2020.119783
- X. Ding, J. Zhang, Y. Li, CO electroreduction: what can we learn from its parent reaction, CO2 electroreduction? eScience 3(6), 100137 (2023). https://doi.org/10.1016/j.esci.2023.100137
- W. Dai, P. Wang, J. Long, Y. Xu, M. Zhang et al., Constructing robust Bi active sites in situ on α-Bi2O3 for efficient and selective photoreduction of CO2 to CH4 via directional transfer of electrons. ACS Catal. 13(4), 2513–2522 (2023). https://doi.org/10.1021/acscatal.2c05724
- Y.-X. Duan, Y.-T. Zhou, Z. Yu, D.-X. Liu, Z. Wen et al., Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem. Int. Ed. 60(16), 8798–8802 (2021). https://doi.org/10.1002/anie.202015713
- Y.-X. Duan, K.-H. Liu, Q. Zhang, J.-M. Yan, Q. Jiang, Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 4(5), 1900846 (2020). https://doi.org/10.1002/smtd.201900846
- H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14(1), 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
- V.D.B.C. Dasireddy, B. Likozar, Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanop catalysts. Renew. Energy 195, 885–895 (2022). https://doi.org/10.1016/j.renene.2022.06.064
- M. Wu, Y. Yang, J. Zhao, R. Liu, Spontaneous spatial-optimizing CO2 electroreduction to C2H4 over dynamically synergistic Cu-Bi pair. J. Colloid Interface Sci. 677, 452–461 (2025). https://doi.org/10.1016/j.jcis.2024.08.077
- P. Bhavani, M. Hussain, Y.-K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: a state of the art review. J. Clean. Prod. 330, 129899 (2022). https://doi.org/10.1016/j.jclepro.2021.129899
- Q. Han, Advances in preparation methods of bismuth-based photocatalysts. Chem. Eng. J. 414, 127877 (2021). https://doi.org/10.1016/j.cej.2020.127877
- Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman et al., Rational design of Bi nanops for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 6(9), 6255–6264 (2016). https://doi.org/10.1021/acscatal.6b01297
- Z.-L. Yu, S.-Q. Wu, L.-W. Chen, Y.-C. Hao, X. Su et al., Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments. ACS Appl. Mater. Interfaces 14(8), 10648–10655 (2022). https://doi.org/10.1021/acsami.1c16689
- J. Zhu, G. Zhou, Y. Tong, L. Chen, P. Chen, Vanadium oxide clusters mediated bismuth-tin alloy for accelerated dynamics of electrocatalytic CO2 conversion. Adv. Funct. Mater. 35(16), 2420177 (2025). https://doi.org/10.1002/adfm.202420177
- W. Wu, J. Zhu, Y. Tong, S. Xiang, P. Chen, Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Res. 17(5), 3684–3692 (2024). https://doi.org/10.1007/s12274-023-6269-7
- L. Wang, W.-K. Gui, S. Jiang, L. Wang, J.-P. Yang, Bi2S3 nanofiber bunch for highly efficient CO2 electroreduction to formate at low overpotential. Rare Met. 43(7), 3391–3399 (2024). https://doi.org/10.1007/s12598-024-02665-1
- T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal et al., Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 30(3), 1906478 (2020). https://doi.org/10.1002/adfm.201906478
- W.S. Cho, D.M. Hong, W.J. Dong, T.H. Lee, C.J. Yoo et al., Porously reduced 2-dimensional Bi2O2CO3 petals for strain-mediated electrochemical CO2 reduction to HCOOH. Energy Environ. Mater. 7(1), e12490 (2024). https://doi.org/10.1002/eem2.12490
- Z. Jiang, X. Liang, H. Zheng, Y. Liu, Z. Wang et al., Photocatalytic reduction of CO2 to methanol by three-dimensional hollow structures of Bi2WO6 quantum dots. Appl. Catal. B Environ. 219, 209–215 (2017). https://doi.org/10.1016/j.apcatb.2017.07.023
- W. Amdouni, M. Fricaudet, M. Otoničar, V. Garcia, S. Fusil et al., BiFeO3 nanops: the “holy-grail” of piezo-photocatalysts? Adv. Mater. 35(31), 2301841 (2023). https://doi.org/10.1002/adma.202301841
- R.-Q. Miao, Z.-H. He, B.-T. Wu, J. Liu, S.-W. Wang et al., Activated carbon-boosted BiOI in CO2 adsorption and electron transfer for photothermally catalyzed CO2 oxidative dehydrogenation of propane. Chem. Eng. J. 481, 148293 (2024). https://doi.org/10.1016/j.cej.2023.148293
- W. Wu, Y. Tong, Y. Ye, G. Zhou, J. He et al., In-situ electrochemical transformation of F-modified metallic bismuth for highly-efficient CO2 electroreduction and Zn-CO2 battery. Chem. Eng. J. 494, 153105 (2024). https://doi.org/10.1016/j.cej.2024.153105
- Z. Cui, P. Wang, Y. Wu, X. Liu, G. Chen et al., Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas−solid condition under visible light. Appl. Catal. B Environ. 310, 121375 (2022). https://doi.org/10.1016/j.apcatb.2022.121375
- Y. Fang, L. Hong, Y. Dai, Q. Xiang, N. Zhang et al., Reconstruction of the surface Bi3+ oxide layer on Bi2O2CO3: facilitating electron transfer for enhanced photocatalytic degradation performance of antibiotics in water. Ceram. Int. 50(24), 52788–52796 (2024). https://doi.org/10.1016/j.ceramint.2024.10.132
- D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- M. Wang, H. Wang, Y. Gu, M. Zhu, M. Kumar et al., In situ generation of flash graphene supported spherical bismuth nanops in less than 200 ms for highly selective carbon dioxide electroreduction. ACS Mater. Lett. 6(1), 100–108 (2024). https://doi.org/10.1021/acsmaterialslett.3c01183
- J. Wu, X. Kang, S. Xu, Z. Wei, S. Xu et al., Influence of Bi3+ doping on electrochemical properties of Ti/Sb-SnO2/PbO2 electrode for zinc electrowinning. Molecules 29(17), 4062 (2024). https://doi.org/10.3390/molecules29174062
- P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
- S. Adhikari, S. Mandal, D.-H. Kim, Recent development strategies for bismuth-driven materials in sustainable energy systems and environmental restoration. Small 19(10), 2206003 (2023). https://doi.org/10.1002/smll.202206003
- M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5), 509–517 (2022). https://doi.org/10.1016/j.esci.2022.04.003
- S. Song, Z. Xing, H. Zhao, Z. Li, W. Zhou, Recent advances in bismuth-based photocatalysts: environment and energy applications. Green Energy Environ. 8(5), 1232–1264 (2023). https://doi.org/10.1016/j.gee.2022.04.004
- X. Liu, K. Zhang, Y. Sun, S. Zhang, Z. Qiu et al., Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis. Susmat 3(2), 235–247 (2023). https://doi.org/10.1002/sus2.117
- F.P. García de Arquer, O.S. Bushuyev, P. De Luna, C.T. Dinh, A. Seifitokaldani et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30(38), e1802858 (2018). https://doi.org/10.1002/adma.201802858
- J. Lin, J. He, Q. Huang, Y. Luo, Y. Zhang et al., Interfacial Bi-O-C bonds and rich oxygen vacancies synergistically endow carbon quantum dot/Bi2MoO6 with prominent photocatalytic CO2 reduction into CO. Appl. Catal. B Environ. Energy 362, 124747 (2025). https://doi.org/10.1016/j.apcatb.2024.124747
- Z. Ma, C. Lin, H.H. Han, Y.-S. Bae, K.-S. Lee et al., Interfacial interaction-mediated regulation of metal oxidation states for enhanced CO2 reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202424753
- D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B Environ. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
- X. Duan, J. Xu, Y. Cong, H. Geng, K. Chen et al., Enhancing CO2 electroreduction to formate on bismuth catalyst via sulfur doping. Chem. Eng. J. 501, 157404 (2024). https://doi.org/10.1016/j.cej.2024.157404
- L. Xu, J.C. Yu, Y. Wang, Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction. J. Environ. Sci. 140, 183–203 (2024). https://doi.org/10.1016/j.jes.2023.07.002
- Y. Cheng, Y. Zhang, Z. Wang, R. Guo, J. You et al., Review of Bi-based catalysts in piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants. Nanoscale 15(46), 18571–18580 (2023). https://doi.org/10.1039/D3NR05016E
- F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J. Wang et al., Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11(1), 1088 (2020). https://doi.org/10.1038/s41467-020-14914-9
- Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- Y. Wan, H. Zhou, M. Zheng, Z.-H. Huang, F. Kang et al., Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 31(30), 2100300 (2021). https://doi.org/10.1002/adfm.202100300
- L. Hu, X. Sai, X. Liu, Z. Chen, G. Wang et al., Influence of environmental conditions on electrocatalytic CO2 reduction. ChemCatChem 16(6), e202301335 (2024). https://doi.org/10.1002/cctc.202301335
- S.-F. Qin, S. Yang, L.-C. Zhao, Y.-J. Xie, Y. Wang et al., Temperature dependent electrochemical reduction of CO2 at temperature controllable-rotating disk electrode modified with bismuth film. Electrochim. Acta 461, 142627 (2023). https://doi.org/10.1016/j.electacta.2023.142627
- L. Zhang, Y. Li, Q. Li, J. Fan, S.A.C. Carabineiro et al., Recent advances on bismuth-based photocatalysts: strategies and mechanisms. Chem. Eng. J. 419, 129484 (2021). https://doi.org/10.1016/j.cej.2021.129484
- S.V.P. Vattikuti, J. Zeng, R. Ramaraghavulu, J. Shim, A. Mauger et al., High-throughput strategies for the design, discovery, and analysis of bismuth-based photocatalysts. Int. J. Mol. Sci. 24(1), 663 (2022). https://doi.org/10.3390/ijms24010663
- G. Zhang, S. Li, L. Zhang, Y. Tian, Structural tuning of bismuth molybdate composite photocatalyst for pollutants removal. Surf. Interfaces 44, 103707 (2024). https://doi.org/10.1016/j.surfin.2023.103707
- Q. Pan, Y. Wu, X. Su, Y. Yin, S. Shi et al., A review on the recent development of bismuth-based catalysts for CO2 photoreduction. J. Mol. Struct. 1294, 136404 (2023). https://doi.org/10.1016/j.molstruc.2023.136404
- P. Kar, T.K. Maji, R. Nandi, P. Lemmens, S.K. Pal, In-situ hydrothermal synthesis of Bi-Bi2O2CO3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Nano-Micro Lett. 9(2), 18 (2017). https://doi.org/10.1007/s40820-016-0118-0
- X. Shi, X.-A. Dong, Y. Sun, S. Zhang, F. Dong, Dynamic active sites in Bi5O7I promoted by surface tensile strain enable selective visible light CO2 photoreduction. Research 2022, 9818792 (2022). https://doi.org/10.34133/2022/9818792r
- Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16(1), 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
- T. Peng, Y. Wang, C.L. Dong, T.T.T. Nga, B. Wu et al., BiOCl atomic layers with electrons enriched active sites exposed for efficient photocatalytic CO2 overall splitting. Nano-Micro Lett. 17(1), 223 (2025). https://doi.org/10.1007/s40820-025-01723-2
- L. Liu, K. Dai, J. Zhang, L. Li, Plasmonic bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 604, 844–855 (2021). https://doi.org/10.1016/j.jcis.2021.07.064
- X. Zhang, G. Ren, C. Zhang, R. Li, Q. Zhao et al., Photocatalytic reduction of CO2 to CO over 3D Bi2MoO6 microspheres: simple synthesis, high efficiency and selectivity, reaction mechanism. Catal. Lett. 150(9), 2510–2516 (2020). https://doi.org/10.1007/s10562-020-03182-3
- X.-J. Wen, X. Wu, L. Hu, X.-K. Wu, H. Guo et al., A critical review on modification strategies of Bi2Sn2O7 photocatalysts and their applications in energy and environmental remediation fields. Coord. Chem. Rev. 526, 216377 (2025). https://doi.org/10.1016/j.ccr.2024.216377
- B. Li, X.-J. Liu, H.-W. Zhu, H.-P. Guan, R.-T. Guo, A review on Bi2WO6-based materials for photocatalytic CO2 reduction. Small 20(49), e2406074 (2024). https://doi.org/10.1002/smll.202406074
- R. Zafar, A. Javaid, M. Imran, S. Latif, M.N. Khan et al., Recent advances in catalytic reduction of CO2 through bismuth based MOFs. J. Saudi Chem. Soc. 28(6), 101926 (2024). https://doi.org/10.1016/j.jscs.2024.101926
- A.S. Belousov, A.A. Parkhacheva, A.N. Markov, A.N. Petukhov, A.A. Kapinos et al., Environmental application of versatile bi-based perovskite photocatalysts and their Z-scheme and S-scheme heterojunctions. J. Environ. Chem. Eng. 12(5), 113309 (2024). https://doi.org/10.1016/j.jece.2024.113309
- L. Ye, Y. Deng, L. Wang, H. Xie, F. Su, Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion. Chemsuschem 12(16), 3671–3701 (2019). https://doi.org/10.1002/cssc.201901196
- X. Linghu, J. Chen, L. Jiang, T. Wang, Recent progress in bismuth-based materials for electrochemical CO2 reduction to formate/formic acid. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.11.007
- X. Sun, X. Zhang, Y. Xie, Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter 2(4), 842–861 (2020). https://doi.org/10.1016/j.matt.2020.02.006
- A. Mo, Y. Feng, B. Yang, W. Dang, X. Liang et al., Controlling unintentional defects enables high-efficient antimony selenide solar cells. Adv. Funct. Mater. 34(29), 2316292 (2024). https://doi.org/10.1002/adfm.202316292
- M. Zhao, Y. Gu, W. Gao, P. Cui, H. Tang et al., Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B Environ. 266, 118625 (2020). https://doi.org/10.1016/j.apcatb.2020.118625
- Z. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu et al., Electron-rich Bi nanosheets promote CO2− formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62(11), e202217569 (2023). https://doi.org/10.1002/anie.202217569
- K. Ye, K. Li, Y. Lu, Z. Guo, N. Ni et al., An overview of advanced methods for the characterization of oxygen vacancies in materials. Trac Trends Anal. Chem. 116, 102–108 (2019). https://doi.org/10.1016/j.trac.2019.05.002
- M. Sun, X.-A. Dong, B. Lei, J. Li, P. Chen et al., Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: a combined DRIFTS and DFT investigation. Nanoscale 11(43), 20562–20570 (2019). https://doi.org/10.1039/C9NR06874K
- X. Zu, Y. Zhao, X. Li, R. Chen, W. Shao et al., Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem. Int. Ed. 60(25), 13840–13846 (2021). https://doi.org/10.1002/anie.202101894
- S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao et al., Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Appl. Catal. B Environ. 305, 121026 (2022). https://doi.org/10.1016/j.apcatb.2021.121026
- Y. Lu, Y. Huang, Y. Zhang, T. Huang, H. Li et al., Effects of H2O2 generation over visible light-responsive Bi/Bi2O2-xCO3 nanosheets on their photocatalytic NOx removal performance. Chem. Eng. J. 363, 374–382 (2019). https://doi.org/10.1016/j.cej.2019.01.172
- M. Ates, C. Alperen, Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors. Iran. Polym. J. 32(10), 1241–1255 (2023). https://doi.org/10.1007/s13726-023-01201-9
- X. Shi, X. Dong, Y. He, P. Yan, F. Dong, Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 67(11), 1137–1144 (2022). https://doi.org/10.1016/j.scib.2022.01.013
- M. Guan, N. Lu, X. Zhang, Q. Wang, J. Bao et al., Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO. Carbon Energy 6(4), e420 (2024). https://doi.org/10.1002/cey2.420
- J. Zhu, J. Li, R. Lu, R. Yu, S. Zhao et al., Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 14(1), 4670 (2023). https://doi.org/10.1038/s41467-023-40342-6
- L. Lv, R. Lu, J. Zhu, R. Yu, W. Zhang et al., Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. 62(25), e202303117 (2023). https://doi.org/10.1002/anie.202303117
- L. Zhao, H. Hou, L. Wang, C.R. Bowen, J. Wang et al., Atomic-level surface modification of ultrathin Bi2WO6 nanosheets for boosting photocatalytic CO2 reduction. Chem. Eng. J. 480, 148033 (2024). https://doi.org/10.1016/j.cej.2023.148033
- X. Liu, C. Zhen, J. Wu, X. You, Y. Wu et al., Modulating the hydrogenation mechanism of electrochemical CO2 reduction using ruthenium atomic species on bismuth. Adv. Funct. Mater. 34(44), 2405835 (2024). https://doi.org/10.1002/adfm.202405835
- Y. Xu, M. Zhang, J. Long, W. Dai, P. Wang et al., Co single atom modulating the secondary coordination environment of Bi sites for boosting the adsorptive and catalytic capacity during CO2 photoreduction. Appl. Catal. B Environ. 340, 123230 (2024). https://doi.org/10.1016/j.apcatb.2023.123230
- J. Lu, Y. Ren, J. Liang, L. Zou, Y. Gao et al., Copper as an electron hunter for enhancing Bi2O2CO3 electrocatalytic CO2 conversion to formate. Small 20(45), 2402879 (2024). https://doi.org/10.1002/smll.202402879
- A. Xu, X. Chen, D. Wei, B. Chu, M. Yu et al., Regulating the electronic structure of bismuth nanosheets by titanium doping to boost CO2 electroreduction and Zn–CO2 batteries. Small 19(38), 2370306 (2023). https://doi.org/10.1002/smll.202370306
- Y. Zhang, S. Liu, N. Ji, L. Wei, Q. Liang et al., Modulation of the electronic structure of metallic bismuth catalysts by cerium doping to facilitate electrocatalytic CO2 reduction to formate. J. Mater. Chem. A 12(13), 7528–7535 (2024). https://doi.org/10.1039/d4ta00091a
- C. He, H. Yang, X. Fu, X. Cheng, J. Guo et al., A DFT study of two-dimensional P2Si monolayer modified by single transition metal (Sc-Cu) atoms for efficient electrocatalytic CO2 reduction. Chin. Chem. Lett. 34(5), 107579 (2023). https://doi.org/10.1016/j.cclet.2022.06.002
- R. Cui, Q. Yuan, C. Zhang, X. Yang, Z. Ji et al., Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS Catal. 12(18), 11294–11300 (2022). https://doi.org/10.1021/acscatal.2c03369
- Z. Jiang, S. Ren, X. Cao, Q. Fan, R. Yu et al., pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide. Angew. Chem. Int. Ed. 63(32), e202408412 (2024). https://doi.org/10.1002/anie.202408412
- X. Chen, H. Chen, W. Zhou, Q. Zhang, Z. Yang et al., Boron dopant induced electron-rich bismuth for electrochemical CO2 reduction with high solar energy conversion efficiency. Small 17(29), 2101128 (2021). https://doi.org/10.1002/smll.202101128
- Y. Zhang, Y. Chen, R. Liu, X. Wang, H. Liu et al., Oxygen vacancy stabilized Bi2O2CO3 nanosheet for CO2 electroreduction at low overpotential enables energy efficient CO-production of formate. InfoMat 5(3), e12375 (2023). https://doi.org/10.1002/inf2.12375
- X. Shao, X. Sun, Q. Huang, J. Yi, J. Zhang et al., Electronic structural modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO2 electroreduction. Dalton Trans. 51(18), 7223–7233 (2022). https://doi.org/10.1039/D2DT00624C
- Y. Zhang, Y. Sun, L. Pan, Z. Wen, M. Shi et al., Efficient degradation of antibiotic pollutants in water by Ca2+/Ce3+ co-doped Bi2O2CO3 photocatalysts. Environ. Res. 278, 121668 (2025). https://doi.org/10.1016/j.envres.2025.121668
- H. Zhou, S. Zhong, M. Shen, J. Hou, W. Chen, Formamide-assisted one-pot synthesis of a Bi/Bi2O2CO3 heterojunction photocatalyst with enhanced photocatalytic activity. J. Alloys Compd. 769, 301–310 (2018). https://doi.org/10.1016/j.jallcom.2018.08.007
- H.L. Nguyen, A. Alzamly, Covalent organic frameworks as emerging platforms for CO2 photoreduction. ACS Catal. 11(15), 9809–9824 (2021). https://doi.org/10.1021/acscatal.1c02459
- G.-B. Wang, K.-H. Xie, H.-P. Xu, Y.-J. Wang, F. Zhao et al., Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord. Chem. Rev. 472, 214774 (2022). https://doi.org/10.1016/j.ccr.2022.214774
- T. Li, Y. Pan, B. Shao, X. Zhang, T. Wu et al., Covalent–organic framework (COF)-core–shell composites: classification, synthesis, properties, and applications. Adv. Funct. Mater. 33(45), 2304990 (2023). https://doi.org/10.1002/adfm.202304990
- Y. Wang, Z. Dai, J. Wang, D. Zhang, F. Zhou et al., Scheme-II heterojunction of Bi2WO6@Br-COFs hybrid materials for CO2 photocatalytic reduction. Chem. Eng. J. 471, 144559 (2023). https://doi.org/10.1016/j.cej.2023.144559
- Y. Wu, J. Liu, J. Rong, Y. Zhang, Q. Liang et al., Combination of covalent-organic framework and Bi2O2S by covalent bonds to form p-n heterojunction for enhanced photocatalytic CO2 conversion. Appl. Surf. Sci. 620, 156781 (2023). https://doi.org/10.1016/j.apsusc.2023.156781
- M. Yu, Y. Chen, M. Gao, G. Huang, Q. Chen et al., Interspersed bi promoting hot electron transfer of covalent organic frameworks boosts nitrogen reduction to ammonia. Small 19(7), 2206407 (2023). https://doi.org/10.1002/smll.202206407
- Y. Wang, Y. Cao, S. Wei, M. Li, H. Wang et al., N-Bi covalently connected Z-scheme heterojunction by in situ anchoring BiOCl on triazine-based bromine-substituted covalent organic frameworks for the enhanced photocatalytic reduction of CO2 and Cr (VI). Chem. Eng. J. 505, 159349 (2025). https://doi.org/10.1016/j.cej.2025.159349
- Y. Wu, Y. Wang, M. Zhou, Y. Zhang, H. Li et al., Highly efficient photocatalytic conversion of CO2 achieved by constructing core–shell Z-scheme Bi2MoO6@COF heterojunction. Sep. Purif. Technol. 368, 133081 (2025). https://doi.org/10.1016/j.seppur.2025.133081
- L.-H. Shao, X.-B. Du, Y. Wang, H.-T. Gao, K.-X. Chen et al., Artificial mimicking hydrogen-stored process in natural photosynthesis for improved CO2 reduction. Appl. Catal. B Environ. Energy 377, 125508 (2025). https://doi.org/10.1016/j.apcatb.2025.125508
- J. Yu, C. Mu, B. Yan, X. Qin, C. Shen et al., Nanop/MOF composites: preparations and applications. Mater. Horiz. 4(4), 557–569 (2017). https://doi.org/10.1039/c6mh00586a
- Y. Yang, A. He, M. Yang, Q. Zou, H. Li et al., Selective electroreduction of CO2 to ethanol over a highly stable catalyst derived from polyaniline/CuBi2O4. Catal. Sci. Technol. 11(17), 5908–5916 (2021). https://doi.org/10.1039/D1CY01063H
- W. Dai, H. Xu, J. Yu, X. Hu, X. Luo et al., Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015). https://doi.org/10.1016/j.apsusc.2015.08.059
- Z. Liu, Q. Fan, H. Huo, F. Yao, X. Gao et al., Exploring precursor effect in in situ reconstruction of Bi metal organic-frameworks during CO2 electroreduction reaction to tailor formate selectivity towards 100%. Sci. China Chem. 67(7), 2190–2198 (2024). https://doi.org/10.1007/s11426-024-2112-2
- Z. Jiang, M. Zhang, X. Chen, B. Wang, W. Fan et al., A bismuth-based zeolitic organic framework with coordination-linked metal cages for efficient electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Ed. 62(45), e202311223 (2023). https://doi.org/10.1002/anie.202311223
- F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ. 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241
- Y. Takaoka, J.T. Song, A. Takagaki, M. Watanabe, T. Ishihara, Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate. Appl. Catal. B Environ. 326, 122400 (2023). https://doi.org/10.1016/j.apcatb.2023.122400
- L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang et al., In situ growth of Cs3Bi2Br9 quantum dots on Bi-MOF nanosheets via cosharing bismuth atoms for CO2 capture and photocatalytic reduction. Inorg. Chem. 62(5), 2289–2303 (2023). https://doi.org/10.1021/acs.inorgchem.2c04041
- P. Borah, N. McLeod, N.K. Gupta, R.J. Yeo, T. Ghosh et al., Incarcerating bismuth nanops into a thiol-laced metal–organic framework for electro and photocatalysis. Mater. Horiz. 12(4), 1290–1302 (2025). https://doi.org/10.1039/D4MH01153H
- M. Cheng, B. Gao, X. Zheng, W. Wu, W. Kong et al., CO2-assisted rapid synthesis of porphyrin-based Bi-MOFs for photocatalytic CO2 reduction: an efficient strategy for carbon cycle. Appl. Catal. B Environ. Energy 353, 124097 (2024). https://doi.org/10.1016/j.apcatb.2024.124097
- Y. Cao, S. Cui, T. Tang, M. Li, Y. Wu et al., Ligand-modulated bismuth metal–organic frameworks for efficient formate production by solar-driven coelectrolysis of CO2 and methanol. ACS Sustain. Chem. Eng. 13(9), 3633–3644 (2025). https://doi.org/10.1021/acssuschemeng.4c09914
- C. Guan, Y. Liao, Q. Xiang, Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction. Sci. China Mater. 67(2), 473–483 (2024). https://doi.org/10.1007/s40843-023-2703-0
- Y. Li, E.P. Delmo, G. Hou, X. Cui, M. Zhao et al., Enhancing local CO2 adsorption by L-histidine incorporation for selective formate production over the wide potential window. Angew. Chem. Int. Ed. 62(49), e202313522 (2023). https://doi.org/10.1002/anie.202313522
- S. Zhu, X. Li, X. Jiao, W. Shao, L. Li et al., Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites. Nano Lett. 21(5), 2324–2331 (2021). https://doi.org/10.1021/acs.nanolett.1c00383
- K. Li, C. Teng, S. Wang, Q. Min, Recent advances in TiO2-based heterojunctions for photocatalytic CO2 reduction with water oxidation: a review. Front. Chem. 9, 637501 (2021). https://doi.org/10.3389/fchem.2021.637501
- L. Collado, M. Gomez-Mendoza, M. García-Tecedor, F.E. Oropeza, A. Reynal et al., Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures. Appl. Catal. B Environ. 324, 122206 (2023). https://doi.org/10.1016/j.apcatb.2022.122206
- K. Yan, D. Wu, T. Wang, C. Chen, S. Liu et al., Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In–SV–Bi active sites. ACS Catal. 13(4), 2302–2312 (2023). https://doi.org/10.1021/acscatal.2c05741
- M. Wang, S. Zeng, A.R. Woldu, L. Hu, BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy 104, 107925 (2022). https://doi.org/10.1016/j.nanoen.2022.107925
- R. Vignesh, R. Sivakumar, C. Sanjeeviraja, A detailed analysis on optical parameters of spinel structured Mn3O4 thin films deposited by nebulized spray pyrolysis technique. Opt. Mater. 111, 110580 (2021). https://doi.org/10.1016/j.optmat.2020.110580
- L. Martinez, M. Bernechea, F.P.G. de Arquer, G. Konstantatos, Near IR-sensitive, non-toxic, polymer/nanocrystal solar cells employing Bi2S3 as the electron acceptor. Adv. Energy Mater. 1(6), 1029–1035 (2011). https://doi.org/10.1002/aenm.201100441
- J. Zhang, J. Fu, Z. Wang, B. Cheng, K. Dai et al., Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity. J. Alloys Compd. 766, 841–850 (2018). https://doi.org/10.1016/j.jallcom.2018.07.041
- L. Ye, X. Jin, X. Ji, C. Liu, Y. Su et al., Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 291, 39–46 (2016). https://doi.org/10.1016/j.cej.2016.01.032
- L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin. J. Catal. 42(1), 46–55 (2021). https://doi.org/10.1016/S1872-2067(20)63560-4
- Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li et al., S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 43(7), 1657–1666 (2022). https://doi.org/10.1016/S1872-2067(21)64010-X
- G. Wang, Z. Tang, J. Wang, S. Lv, Y. Xiang et al., Energy band engineering of Bi2O2.33 CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2. J. Mater. Sci. Technol. 111, 17–27 (2022). https://doi.org/10.1016/j.jmst.2021.09.018
- Z. Zou, H. Zhang, J. Lan, J. Luo, Y. Xie et al., Unique heterostructures of ZnCdS nanoplates with Bi2S3−terminated edges for optimal CO2−to−CO photoconversion. Nano Mater. Sci. (2022). https://doi.org/10.1016/j.nanoms.2022.11.001
- J. Zhao, M. Ji, H. Chen, Y.-X. Weng, J. Zhong et al., Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 conversion. Appl. Catal. B Environ. Energy 307, 121162 (2022). https://doi.org/10.1016/j.apcatb.2022.121162
- X.-M. Cheng, J. Zhao, W.-Y. Sun, Facet-engineering of materials for photocatalytic application: status and future prospects. Energychem 4(5), 100084 (2022). https://doi.org/10.1016/j.enchem.2022.100084
- Z. Han, Y. Chang, J. Gao, T. Liu, J. Li et al., Microfluidic continuous synthesis of size- and facet-controlled porous Bi2O3 nanospheres for efficient CO2 to formate catalysis. Small 20(43), 2403778 (2024). https://doi.org/10.1002/smll.202403778
- C.-H. Hsu, X. Zhou, T.-R. Chang, Q. Ma, N. Gedik et al., Topology on a new facet of bismuth. Proc. Natl. Acad. Sci. U. S. A. 116(27), 13255–13259 (2019). https://doi.org/10.1073/pnas.1900527116
- M. Li, H. Mu, R. Su, R. Liu, Y. Liu et al., Self-confined construction of facet heterojunction with tunable band alignment for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 35(2), 2412775 (2025). https://doi.org/10.1002/adfm.202412775
- C. Peng, S. Yang, G. Luo, S. Yan, N. Chen et al., Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth(110) facets modified with sulfur-anchored sodium cations. Chem 9(10), 2830–2840 (2023). https://doi.org/10.1016/j.chempr.2023.05.008
- H. Xie, T. Zhang, R. Xie, Z. Hou, X. Ji et al., Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 33(31), 2008373 (2021). https://doi.org/10.1002/adma.202008373
- Y. Chu, Y. Yang, D. Cao, B. Sheng, C. Liu et al., Regulating the rate-determining step of bismuth electrocatalysts by directional facet reconstruction for efficient CO2 reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508387
- S. Yang, H. An, S. Arnouts, H. Wang, X. Yu et al., Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid. Nat. Catal. 6(9), 796–806 (2023). https://doi.org/10.1038/s41929-023-01008-0
- B. Nan, L. Li, Y. Li, L. Guo, M. Du et al., Hydrogen-controlled structural reconstruction of palladium-bismuth oxide cluster to single atom alloy for low-temperature CO oxidation. Appl. Catal. B Environ. 334, 122818 (2023). https://doi.org/10.1016/j.apcatb.2023.122818
- J. Wan, W. Yang, J. Liu, K. Sun, L. Liu et al., Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31Cl x Br10–x. Chin. J. Catal. 43(2), 485–496 (2022). https://doi.org/10.1016/S1872-2067(21)63897-4
- W. Zhang, X. Zhang, J. Wang, A. Ghosh, J. Zhu et al., Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 12(17), 10531–10545 (2022). https://doi.org/10.1021/acscatal.2c00642
- L. Jia, M. Sun, J. Xu, X. Zhao, R. Zhou et al., Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem. Int. Ed. 60(40), 21741–21745 (2021). https://doi.org/10.1002/anie.202109288
- C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang et al., Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X Br, I): efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Adv. Funct. Mater. 33(29), 2301144 (2023). https://doi.org/10.1002/adfm.202301144
- C. Hu, H. Huang, F. Chen, Y. Zhang, H. Yu et al., Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 30(7), 1908168 (2020). https://doi.org/10.1002/adfm.201908168
- X. Deng, P. Chen, R. Cui, X. Gong, X. Li et al., Synergistic polarity interaction and structural reconstruction in Bi2MoO6/C3N4 heterojunction for enhancing piezo-photocatalytic nitrogen oxidation to nitric acid. Appl. Catal. B Environ. Energy 351, 123977 (2024). https://doi.org/10.1016/j.apcatb.2024.123977
- R. Chakraborty, P.K. Rajput, G.M. Anilkumar, S. Maqbool, R. Das et al., Rational design of non-centrosymmetric hybrid halide perovskites. J. Am. Chem. Soc. 145(2), 1378–1388 (2023). https://doi.org/10.1021/jacs.2c12034
- M. Wang, H. Yu, K. Yu, Advances in bismuth-based non-centrosymmetric materials as polarization-enhanced photocatalysts for environmental remediation and energy conversion. Chem. Eng. J. 470, 144100 (2023). https://doi.org/10.1016/j.cej.2023.144100
- S. Li, L. Bai, N. Ji, S. Yu, S. Lin et al., Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 8(18), 9268–9277 (2020). https://doi.org/10.1039/D0TA02102D
- H. Yu, F. Chen, X. Li, H. Huang, Q. Zhang et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 12(1), 4594 (2021). https://doi.org/10.1038/s41467-021-24882-3
- B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang et al., Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nat. Commun. 13(1), 2486 (2022). https://doi.org/10.1038/s41467-022-29861-w
- Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia et al., Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Ed. 60(22), 12554–12559 (2021). https://doi.org/10.1002/anie.202102832
- W. Yang, C. Si, Y. Zhao, Q. Wei, G. Jia et al., Activating inert antimony for selective CO2 electroreduction to formate via bimetallic interactions. Appl. Catal. B Environ. 316, 121619 (2022). https://doi.org/10.1016/j.apcatb.2022.121619
- S. Farid, A. Rashid, K.S. Joya, F. Yasmeen, Electronic and structural programming via electrochemical dealloying to generate Bi–Pb electrocatalysts for CO2 reduction to formate. J. Mater. Chem. A 13(19), 14010–14023 (2025). https://doi.org/10.1039/D4TA08751H
- Z. Wu, Y. Liu, X. Xing, L. Yao, Z. Chen et al., A novel SAXS/XRD/XAFS combined technique for in situ time-resolved simultaneous measurements. Nano Res. 16(1), 1123–1131 (2023). https://doi.org/10.1007/s12274-022-4742-3
- Y. Liu, W. Sheng, Z. Wu, Synchrotron radiation and its applications in inorganic materials. J. Inorg. Mater. 36(9), 901 (2021). https://doi.org/10.15541/jim20200703
- W. Cheng, M. Zhao, Y. Lai, X. Wang, H. Liu et al., Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 4(1), 20230056 (2024). https://doi.org/10.1002/EXP.20230056
- Y. Liu, S. Zhao, J. Zhong, J. Liu, B. Chen et al., In-situ tracking CO2-assisted isothermal-isobaric synthesis of self-assembled bi-based photocatalyst using novel SAXS/XRD/XAFS combined technique. Sci. China Mater. 67(11), 3609–3621 (2024). https://doi.org/10.1007/s40843-024-3069-1
- Y. Liu, L. Gong, J. Liu, P. Xiao, B. Chen et al., Fabrication of interface with capping-bonding synergy to boost CO2 electroreduction to formate. Appl. Catal. B Environ. Energy 362, 124760 (2025). https://doi.org/10.1016/j.apcatb.2024.124760
- J. de Ruiter, V.R.M. Benning, S. Yang, B.J. den Hartigh, H. Wang et al., Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO2 reduction. Nat. Commun. 16(1), 373 (2025). https://doi.org/10.1038/s41467-024-55742-5
References
X. Li, S. Wang, L. Li, Y. Sun, Y. Xie, Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142(21), 9567–9581 (2020). https://doi.org/10.1021/jacs.0c02973
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020). https://doi.org/10.1016/j.mattod.2019.06.009
X. Li, W. Bi, M. Chen, Y. Sun, H. Ju et al., Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139(42), 14889–14892 (2017). https://doi.org/10.1021/jacs.7b09074
X. Shen, Q. Meng, M. Dong, J. Xiang, S. Li et al., Low-temperature reverse water–gas shift process and transformation of renewable carbon resources to value-added chemicals. Chemsuschem 12(23), 5149–5156 (2019). https://doi.org/10.1002/cssc.201902404
D. Cui, W. Hao, J. Chen, The synergistic effect of heteroatom doping and vacancy on the reduction of CO2 by photocatalysts. ChemNanoMat 7(8), 894–901 (2021). https://doi.org/10.1002/cnma.202100148
L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang et al., Research progress on CO2 capture and utilization technology. J. CO2 Util. 66, 102260 (2022). https://doi.org/10.1016/j.jcou.2022.102260
S.S. Meryem, S. Nasreen, M. Siddique, R. Khan, An overview of the reaction conditions for an efficient photoconversion of CO2. Rev. Chem. Eng. 34(3), 409–425 (2018). https://doi.org/10.1515/revce-2016-0016
C. Ren, W. Ni, H. Li, Recent progress in electrocatalytic reduction of CO2. Catalysts 13(4), 644 (2023). https://doi.org/10.3390/catal13040644
F. Chen, Z.-C. Yao, Z.-H. Lyu, J. Fu, X. Zhang et al., Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction. eScience 4(2), 100172 (2024). https://doi.org/10.1016/j.esci.2023.100172
H. Xie, Y. Wan, X. Wang, J. Liang, G. Lu et al., Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl. Catal. B Environ. 289, 119783 (2021). https://doi.org/10.1016/j.apcatb.2020.119783
X. Ding, J. Zhang, Y. Li, CO electroreduction: what can we learn from its parent reaction, CO2 electroreduction? eScience 3(6), 100137 (2023). https://doi.org/10.1016/j.esci.2023.100137
W. Dai, P. Wang, J. Long, Y. Xu, M. Zhang et al., Constructing robust Bi active sites in situ on α-Bi2O3 for efficient and selective photoreduction of CO2 to CH4 via directional transfer of electrons. ACS Catal. 13(4), 2513–2522 (2023). https://doi.org/10.1021/acscatal.2c05724
Y.-X. Duan, Y.-T. Zhou, Z. Yu, D.-X. Liu, Z. Wen et al., Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem. Int. Ed. 60(16), 8798–8802 (2021). https://doi.org/10.1002/anie.202015713
Y.-X. Duan, K.-H. Liu, Q. Zhang, J.-M. Yan, Q. Jiang, Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods. 4(5), 1900846 (2020). https://doi.org/10.1002/smtd.201900846
H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14(1), 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
V.D.B.C. Dasireddy, B. Likozar, Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanop catalysts. Renew. Energy 195, 885–895 (2022). https://doi.org/10.1016/j.renene.2022.06.064
M. Wu, Y. Yang, J. Zhao, R. Liu, Spontaneous spatial-optimizing CO2 electroreduction to C2H4 over dynamically synergistic Cu-Bi pair. J. Colloid Interface Sci. 677, 452–461 (2025). https://doi.org/10.1016/j.jcis.2024.08.077
P. Bhavani, M. Hussain, Y.-K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: a state of the art review. J. Clean. Prod. 330, 129899 (2022). https://doi.org/10.1016/j.jclepro.2021.129899
Q. Han, Advances in preparation methods of bismuth-based photocatalysts. Chem. Eng. J. 414, 127877 (2021). https://doi.org/10.1016/j.cej.2020.127877
Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman et al., Rational design of Bi nanops for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 6(9), 6255–6264 (2016). https://doi.org/10.1021/acscatal.6b01297
Z.-L. Yu, S.-Q. Wu, L.-W. Chen, Y.-C. Hao, X. Su et al., Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments. ACS Appl. Mater. Interfaces 14(8), 10648–10655 (2022). https://doi.org/10.1021/acsami.1c16689
J. Zhu, G. Zhou, Y. Tong, L. Chen, P. Chen, Vanadium oxide clusters mediated bismuth-tin alloy for accelerated dynamics of electrocatalytic CO2 conversion. Adv. Funct. Mater. 35(16), 2420177 (2025). https://doi.org/10.1002/adfm.202420177
W. Wu, J. Zhu, Y. Tong, S. Xiang, P. Chen, Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Res. 17(5), 3684–3692 (2024). https://doi.org/10.1007/s12274-023-6269-7
L. Wang, W.-K. Gui, S. Jiang, L. Wang, J.-P. Yang, Bi2S3 nanofiber bunch for highly efficient CO2 electroreduction to formate at low overpotential. Rare Met. 43(7), 3391–3399 (2024). https://doi.org/10.1007/s12598-024-02665-1
T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal et al., Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 30(3), 1906478 (2020). https://doi.org/10.1002/adfm.201906478
W.S. Cho, D.M. Hong, W.J. Dong, T.H. Lee, C.J. Yoo et al., Porously reduced 2-dimensional Bi2O2CO3 petals for strain-mediated electrochemical CO2 reduction to HCOOH. Energy Environ. Mater. 7(1), e12490 (2024). https://doi.org/10.1002/eem2.12490
Z. Jiang, X. Liang, H. Zheng, Y. Liu, Z. Wang et al., Photocatalytic reduction of CO2 to methanol by three-dimensional hollow structures of Bi2WO6 quantum dots. Appl. Catal. B Environ. 219, 209–215 (2017). https://doi.org/10.1016/j.apcatb.2017.07.023
W. Amdouni, M. Fricaudet, M. Otoničar, V. Garcia, S. Fusil et al., BiFeO3 nanops: the “holy-grail” of piezo-photocatalysts? Adv. Mater. 35(31), 2301841 (2023). https://doi.org/10.1002/adma.202301841
R.-Q. Miao, Z.-H. He, B.-T. Wu, J. Liu, S.-W. Wang et al., Activated carbon-boosted BiOI in CO2 adsorption and electron transfer for photothermally catalyzed CO2 oxidative dehydrogenation of propane. Chem. Eng. J. 481, 148293 (2024). https://doi.org/10.1016/j.cej.2023.148293
W. Wu, Y. Tong, Y. Ye, G. Zhou, J. He et al., In-situ electrochemical transformation of F-modified metallic bismuth for highly-efficient CO2 electroreduction and Zn-CO2 battery. Chem. Eng. J. 494, 153105 (2024). https://doi.org/10.1016/j.cej.2024.153105
Z. Cui, P. Wang, Y. Wu, X. Liu, G. Chen et al., Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas−solid condition under visible light. Appl. Catal. B Environ. 310, 121375 (2022). https://doi.org/10.1016/j.apcatb.2022.121375
Y. Fang, L. Hong, Y. Dai, Q. Xiang, N. Zhang et al., Reconstruction of the surface Bi3+ oxide layer on Bi2O2CO3: facilitating electron transfer for enhanced photocatalytic degradation performance of antibiotics in water. Ceram. Int. 50(24), 52788–52796 (2024). https://doi.org/10.1016/j.ceramint.2024.10.132
D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
M. Wang, H. Wang, Y. Gu, M. Zhu, M. Kumar et al., In situ generation of flash graphene supported spherical bismuth nanops in less than 200 ms for highly selective carbon dioxide electroreduction. ACS Mater. Lett. 6(1), 100–108 (2024). https://doi.org/10.1021/acsmaterialslett.3c01183
J. Wu, X. Kang, S. Xu, Z. Wei, S. Xu et al., Influence of Bi3+ doping on electrochemical properties of Ti/Sb-SnO2/PbO2 electrode for zinc electrowinning. Molecules 29(17), 4062 (2024). https://doi.org/10.3390/molecules29174062
P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
S. Adhikari, S. Mandal, D.-H. Kim, Recent development strategies for bismuth-driven materials in sustainable energy systems and environmental restoration. Small 19(10), 2206003 (2023). https://doi.org/10.1002/smll.202206003
M. Wang, Y. Meng, K. Li, T. Ahmad, N. Chen et al., Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience 2(5), 509–517 (2022). https://doi.org/10.1016/j.esci.2022.04.003
S. Song, Z. Xing, H. Zhao, Z. Li, W. Zhou, Recent advances in bismuth-based photocatalysts: environment and energy applications. Green Energy Environ. 8(5), 1232–1264 (2023). https://doi.org/10.1016/j.gee.2022.04.004
X. Liu, K. Zhang, Y. Sun, S. Zhang, Z. Qiu et al., Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis. Susmat 3(2), 235–247 (2023). https://doi.org/10.1002/sus2.117
F.P. García de Arquer, O.S. Bushuyev, P. De Luna, C.T. Dinh, A. Seifitokaldani et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30(38), e1802858 (2018). https://doi.org/10.1002/adma.201802858
J. Lin, J. He, Q. Huang, Y. Luo, Y. Zhang et al., Interfacial Bi-O-C bonds and rich oxygen vacancies synergistically endow carbon quantum dot/Bi2MoO6 with prominent photocatalytic CO2 reduction into CO. Appl. Catal. B Environ. Energy 362, 124747 (2025). https://doi.org/10.1016/j.apcatb.2024.124747
Z. Ma, C. Lin, H.H. Han, Y.-S. Bae, K.-S. Lee et al., Interfacial interaction-mediated regulation of metal oxidation states for enhanced CO2 reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202424753
D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Appl. Catal. B Environ. 271, 118957 (2020). https://doi.org/10.1016/j.apcatb.2020.118957
X. Duan, J. Xu, Y. Cong, H. Geng, K. Chen et al., Enhancing CO2 electroreduction to formate on bismuth catalyst via sulfur doping. Chem. Eng. J. 501, 157404 (2024). https://doi.org/10.1016/j.cej.2024.157404
L. Xu, J.C. Yu, Y. Wang, Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction. J. Environ. Sci. 140, 183–203 (2024). https://doi.org/10.1016/j.jes.2023.07.002
Y. Cheng, Y. Zhang, Z. Wang, R. Guo, J. You et al., Review of Bi-based catalysts in piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants. Nanoscale 15(46), 18571–18580 (2023). https://doi.org/10.1039/D3NR05016E
F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J. Wang et al., Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11(1), 1088 (2020). https://doi.org/10.1038/s41467-020-14914-9
Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
Y. Wan, H. Zhou, M. Zheng, Z.-H. Huang, F. Kang et al., Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 31(30), 2100300 (2021). https://doi.org/10.1002/adfm.202100300
L. Hu, X. Sai, X. Liu, Z. Chen, G. Wang et al., Influence of environmental conditions on electrocatalytic CO2 reduction. ChemCatChem 16(6), e202301335 (2024). https://doi.org/10.1002/cctc.202301335
S.-F. Qin, S. Yang, L.-C. Zhao, Y.-J. Xie, Y. Wang et al., Temperature dependent electrochemical reduction of CO2 at temperature controllable-rotating disk electrode modified with bismuth film. Electrochim. Acta 461, 142627 (2023). https://doi.org/10.1016/j.electacta.2023.142627
L. Zhang, Y. Li, Q. Li, J. Fan, S.A.C. Carabineiro et al., Recent advances on bismuth-based photocatalysts: strategies and mechanisms. Chem. Eng. J. 419, 129484 (2021). https://doi.org/10.1016/j.cej.2021.129484
S.V.P. Vattikuti, J. Zeng, R. Ramaraghavulu, J. Shim, A. Mauger et al., High-throughput strategies for the design, discovery, and analysis of bismuth-based photocatalysts. Int. J. Mol. Sci. 24(1), 663 (2022). https://doi.org/10.3390/ijms24010663
G. Zhang, S. Li, L. Zhang, Y. Tian, Structural tuning of bismuth molybdate composite photocatalyst for pollutants removal. Surf. Interfaces 44, 103707 (2024). https://doi.org/10.1016/j.surfin.2023.103707
Q. Pan, Y. Wu, X. Su, Y. Yin, S. Shi et al., A review on the recent development of bismuth-based catalysts for CO2 photoreduction. J. Mol. Struct. 1294, 136404 (2023). https://doi.org/10.1016/j.molstruc.2023.136404
P. Kar, T.K. Maji, R. Nandi, P. Lemmens, S.K. Pal, In-situ hydrothermal synthesis of Bi-Bi2O2CO3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Nano-Micro Lett. 9(2), 18 (2017). https://doi.org/10.1007/s40820-016-0118-0
X. Shi, X.-A. Dong, Y. Sun, S. Zhang, F. Dong, Dynamic active sites in Bi5O7I promoted by surface tensile strain enable selective visible light CO2 photoreduction. Research 2022, 9818792 (2022). https://doi.org/10.34133/2022/9818792r
Y. Zhang, F. Guo, J. Di, K. Wang, M.M. Li et al., Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Lett. 16(1), 90 (2024). https://doi.org/10.1007/s40820-023-01309-w
T. Peng, Y. Wang, C.L. Dong, T.T.T. Nga, B. Wu et al., BiOCl atomic layers with electrons enriched active sites exposed for efficient photocatalytic CO2 overall splitting. Nano-Micro Lett. 17(1), 223 (2025). https://doi.org/10.1007/s40820-025-01723-2
L. Liu, K. Dai, J. Zhang, L. Li, Plasmonic bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 604, 844–855 (2021). https://doi.org/10.1016/j.jcis.2021.07.064
X. Zhang, G. Ren, C. Zhang, R. Li, Q. Zhao et al., Photocatalytic reduction of CO2 to CO over 3D Bi2MoO6 microspheres: simple synthesis, high efficiency and selectivity, reaction mechanism. Catal. Lett. 150(9), 2510–2516 (2020). https://doi.org/10.1007/s10562-020-03182-3
X.-J. Wen, X. Wu, L. Hu, X.-K. Wu, H. Guo et al., A critical review on modification strategies of Bi2Sn2O7 photocatalysts and their applications in energy and environmental remediation fields. Coord. Chem. Rev. 526, 216377 (2025). https://doi.org/10.1016/j.ccr.2024.216377
B. Li, X.-J. Liu, H.-W. Zhu, H.-P. Guan, R.-T. Guo, A review on Bi2WO6-based materials for photocatalytic CO2 reduction. Small 20(49), e2406074 (2024). https://doi.org/10.1002/smll.202406074
R. Zafar, A. Javaid, M. Imran, S. Latif, M.N. Khan et al., Recent advances in catalytic reduction of CO2 through bismuth based MOFs. J. Saudi Chem. Soc. 28(6), 101926 (2024). https://doi.org/10.1016/j.jscs.2024.101926
A.S. Belousov, A.A. Parkhacheva, A.N. Markov, A.N. Petukhov, A.A. Kapinos et al., Environmental application of versatile bi-based perovskite photocatalysts and their Z-scheme and S-scheme heterojunctions. J. Environ. Chem. Eng. 12(5), 113309 (2024). https://doi.org/10.1016/j.jece.2024.113309
L. Ye, Y. Deng, L. Wang, H. Xie, F. Su, Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion. Chemsuschem 12(16), 3671–3701 (2019). https://doi.org/10.1002/cssc.201901196
X. Linghu, J. Chen, L. Jiang, T. Wang, Recent progress in bismuth-based materials for electrochemical CO2 reduction to formate/formic acid. Nano Mater. Sci. (2024). https://doi.org/10.1016/j.nanoms.2024.11.007
X. Sun, X. Zhang, Y. Xie, Surface defects in two-dimensional photocatalysts for efficient organic synthesis. Matter 2(4), 842–861 (2020). https://doi.org/10.1016/j.matt.2020.02.006
A. Mo, Y. Feng, B. Yang, W. Dang, X. Liang et al., Controlling unintentional defects enables high-efficient antimony selenide solar cells. Adv. Funct. Mater. 34(29), 2316292 (2024). https://doi.org/10.1002/adfm.202316292
M. Zhao, Y. Gu, W. Gao, P. Cui, H. Tang et al., Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B Environ. 266, 118625 (2020). https://doi.org/10.1016/j.apcatb.2020.118625
Z. Li, B. Sun, D. Xiao, Z. Wang, Y. Liu et al., Electron-rich Bi nanosheets promote CO2− formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 62(11), e202217569 (2023). https://doi.org/10.1002/anie.202217569
K. Ye, K. Li, Y. Lu, Z. Guo, N. Ni et al., An overview of advanced methods for the characterization of oxygen vacancies in materials. Trac Trends Anal. Chem. 116, 102–108 (2019). https://doi.org/10.1016/j.trac.2019.05.002
M. Sun, X.-A. Dong, B. Lei, J. Li, P. Chen et al., Graphene oxide mediated co-generation of C-doping and oxygen defects in Bi2WO6 nanosheets: a combined DRIFTS and DFT investigation. Nanoscale 11(43), 20562–20570 (2019). https://doi.org/10.1039/C9NR06874K
X. Zu, Y. Zhao, X. Li, R. Chen, W. Shao et al., Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem. Int. Ed. 60(25), 13840–13846 (2021). https://doi.org/10.1002/anie.202101894
S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao et al., Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Appl. Catal. B Environ. 305, 121026 (2022). https://doi.org/10.1016/j.apcatb.2021.121026
Y. Lu, Y. Huang, Y. Zhang, T. Huang, H. Li et al., Effects of H2O2 generation over visible light-responsive Bi/Bi2O2-xCO3 nanosheets on their photocatalytic NOx removal performance. Chem. Eng. J. 363, 374–382 (2019). https://doi.org/10.1016/j.cej.2019.01.172
M. Ates, C. Alperen, Polythiophene-based reduced graphene oxide and carbon black nanocomposites for supercapacitors. Iran. Polym. J. 32(10), 1241–1255 (2023). https://doi.org/10.1007/s13726-023-01201-9
X. Shi, X. Dong, Y. He, P. Yan, F. Dong, Light-induced halogen defects as dynamic active sites for CO2 photoreduction to CO with 100% selectivity. Sci. Bull. 67(11), 1137–1144 (2022). https://doi.org/10.1016/j.scib.2022.01.013
M. Guan, N. Lu, X. Zhang, Q. Wang, J. Bao et al., Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO. Carbon Energy 6(4), e420 (2024). https://doi.org/10.1002/cey2.420
J. Zhu, J. Li, R. Lu, R. Yu, S. Zhao et al., Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 14(1), 4670 (2023). https://doi.org/10.1038/s41467-023-40342-6
L. Lv, R. Lu, J. Zhu, R. Yu, W. Zhang et al., Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. 62(25), e202303117 (2023). https://doi.org/10.1002/anie.202303117
L. Zhao, H. Hou, L. Wang, C.R. Bowen, J. Wang et al., Atomic-level surface modification of ultrathin Bi2WO6 nanosheets for boosting photocatalytic CO2 reduction. Chem. Eng. J. 480, 148033 (2024). https://doi.org/10.1016/j.cej.2023.148033
X. Liu, C. Zhen, J. Wu, X. You, Y. Wu et al., Modulating the hydrogenation mechanism of electrochemical CO2 reduction using ruthenium atomic species on bismuth. Adv. Funct. Mater. 34(44), 2405835 (2024). https://doi.org/10.1002/adfm.202405835
Y. Xu, M. Zhang, J. Long, W. Dai, P. Wang et al., Co single atom modulating the secondary coordination environment of Bi sites for boosting the adsorptive and catalytic capacity during CO2 photoreduction. Appl. Catal. B Environ. 340, 123230 (2024). https://doi.org/10.1016/j.apcatb.2023.123230
J. Lu, Y. Ren, J. Liang, L. Zou, Y. Gao et al., Copper as an electron hunter for enhancing Bi2O2CO3 electrocatalytic CO2 conversion to formate. Small 20(45), 2402879 (2024). https://doi.org/10.1002/smll.202402879
A. Xu, X. Chen, D. Wei, B. Chu, M. Yu et al., Regulating the electronic structure of bismuth nanosheets by titanium doping to boost CO2 electroreduction and Zn–CO2 batteries. Small 19(38), 2370306 (2023). https://doi.org/10.1002/smll.202370306
Y. Zhang, S. Liu, N. Ji, L. Wei, Q. Liang et al., Modulation of the electronic structure of metallic bismuth catalysts by cerium doping to facilitate electrocatalytic CO2 reduction to formate. J. Mater. Chem. A 12(13), 7528–7535 (2024). https://doi.org/10.1039/d4ta00091a
C. He, H. Yang, X. Fu, X. Cheng, J. Guo et al., A DFT study of two-dimensional P2Si monolayer modified by single transition metal (Sc-Cu) atoms for efficient electrocatalytic CO2 reduction. Chin. Chem. Lett. 34(5), 107579 (2023). https://doi.org/10.1016/j.cclet.2022.06.002
R. Cui, Q. Yuan, C. Zhang, X. Yang, Z. Ji et al., Revealing the behavior of interfacial water in Te-doped Bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS Catal. 12(18), 11294–11300 (2022). https://doi.org/10.1021/acscatal.2c03369
Z. Jiang, S. Ren, X. Cao, Q. Fan, R. Yu et al., pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide. Angew. Chem. Int. Ed. 63(32), e202408412 (2024). https://doi.org/10.1002/anie.202408412
X. Chen, H. Chen, W. Zhou, Q. Zhang, Z. Yang et al., Boron dopant induced electron-rich bismuth for electrochemical CO2 reduction with high solar energy conversion efficiency. Small 17(29), 2101128 (2021). https://doi.org/10.1002/smll.202101128
Y. Zhang, Y. Chen, R. Liu, X. Wang, H. Liu et al., Oxygen vacancy stabilized Bi2O2CO3 nanosheet for CO2 electroreduction at low overpotential enables energy efficient CO-production of formate. InfoMat 5(3), e12375 (2023). https://doi.org/10.1002/inf2.12375
X. Shao, X. Sun, Q. Huang, J. Yi, J. Zhang et al., Electronic structural modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO2 electroreduction. Dalton Trans. 51(18), 7223–7233 (2022). https://doi.org/10.1039/D2DT00624C
Y. Zhang, Y. Sun, L. Pan, Z. Wen, M. Shi et al., Efficient degradation of antibiotic pollutants in water by Ca2+/Ce3+ co-doped Bi2O2CO3 photocatalysts. Environ. Res. 278, 121668 (2025). https://doi.org/10.1016/j.envres.2025.121668
H. Zhou, S. Zhong, M. Shen, J. Hou, W. Chen, Formamide-assisted one-pot synthesis of a Bi/Bi2O2CO3 heterojunction photocatalyst with enhanced photocatalytic activity. J. Alloys Compd. 769, 301–310 (2018). https://doi.org/10.1016/j.jallcom.2018.08.007
H.L. Nguyen, A. Alzamly, Covalent organic frameworks as emerging platforms for CO2 photoreduction. ACS Catal. 11(15), 9809–9824 (2021). https://doi.org/10.1021/acscatal.1c02459
G.-B. Wang, K.-H. Xie, H.-P. Xu, Y.-J. Wang, F. Zhao et al., Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord. Chem. Rev. 472, 214774 (2022). https://doi.org/10.1016/j.ccr.2022.214774
T. Li, Y. Pan, B. Shao, X. Zhang, T. Wu et al., Covalent–organic framework (COF)-core–shell composites: classification, synthesis, properties, and applications. Adv. Funct. Mater. 33(45), 2304990 (2023). https://doi.org/10.1002/adfm.202304990
Y. Wang, Z. Dai, J. Wang, D. Zhang, F. Zhou et al., Scheme-II heterojunction of Bi2WO6@Br-COFs hybrid materials for CO2 photocatalytic reduction. Chem. Eng. J. 471, 144559 (2023). https://doi.org/10.1016/j.cej.2023.144559
Y. Wu, J. Liu, J. Rong, Y. Zhang, Q. Liang et al., Combination of covalent-organic framework and Bi2O2S by covalent bonds to form p-n heterojunction for enhanced photocatalytic CO2 conversion. Appl. Surf. Sci. 620, 156781 (2023). https://doi.org/10.1016/j.apsusc.2023.156781
M. Yu, Y. Chen, M. Gao, G. Huang, Q. Chen et al., Interspersed bi promoting hot electron transfer of covalent organic frameworks boosts nitrogen reduction to ammonia. Small 19(7), 2206407 (2023). https://doi.org/10.1002/smll.202206407
Y. Wang, Y. Cao, S. Wei, M. Li, H. Wang et al., N-Bi covalently connected Z-scheme heterojunction by in situ anchoring BiOCl on triazine-based bromine-substituted covalent organic frameworks for the enhanced photocatalytic reduction of CO2 and Cr (VI). Chem. Eng. J. 505, 159349 (2025). https://doi.org/10.1016/j.cej.2025.159349
Y. Wu, Y. Wang, M. Zhou, Y. Zhang, H. Li et al., Highly efficient photocatalytic conversion of CO2 achieved by constructing core–shell Z-scheme Bi2MoO6@COF heterojunction. Sep. Purif. Technol. 368, 133081 (2025). https://doi.org/10.1016/j.seppur.2025.133081
L.-H. Shao, X.-B. Du, Y. Wang, H.-T. Gao, K.-X. Chen et al., Artificial mimicking hydrogen-stored process in natural photosynthesis for improved CO2 reduction. Appl. Catal. B Environ. Energy 377, 125508 (2025). https://doi.org/10.1016/j.apcatb.2025.125508
J. Yu, C. Mu, B. Yan, X. Qin, C. Shen et al., Nanop/MOF composites: preparations and applications. Mater. Horiz. 4(4), 557–569 (2017). https://doi.org/10.1039/c6mh00586a
Y. Yang, A. He, M. Yang, Q. Zou, H. Li et al., Selective electroreduction of CO2 to ethanol over a highly stable catalyst derived from polyaniline/CuBi2O4. Catal. Sci. Technol. 11(17), 5908–5916 (2021). https://doi.org/10.1039/D1CY01063H
W. Dai, H. Xu, J. Yu, X. Hu, X. Luo et al., Photocatalytic reduction of CO2 into methanol and ethanol over conducting polymers modified Bi2WO6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015). https://doi.org/10.1016/j.apsusc.2015.08.059
Z. Liu, Q. Fan, H. Huo, F. Yao, X. Gao et al., Exploring precursor effect in in situ reconstruction of Bi metal organic-frameworks during CO2 electroreduction reaction to tailor formate selectivity towards 100%. Sci. China Chem. 67(7), 2190–2198 (2024). https://doi.org/10.1007/s11426-024-2112-2
Z. Jiang, M. Zhang, X. Chen, B. Wang, W. Fan et al., A bismuth-based zeolitic organic framework with coordination-linked metal cages for efficient electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Ed. 62(45), e202311223 (2023). https://doi.org/10.1002/anie.202311223
F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ. 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241
Y. Takaoka, J.T. Song, A. Takagaki, M. Watanabe, T. Ishihara, Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate. Appl. Catal. B Environ. 326, 122400 (2023). https://doi.org/10.1016/j.apcatb.2023.122400
L. Ding, Y. Ding, F. Bai, G. Chen, S. Zhang et al., In situ growth of Cs3Bi2Br9 quantum dots on Bi-MOF nanosheets via cosharing bismuth atoms for CO2 capture and photocatalytic reduction. Inorg. Chem. 62(5), 2289–2303 (2023). https://doi.org/10.1021/acs.inorgchem.2c04041
P. Borah, N. McLeod, N.K. Gupta, R.J. Yeo, T. Ghosh et al., Incarcerating bismuth nanops into a thiol-laced metal–organic framework for electro and photocatalysis. Mater. Horiz. 12(4), 1290–1302 (2025). https://doi.org/10.1039/D4MH01153H
M. Cheng, B. Gao, X. Zheng, W. Wu, W. Kong et al., CO2-assisted rapid synthesis of porphyrin-based Bi-MOFs for photocatalytic CO2 reduction: an efficient strategy for carbon cycle. Appl. Catal. B Environ. Energy 353, 124097 (2024). https://doi.org/10.1016/j.apcatb.2024.124097
Y. Cao, S. Cui, T. Tang, M. Li, Y. Wu et al., Ligand-modulated bismuth metal–organic frameworks for efficient formate production by solar-driven coelectrolysis of CO2 and methanol. ACS Sustain. Chem. Eng. 13(9), 3633–3644 (2025). https://doi.org/10.1021/acssuschemeng.4c09914
C. Guan, Y. Liao, Q. Xiang, Dual-facet engineering of surface carboxyl functionalization and interlayer potassium ions regulation in carbon nitride for enhanced CO2 photoreduction. Sci. China Mater. 67(2), 473–483 (2024). https://doi.org/10.1007/s40843-023-2703-0
Y. Li, E.P. Delmo, G. Hou, X. Cui, M. Zhao et al., Enhancing local CO2 adsorption by L-histidine incorporation for selective formate production over the wide potential window. Angew. Chem. Int. Ed. 62(49), e202313522 (2023). https://doi.org/10.1002/anie.202313522
S. Zhu, X. Li, X. Jiao, W. Shao, L. Li et al., Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites. Nano Lett. 21(5), 2324–2331 (2021). https://doi.org/10.1021/acs.nanolett.1c00383
K. Li, C. Teng, S. Wang, Q. Min, Recent advances in TiO2-based heterojunctions for photocatalytic CO2 reduction with water oxidation: a review. Front. Chem. 9, 637501 (2021). https://doi.org/10.3389/fchem.2021.637501
L. Collado, M. Gomez-Mendoza, M. García-Tecedor, F.E. Oropeza, A. Reynal et al., Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures. Appl. Catal. B Environ. 324, 122206 (2023). https://doi.org/10.1016/j.apcatb.2022.122206
K. Yan, D. Wu, T. Wang, C. Chen, S. Liu et al., Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In–SV–Bi active sites. ACS Catal. 13(4), 2302–2312 (2023). https://doi.org/10.1021/acscatal.2c05741
M. Wang, S. Zeng, A.R. Woldu, L. Hu, BiVO4/Bi2S3 Z-scheme heterojunction with MnOx as a cocatalyst for efficient photocatalytic CO2 conversion to methanol by pure water. Nano Energy 104, 107925 (2022). https://doi.org/10.1016/j.nanoen.2022.107925
R. Vignesh, R. Sivakumar, C. Sanjeeviraja, A detailed analysis on optical parameters of spinel structured Mn3O4 thin films deposited by nebulized spray pyrolysis technique. Opt. Mater. 111, 110580 (2021). https://doi.org/10.1016/j.optmat.2020.110580
L. Martinez, M. Bernechea, F.P.G. de Arquer, G. Konstantatos, Near IR-sensitive, non-toxic, polymer/nanocrystal solar cells employing Bi2S3 as the electron acceptor. Adv. Energy Mater. 1(6), 1029–1035 (2011). https://doi.org/10.1002/aenm.201100441
J. Zhang, J. Fu, Z. Wang, B. Cheng, K. Dai et al., Direct Z-scheme porous g-C3N4/BiOI heterojunction for enhanced visible-light photocatalytic activity. J. Alloys Compd. 766, 841–850 (2018). https://doi.org/10.1016/j.jallcom.2018.07.041
L. Ye, X. Jin, X. Ji, C. Liu, Y. Su et al., Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 291, 39–46 (2016). https://doi.org/10.1016/j.cej.2016.01.032
L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin. J. Catal. 42(1), 46–55 (2021). https://doi.org/10.1016/S1872-2067(20)63560-4
Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li et al., S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 43(7), 1657–1666 (2022). https://doi.org/10.1016/S1872-2067(21)64010-X
G. Wang, Z. Tang, J. Wang, S. Lv, Y. Xiang et al., Energy band engineering of Bi2O2.33 CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2. J. Mater. Sci. Technol. 111, 17–27 (2022). https://doi.org/10.1016/j.jmst.2021.09.018
Z. Zou, H. Zhang, J. Lan, J. Luo, Y. Xie et al., Unique heterostructures of ZnCdS nanoplates with Bi2S3−terminated edges for optimal CO2−to−CO photoconversion. Nano Mater. Sci. (2022). https://doi.org/10.1016/j.nanoms.2022.11.001
J. Zhao, M. Ji, H. Chen, Y.-X. Weng, J. Zhong et al., Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 conversion. Appl. Catal. B Environ. Energy 307, 121162 (2022). https://doi.org/10.1016/j.apcatb.2022.121162
X.-M. Cheng, J. Zhao, W.-Y. Sun, Facet-engineering of materials for photocatalytic application: status and future prospects. Energychem 4(5), 100084 (2022). https://doi.org/10.1016/j.enchem.2022.100084
Z. Han, Y. Chang, J. Gao, T. Liu, J. Li et al., Microfluidic continuous synthesis of size- and facet-controlled porous Bi2O3 nanospheres for efficient CO2 to formate catalysis. Small 20(43), 2403778 (2024). https://doi.org/10.1002/smll.202403778
C.-H. Hsu, X. Zhou, T.-R. Chang, Q. Ma, N. Gedik et al., Topology on a new facet of bismuth. Proc. Natl. Acad. Sci. U. S. A. 116(27), 13255–13259 (2019). https://doi.org/10.1073/pnas.1900527116
M. Li, H. Mu, R. Su, R. Liu, Y. Liu et al., Self-confined construction of facet heterojunction with tunable band alignment for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 35(2), 2412775 (2025). https://doi.org/10.1002/adfm.202412775
C. Peng, S. Yang, G. Luo, S. Yan, N. Chen et al., Ampere-level CO2-to-formate electrosynthesis using highly exposed bismuth(110) facets modified with sulfur-anchored sodium cations. Chem 9(10), 2830–2840 (2023). https://doi.org/10.1016/j.chempr.2023.05.008
H. Xie, T. Zhang, R. Xie, Z. Hou, X. Ji et al., Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 33(31), 2008373 (2021). https://doi.org/10.1002/adma.202008373
Y. Chu, Y. Yang, D. Cao, B. Sheng, C. Liu et al., Regulating the rate-determining step of bismuth electrocatalysts by directional facet reconstruction for efficient CO2 reduction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508387
S. Yang, H. An, S. Arnouts, H. Wang, X. Yu et al., Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid. Nat. Catal. 6(9), 796–806 (2023). https://doi.org/10.1038/s41929-023-01008-0
B. Nan, L. Li, Y. Li, L. Guo, M. Du et al., Hydrogen-controlled structural reconstruction of palladium-bismuth oxide cluster to single atom alloy for low-temperature CO oxidation. Appl. Catal. B Environ. 334, 122818 (2023). https://doi.org/10.1016/j.apcatb.2023.122818
J. Wan, W. Yang, J. Liu, K. Sun, L. Liu et al., Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31Cl x Br10–x. Chin. J. Catal. 43(2), 485–496 (2022). https://doi.org/10.1016/S1872-2067(21)63897-4
W. Zhang, X. Zhang, J. Wang, A. Ghosh, J. Zhu et al., Bismuth-modulated surface structural evolution of Pd3Bi intermetallic alloy catalysts for selective propane dehydrogenation and acetylene semihydrogenation. ACS Catal. 12(17), 10531–10545 (2022). https://doi.org/10.1021/acscatal.2c00642
L. Jia, M. Sun, J. Xu, X. Zhao, R. Zhou et al., Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem. Int. Ed. 60(40), 21741–21745 (2021). https://doi.org/10.1002/anie.202109288
C. Wang, C. Hu, F. Chen, H. Li, Y. Zhang et al., Polar layered bismuth-rich oxyhalide piezoelectrics Bi4O5X2 (X Br, I): efficient piezocatalytic pure water splitting and interlayer anion-dependent activity. Adv. Funct. Mater. 33(29), 2301144 (2023). https://doi.org/10.1002/adfm.202301144
C. Hu, H. Huang, F. Chen, Y. Zhang, H. Yu et al., Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 30(7), 1908168 (2020). https://doi.org/10.1002/adfm.201908168
X. Deng, P. Chen, R. Cui, X. Gong, X. Li et al., Synergistic polarity interaction and structural reconstruction in Bi2MoO6/C3N4 heterojunction for enhancing piezo-photocatalytic nitrogen oxidation to nitric acid. Appl. Catal. B Environ. Energy 351, 123977 (2024). https://doi.org/10.1016/j.apcatb.2024.123977
R. Chakraborty, P.K. Rajput, G.M. Anilkumar, S. Maqbool, R. Das et al., Rational design of non-centrosymmetric hybrid halide perovskites. J. Am. Chem. Soc. 145(2), 1378–1388 (2023). https://doi.org/10.1021/jacs.2c12034
M. Wang, H. Yu, K. Yu, Advances in bismuth-based non-centrosymmetric materials as polarization-enhanced photocatalysts for environmental remediation and energy conversion. Chem. Eng. J. 470, 144100 (2023). https://doi.org/10.1016/j.cej.2023.144100
S. Li, L. Bai, N. Ji, S. Yu, S. Lin et al., Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 8(18), 9268–9277 (2020). https://doi.org/10.1039/D0TA02102D
H. Yu, F. Chen, X. Li, H. Huang, Q. Zhang et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 12(1), 4594 (2021). https://doi.org/10.1038/s41467-021-24882-3
B. Ren, G. Wen, R. Gao, D. Luo, Z. Zhang et al., Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nat. Commun. 13(1), 2486 (2022). https://doi.org/10.1038/s41467-022-29861-w
Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia et al., Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Ed. 60(22), 12554–12559 (2021). https://doi.org/10.1002/anie.202102832
W. Yang, C. Si, Y. Zhao, Q. Wei, G. Jia et al., Activating inert antimony for selective CO2 electroreduction to formate via bimetallic interactions. Appl. Catal. B Environ. 316, 121619 (2022). https://doi.org/10.1016/j.apcatb.2022.121619
S. Farid, A. Rashid, K.S. Joya, F. Yasmeen, Electronic and structural programming via electrochemical dealloying to generate Bi–Pb electrocatalysts for CO2 reduction to formate. J. Mater. Chem. A 13(19), 14010–14023 (2025). https://doi.org/10.1039/D4TA08751H
Z. Wu, Y. Liu, X. Xing, L. Yao, Z. Chen et al., A novel SAXS/XRD/XAFS combined technique for in situ time-resolved simultaneous measurements. Nano Res. 16(1), 1123–1131 (2023). https://doi.org/10.1007/s12274-022-4742-3
Y. Liu, W. Sheng, Z. Wu, Synchrotron radiation and its applications in inorganic materials. J. Inorg. Mater. 36(9), 901 (2021). https://doi.org/10.15541/jim20200703
W. Cheng, M. Zhao, Y. Lai, X. Wang, H. Liu et al., Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 4(1), 20230056 (2024). https://doi.org/10.1002/EXP.20230056
Y. Liu, S. Zhao, J. Zhong, J. Liu, B. Chen et al., In-situ tracking CO2-assisted isothermal-isobaric synthesis of self-assembled bi-based photocatalyst using novel SAXS/XRD/XAFS combined technique. Sci. China Mater. 67(11), 3609–3621 (2024). https://doi.org/10.1007/s40843-024-3069-1
Y. Liu, L. Gong, J. Liu, P. Xiao, B. Chen et al., Fabrication of interface with capping-bonding synergy to boost CO2 electroreduction to formate. Appl. Catal. B Environ. Energy 362, 124760 (2025). https://doi.org/10.1016/j.apcatb.2024.124760
J. de Ruiter, V.R.M. Benning, S. Yang, B.J. den Hartigh, H. Wang et al., Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO2 reduction. Nat. Commun. 16(1), 373 (2025). https://doi.org/10.1038/s41467-024-55742-5