Hydrogen-Bonded Interfacial Super-Assembly of Spherical Carbon Superstructures for High-Performance Zinc Hybrid Capacitors
Corresponding Author: Mingxian Liu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 38
Abstract
Carbon superstructures with multiscale hierarchies and functional attributes represent an appealing cathode candidate for zinc hybrid capacitors, but their tailor-made design to optimize the capacitive activity remains a confusing topic. Here we develop a hydrogen-bond-oriented interfacial super-assembly strategy to custom-tailor nanosheet-intertwined spherical carbon superstructures (SCSs) for Zn-ion storage with double-high capacitive activity and durability. Tetrachlorobenzoquinone (H-bond acceptor) and dimethylbenzidine (H-bond donator) can interact to form organic nanosheet modules, which are sequentially assembled, orientally compacted and densified into well-orchestrated superstructures through multiple H-bonds (N–H···O). Featured with rich surface-active heterodiatomic motifs, more exposed nanoporous channels, and successive charge migration paths, SCSs cathode promises high accessibility of built-in zincophilic sites and rapid ion diffusion with low energy barriers (3.3 Ω s−0.5). Consequently, the assembled Zn||SCSs capacitor harvests all-round improvement in Zn-ion storage metrics, including high energy density (166 Wh kg−1), high-rate performance (172 mAh g−1 at 20 A g−1), and long-lasting cycling lifespan (95.5% capacity retention after 500,000 cycles). An opposite charge-carrier storage mechanism is rationalized for SCSs cathode to maximize spatial capacitive charge storage, involving high-kinetics physical Zn2+/CF3SO3− adsorption and chemical Zn2+ redox with carbonyl/pyridine groups. This work gives insights into H-bond-guided interfacial super-assembly design of superstructural carbons toward advanced energy storage.
Highlights:
1 The spherical carbon superstructures (SCS-6) are synthesized by a hydrogen-bonded interfacial super-assembly, owning surface-opening pores, interconnected channels and rich heteroatom species.
2 Maximized accessibility of surface-active sites and opposite charge-carrier storage mechanism ensure high ion storage efficiency.
3 The assembled zinc-ion hybrid capacitor based on SCS-6 delivers ultrahigh energy density (166 Wh kg−1) and super-stable cycle lifespan (500,000 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Miao, Y. Lv, D. Zhu, L. Li, L. Gan et al., Recent advances in zinc-ion hybrid energy storage: coloring high-power capacitors with battery-level energy. Chin. Chem. Lett. 34(7), 107784 (2023). https://doi.org/10.1016/j.cclet.2022.107784
- Y. Chen, Z. Song, Y. Lv, L. Gan, M. Liu, NH +4 -modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Lett. 17(1), 117 (2025). https://doi.org/10.1007/s40820-025-01660-0
- Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15(1), 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Low strain mediated Zn (0002) plane epitaxial plating for highly stable zinc metal batteries. Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
- A. Pandey, P.K. Maurya, A.K. Mishra, Effect of graphitization and activation on vegetable oil-derived carbon soot nanostructures for Zinc Ion hybrid capacitors. Carbon 238, 120228 (2025). https://doi.org/10.1016/j.carbon.2025.120228
- P. Liu, Z. Song, Q. Huang, L. Miao, Y. Lv et al., Multi-H-bonded self-assembled superstructures for ultrahigh-capacity and ultralong-life all-organic ammonium-ion batteries. Energy Environ. Sci. 18(11), 5397–5406 (2025). https://doi.org/10.1039/D5EE00823A
- K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
- S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14(1), 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
- A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15(1), 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
- M. Luo, X. Gan, C. Zhang, Y. Yang, W. Yue et al., Overcoming obstacles in Zn-ion batteries development: application of conductive redox-active polypyrrole/Tiron anolyte interphase. Adv. Funct. Mater. 33(47), 2305041 (2023). https://doi.org/10.1002/adfm.202305041
- M. Chen, L. Gong, I. Zhitomirsky, K. Shi, Unraveling the dynamic transformation of azobenzene-driven redox electrolytes for Zn-ion hybrid capacitors. Energy Environ. Sci. 18(9), 4460–4469 (2025). https://doi.org/10.1039/D4EE05696E
- X. Gan, C. Zhang, X. Ye, L. Qie, K. Shi, Unveiling the potential of redox electrolyte additives in enhancing interfacial stability for Zn-ion hybrid capacitors. Energy Storage Mater. 65, 103175 (2024). https://doi.org/10.1016/j.ensm.2024.103175
- M. Chen, R. Chen, I. Zhitomirsky, G. He, K. Shi, Redox-active molecules for aqueous electrolytes of energy storage devices: a review on fundamental aspects, current progress, and prospects. Mater. Sci. Eng. R. Rep. 161, 100865 (2024). https://doi.org/10.1016/j.mser.2024.100865
- R. Yuan, H. Wang, L. Shang, R. Hou, Y. Dong et al., Revealing the self-doping defects in carbon materials for the compact capacitive energy storage of Zn-ion capacitors. ACS Appl. Mater. Interfaces 15(2), 3006–3016 (2023). https://doi.org/10.1021/acsami.2c19798
- M.S. Javed, S. Asim, T. Najam, M. Khalid, I. Hussain et al., Recent progress in flexible Zn-ion hybrid supercapacitors: fundamentals, fabrication designs, and applications. Carbon Energy 5(1), e271 (2023). https://doi.org/10.1002/cey2.271
- B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
- X. Peng, Y. Li, F. Kang, X. Li, Z. Zheng et al., Negatively charged hydrophobic carbon nano-onion interfacial layer enabling high-rate and ultralong-life Zn-based energy storage. Small 20(4), 2305547 (2024). https://doi.org/10.1002/smll.202305547
- Y. Mo, G. Liu, J. Chen, X. Zhu, Y. Peng et al., Unraveling the temperature-responsive solvation structure and interfacial chemistry for graphite anodes. Energy Environ. Sci. 17(1), 227–237 (2024). https://doi.org/10.1039/D3EE03176D
- F. Wei, Y. Zeng, Y. Guo, J. Li, S. Zhu et al., Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors. Chem. Eng. J. 468, 143576 (2023). https://doi.org/10.1016/j.cej.2023.143576
- B. Liu, Y. Ye, M. Yang, Y. Liu, H. Chen et al., All-in-one biomass-based flexible supercapacitors with high rate performance and high energy density. Adv. Funct. Mater. 34(10), 2310534 (2024). https://doi.org/10.1002/adfm.202310534
- M. Zhu, C. Yin, Q. Wang, Y. Zhang, H. Zhou et al., Columnar lithium deposition guided by graphdiyne nanowalls toward a stable lithium metal anode. ACS Appl. Mater. Interfaces 14(50), 55700–55708 (2022). https://doi.org/10.1021/acsami.2c18752
- H.-F. Wang, L. Chen, M. Wang, Z. Liu, Q. Xu, Hollow spherical superstructure of carbon nanosheets for bifunctional oxygen reduction and evolution electrocatalysis. Nano Lett. 21(8), 3640–3648 (2021). https://doi.org/10.1021/acs.nanolett.1c00757
- W. Lu, B.-B. Xie, C. Yang, C. Tian, L. Yan et al., Phosphorus-mediated local charge distribution of N-configuration adsorption sites with enhanced zincophilicity and hydrophilicity for high-energy-density Zn-ion hybrid supercapacitors. Small 19(45), 2370382 (2023). https://doi.org/10.1002/smll.202370382
- C. Liu, X. Chang, H. Mi, F. Guo, C. Ji et al., Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage. Carbon 216, 118523 (2024). https://doi.org/10.1016/j.carbon.2023.118523
- X. Gao, H. Wu, C. Su, C. Lu, Y. Dai et al., Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: a review. Energy Environ. Sci. 16(4), 1364–1383 (2023). https://doi.org/10.1039/d2ee03719j
- D. Zhao, D. Xu, T. Wang, Z. Yang, Nitrogen-rich nanoporous carbon with MXene composite for high-performance Zn-ion hybrid capacitors. Mater. Today Energy 45, 101671 (2024). https://doi.org/10.1016/j.mtener.2024.101671
- C. Qin, L. Huang, X. Zhong, Z. Xia, G. Li et al., Self-accelerated controllable phase transformation for practical liquid metal electrode. Angew. Chem. Int. Ed. 64(17), e202421020 (2025). https://doi.org/10.1002/anie.202421020
- Y. Long, X. An, Y. Yang, J. Yang, L. Liu et al., Gradient porous carbon superstructures for high-efficiency charge storage kinetics. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202424551
- X. Wu, X. Yu, Z. Zhang, H. Liu, S. Ling et al., Anisotropic ZnS nanoclusters/ordered macro-microporous carbon superstructure for fibrous supercapacitor toward commercial-level energy density. Adv. Funct. Mater. 33(41), 2300329 (2023). https://doi.org/10.1002/adfm.202300329
- D. Tian, M. Li, X. Hao, Y. Hao, X. Zhang et al., Bridging hollow carbon nanostructures to hierarchically pomegranate-like microspheres for efficient oil adsorption and catalysis applications. Carbon 201, 930–940 (2023). https://doi.org/10.1016/j.carbon.2022.09.054
- Z.-S. Fan, Y.V. Kaneti, S. Chowdhury, X. Wang, M.R. Karim et al., Weak base-modulated synthesis of bundle-like carbon superstructures from metal-organic framework for high-performance supercapacitors. Chem. Eng. J. 462, 142094 (2023). https://doi.org/10.1016/j.cej.2023.142094
- X. Yang, S. Li, B. Ding, J. Zhao, Y. Yu, Nanoarchitecture tailoring of biomass-derived bowl-shaped carbon superstructures-based LiOH-LiCl composite for low-grade solar heat harvesting. J. Colloid Interface Sci. 691, 137415 (2025). https://doi.org/10.1016/j.jcis.2025.137415
- H. Gong, D.U. Patino, J. Ilavsky, I. Kuzmenko, A.E. Peña-Alcántara et al., Tunable 1D and 2D polyacrylonitrile nanosheet superstructures. ACS Nano 17(18), 18392–18401 (2023). https://doi.org/10.1021/acsnano.3c05792
- S. Chongdar, R. Chatterjee, S. Reza, S. Pal, R. Thapa et al., Low potential electrochemical CO2 reduction to methanol over nickel-based hollow 0D carbon superstructure. Adv. Energy Mater. 15(15), 2403809 (2025). https://doi.org/10.1002/aenm.202403809
- X. Li, H. Zhou, J. Zhang, X. Zhang, M. Li et al., Construction of shell-like carbon superstructures through anisotropically oriented self-assembly for distinct electromagnetic wave absorption. J. Mater. Chem. A 12(7), 4057–4066 (2024). https://doi.org/10.1039/D3TA06822F
- J. Hwang, R. Walczak, M. Oschatz, N.V. Tarakina, B.V.K.J. Schmidt, Micro-blooming: hierarchically porous nitrogen-doped carbon flowers derived from metal-organic mesocrystals. Small 15(37), 1901986 (2019). https://doi.org/10.1002/smll.201901986
- S. Jha, Y. Qin, Y. Chen, Z. Song, L. Miao et al., Hydrogen-bond-guided micellar self-assembly-directed carbon superstructures for high-energy and ultralong-life zinc-ion hybrid capacitors. J. Mater. Chem. A 13(20), 15101–15110 (2025). https://doi.org/10.1039/D5TA00357A
- L. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori et al., Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), 1900440 (2019). https://doi.org/10.1002/adma.201900440
- C.-C. Hou, L. Zou, Y. Wang, Q. Xu, MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanops for efficient electrocatalysis and zinc–air batteries. Angew. Chem. Int. Ed. 59(48), 21360–21366 (2020). https://doi.org/10.1002/anie.202011347
- L. Zou, C.-C. Hou, Q. Wang, Y.-S. Wei, Z. Liu et al., A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem. Int. Ed. 59(44), 19627–19632 (2020). https://doi.org/10.1002/anie.202004737
- S. Chen, D.M. Koshy, Y. Tsao, R. Pfattner, X. Yan et al., Highly tunable and facile synthesis of uniform carbon flower ps. J. Am. Chem. Soc. 140(32), 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825
- Z. Zhao, L. Duan, Y. Zhao, L. Wang, J. Zhang et al., Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 144(26), 11767–11777 (2022). https://doi.org/10.1021/jacs.2c03814
- Q. Fu, Y. Sheng, H. Tang, Z. Zhu, M. Ruan et al., Growth mechanism deconvolution of self-limiting supraps based on microfluidic system. ACS Nano 9(1), 172–179 (2015). https://doi.org/10.1021/nn5027998
- J. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng et al., Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Adv. Sci. 8(18), 2100120 (2021). https://doi.org/10.1002/advs.202100120
- Y. Xia, T.D. Nguyen, M. Yang, B. Lee, A. Santos et al., Self-assembly of self-limiting monodisperse supraps from polydisperse nanops. Nat. Nanotechnol. 6(9), 580–587 (2011). https://doi.org/10.1038/nnano.2011.121
- J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam et al., Crystallization by p attachment in synthetic, biogenic, and geologic environments. Science 349(6247), aaa6760 (2015). https://doi.org/10.1126/science.aaa6760
- Y. Yi, S. Hu, C. Liu, Y. Yan, L. Lei et al., Self-templating synthesis strategy of oxygen-doped carbon from unique wasted pulping liquid directly as a cathode material for high-performance zinc ion hybrid capacitors. J. Colloid Interface Sci. 675, 569–579 (2024). https://doi.org/10.1016/j.jcis.2024.07.056
- H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
- J. Liang, S. Chen, M. Xie, Y. Wang, X. Guo et al., Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A 2(40), 16884–16891 (2014). https://doi.org/10.1039/C4TA03209H
- Y. Li, K. Xiao, C. Huang, J. Wang, M. Gao et al., Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 13(1), 1 (2020). https://doi.org/10.1007/s40820-020-00525-y
- F. Li, Y.-L. Liu, G.-G. Wang, S.-Y. Zhang, D.-Q. Zhao et al., 3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 435, 135052 (2022). https://doi.org/10.1016/j.cej.2022.135052
- S. Yu, Y. Zhang, Y. Mu, B. Guo, G. Zeng et al., Towards reusable 3D-printed graphite framework for zinc anode in aqueous zinc battery. Energy Storage Mater. 70, 103454 (2024). https://doi.org/10.1016/j.ensm.2024.103454
- X. Xing, X. Wang, W. Wang, C. Yang, H. Wang, Hierarchically porous N-doped carbon nanosheet aerogel cathodes for Zn-ion hybrid supercapacitors with superhigh energy density. J. Energy Storage 68, 107822 (2023). https://doi.org/10.1016/j.est.2023.107822
- H.-P. Cong, J.-F. Chen, S.-H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43(21), 7295–7325 (2014). https://doi.org/10.1039/C4CS00181H
- S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). https://doi.org/10.1039/C2CS35353A
- C.-C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
- Y.A. Kumar, S. Vignesh, T. Ramachandran, K.D. Kumar, A.G. Al-Sehemi et al., Solidifying the future: Metal-organic frameworks in zinc battery development. J. Energy Storage 97, 112826 (2024). https://doi.org/10.1016/j.est.2024.112826
- N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
- Y. Zeng, P. Gordiichuk, T. Ichihara, G. Zhang, E. Sandoz-Rosado et al., Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602(7895), 91–95 (2022). https://doi.org/10.1038/s41586-021-04296-3
- Z. Zhao, Y. Zhao, R. Lin, Y. Ma, L. Wang et al., Modular super-assembly of hierarchical superstructures from monomicelle building blocks. Sci. Adv. 8(19), eabo0283 (2022). https://doi.org/10.1126/sciadv.abo0283
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132(18), 6498–6506 (2010). https://doi.org/10.1021/ja100936w
- P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- S. Wu, Y. Zhang, G. Li, Y. Hou, M. Cao et al., Simple, fast, and energy saving: room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry. Matter 8(3), 101986 (2025). https://doi.org/10.1016/j.matt.2025.101986
- Y. Li, A. Gao, A. Liu, Y. Wang, Z. Wei et al., Protein-tannin organic polymer-based oxygen-enriched graded porous carbon as a cathode for metal-ion hybrid capacitors. ACS Appl. Mater. Interfaces 17(10), 15468–15479 (2025). https://doi.org/10.1021/acsami.4c22039
- T. Shi, Z. Song, C. Hu, Q. Huang, Y. Lv et al., Low-redox-barrier two-electron p-type phenoselenazine cathode for superior zinc-organic batteries. Angew. Chem. Int. Ed. 64(25), e202501278 (2025). https://doi.org/10.1002/anie.202501278
- K. Yun, G.-H. An, Surface protection and nucleation enhancement of zinc anode with graphene and doped carbon nanotubes for high-performance energy storage. Chem. Eng. J. 479, 147303 (2024). https://doi.org/10.1016/j.cej.2023.147303
- Y. Zou, C. Liu, C. Zhang, L. Yuan, J. Li et al., Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays. Nat. Commun. 14(1), 5780 (2023). https://doi.org/10.1038/s41467-023-41517-x
- X. Li, Y. Li, X. Zhao, F. Kang, L. Dong, Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 53, 505–513 (2022). https://doi.org/10.1016/j.ensm.2022.09.023
- Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13(1), 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
- H. Yu, Q. Li, W. Liu, H. Wang, X. Ni et al., Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors. J. Energy Chem. 73, 565–574 (2022). https://doi.org/10.1016/j.jechem.2022.06.028
- W. Du, Q. Huang, X. Zheng, Y. Lv, L. Miao et al., High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks. Energy Environ. Sci. 18(13), 6540–6547 (2025). https://doi.org/10.1039/D5EE00365B
References
L. Miao, Y. Lv, D. Zhu, L. Li, L. Gan et al., Recent advances in zinc-ion hybrid energy storage: coloring high-power capacitors with battery-level energy. Chin. Chem. Lett. 34(7), 107784 (2023). https://doi.org/10.1016/j.cclet.2022.107784
Y. Chen, Z. Song, Y. Lv, L. Gan, M. Liu, NH +4 -modulated cathodic interfacial spatial charge redistribution for high-performance dual-ion capacitors. Nano-Micro Lett. 17(1), 117 (2025). https://doi.org/10.1007/s40820-025-01660-0
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15(1), 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
D. Zhang, Y. Chen, X. Zheng, P. Liu, L. Miao et al., Low strain mediated Zn (0002) plane epitaxial plating for highly stable zinc metal batteries. Angew. Chem. Int. Ed. 64(22), e202500380 (2025). https://doi.org/10.1002/anie.202500380
A. Pandey, P.K. Maurya, A.K. Mishra, Effect of graphitization and activation on vegetable oil-derived carbon soot nanostructures for Zinc Ion hybrid capacitors. Carbon 238, 120228 (2025). https://doi.org/10.1016/j.carbon.2025.120228
P. Liu, Z. Song, Q. Huang, L. Miao, Y. Lv et al., Multi-H-bonded self-assembled superstructures for ultrahigh-capacity and ultralong-life all-organic ammonium-ion batteries. Energy Environ. Sci. 18(11), 5397–5406 (2025). https://doi.org/10.1039/D5EE00823A
K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
S. Chen, D. Ji, Q. Chen, J. Ma, S. Hou et al., Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries. Nat. Commun. 14(1), 3526 (2023). https://doi.org/10.1038/s41467-023-39237-3
A. Innocenti, D. Bresser, J. Garche, S. Passerini, A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 15(1), 4068 (2024). https://doi.org/10.1038/s41467-024-48368-0
M. Luo, X. Gan, C. Zhang, Y. Yang, W. Yue et al., Overcoming obstacles in Zn-ion batteries development: application of conductive redox-active polypyrrole/Tiron anolyte interphase. Adv. Funct. Mater. 33(47), 2305041 (2023). https://doi.org/10.1002/adfm.202305041
M. Chen, L. Gong, I. Zhitomirsky, K. Shi, Unraveling the dynamic transformation of azobenzene-driven redox electrolytes for Zn-ion hybrid capacitors. Energy Environ. Sci. 18(9), 4460–4469 (2025). https://doi.org/10.1039/D4EE05696E
X. Gan, C. Zhang, X. Ye, L. Qie, K. Shi, Unveiling the potential of redox electrolyte additives in enhancing interfacial stability for Zn-ion hybrid capacitors. Energy Storage Mater. 65, 103175 (2024). https://doi.org/10.1016/j.ensm.2024.103175
M. Chen, R. Chen, I. Zhitomirsky, G. He, K. Shi, Redox-active molecules for aqueous electrolytes of energy storage devices: a review on fundamental aspects, current progress, and prospects. Mater. Sci. Eng. R. Rep. 161, 100865 (2024). https://doi.org/10.1016/j.mser.2024.100865
R. Yuan, H. Wang, L. Shang, R. Hou, Y. Dong et al., Revealing the self-doping defects in carbon materials for the compact capacitive energy storage of Zn-ion capacitors. ACS Appl. Mater. Interfaces 15(2), 3006–3016 (2023). https://doi.org/10.1021/acsami.2c19798
M.S. Javed, S. Asim, T. Najam, M. Khalid, I. Hussain et al., Recent progress in flexible Zn-ion hybrid supercapacitors: fundamentals, fabrication designs, and applications. Carbon Energy 5(1), e271 (2023). https://doi.org/10.1002/cey2.271
B. Xue, J. Xu, R. Xiao, Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem. Eng. J. 454, 140192 (2023). https://doi.org/10.1016/j.cej.2022.140192
X. Peng, Y. Li, F. Kang, X. Li, Z. Zheng et al., Negatively charged hydrophobic carbon nano-onion interfacial layer enabling high-rate and ultralong-life Zn-based energy storage. Small 20(4), 2305547 (2024). https://doi.org/10.1002/smll.202305547
Y. Mo, G. Liu, J. Chen, X. Zhu, Y. Peng et al., Unraveling the temperature-responsive solvation structure and interfacial chemistry for graphite anodes. Energy Environ. Sci. 17(1), 227–237 (2024). https://doi.org/10.1039/D3EE03176D
F. Wei, Y. Zeng, Y. Guo, J. Li, S. Zhu et al., Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors. Chem. Eng. J. 468, 143576 (2023). https://doi.org/10.1016/j.cej.2023.143576
B. Liu, Y. Ye, M. Yang, Y. Liu, H. Chen et al., All-in-one biomass-based flexible supercapacitors with high rate performance and high energy density. Adv. Funct. Mater. 34(10), 2310534 (2024). https://doi.org/10.1002/adfm.202310534
M. Zhu, C. Yin, Q. Wang, Y. Zhang, H. Zhou et al., Columnar lithium deposition guided by graphdiyne nanowalls toward a stable lithium metal anode. ACS Appl. Mater. Interfaces 14(50), 55700–55708 (2022). https://doi.org/10.1021/acsami.2c18752
H.-F. Wang, L. Chen, M. Wang, Z. Liu, Q. Xu, Hollow spherical superstructure of carbon nanosheets for bifunctional oxygen reduction and evolution electrocatalysis. Nano Lett. 21(8), 3640–3648 (2021). https://doi.org/10.1021/acs.nanolett.1c00757
W. Lu, B.-B. Xie, C. Yang, C. Tian, L. Yan et al., Phosphorus-mediated local charge distribution of N-configuration adsorption sites with enhanced zincophilicity and hydrophilicity for high-energy-density Zn-ion hybrid supercapacitors. Small 19(45), 2370382 (2023). https://doi.org/10.1002/smll.202370382
C. Liu, X. Chang, H. Mi, F. Guo, C. Ji et al., Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage. Carbon 216, 118523 (2024). https://doi.org/10.1016/j.carbon.2023.118523
X. Gao, H. Wu, C. Su, C. Lu, Y. Dai et al., Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: a review. Energy Environ. Sci. 16(4), 1364–1383 (2023). https://doi.org/10.1039/d2ee03719j
D. Zhao, D. Xu, T. Wang, Z. Yang, Nitrogen-rich nanoporous carbon with MXene composite for high-performance Zn-ion hybrid capacitors. Mater. Today Energy 45, 101671 (2024). https://doi.org/10.1016/j.mtener.2024.101671
C. Qin, L. Huang, X. Zhong, Z. Xia, G. Li et al., Self-accelerated controllable phase transformation for practical liquid metal electrode. Angew. Chem. Int. Ed. 64(17), e202421020 (2025). https://doi.org/10.1002/anie.202421020
Y. Long, X. An, Y. Yang, J. Yang, L. Liu et al., Gradient porous carbon superstructures for high-efficiency charge storage kinetics. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202424551
X. Wu, X. Yu, Z. Zhang, H. Liu, S. Ling et al., Anisotropic ZnS nanoclusters/ordered macro-microporous carbon superstructure for fibrous supercapacitor toward commercial-level energy density. Adv. Funct. Mater. 33(41), 2300329 (2023). https://doi.org/10.1002/adfm.202300329
D. Tian, M. Li, X. Hao, Y. Hao, X. Zhang et al., Bridging hollow carbon nanostructures to hierarchically pomegranate-like microspheres for efficient oil adsorption and catalysis applications. Carbon 201, 930–940 (2023). https://doi.org/10.1016/j.carbon.2022.09.054
Z.-S. Fan, Y.V. Kaneti, S. Chowdhury, X. Wang, M.R. Karim et al., Weak base-modulated synthesis of bundle-like carbon superstructures from metal-organic framework for high-performance supercapacitors. Chem. Eng. J. 462, 142094 (2023). https://doi.org/10.1016/j.cej.2023.142094
X. Yang, S. Li, B. Ding, J. Zhao, Y. Yu, Nanoarchitecture tailoring of biomass-derived bowl-shaped carbon superstructures-based LiOH-LiCl composite for low-grade solar heat harvesting. J. Colloid Interface Sci. 691, 137415 (2025). https://doi.org/10.1016/j.jcis.2025.137415
H. Gong, D.U. Patino, J. Ilavsky, I. Kuzmenko, A.E. Peña-Alcántara et al., Tunable 1D and 2D polyacrylonitrile nanosheet superstructures. ACS Nano 17(18), 18392–18401 (2023). https://doi.org/10.1021/acsnano.3c05792
S. Chongdar, R. Chatterjee, S. Reza, S. Pal, R. Thapa et al., Low potential electrochemical CO2 reduction to methanol over nickel-based hollow 0D carbon superstructure. Adv. Energy Mater. 15(15), 2403809 (2025). https://doi.org/10.1002/aenm.202403809
X. Li, H. Zhou, J. Zhang, X. Zhang, M. Li et al., Construction of shell-like carbon superstructures through anisotropically oriented self-assembly for distinct electromagnetic wave absorption. J. Mater. Chem. A 12(7), 4057–4066 (2024). https://doi.org/10.1039/D3TA06822F
J. Hwang, R. Walczak, M. Oschatz, N.V. Tarakina, B.V.K.J. Schmidt, Micro-blooming: hierarchically porous nitrogen-doped carbon flowers derived from metal-organic mesocrystals. Small 15(37), 1901986 (2019). https://doi.org/10.1002/smll.201901986
S. Jha, Y. Qin, Y. Chen, Z. Song, L. Miao et al., Hydrogen-bond-guided micellar self-assembly-directed carbon superstructures for high-energy and ultralong-life zinc-ion hybrid capacitors. J. Mater. Chem. A 13(20), 15101–15110 (2025). https://doi.org/10.1039/D5TA00357A
L. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori et al., Fabrication of a spherical superstructure of carbon nanorods. Adv. Mater. 31(24), 1900440 (2019). https://doi.org/10.1002/adma.201900440
C.-C. Hou, L. Zou, Y. Wang, Q. Xu, MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanops for efficient electrocatalysis and zinc–air batteries. Angew. Chem. Int. Ed. 59(48), 21360–21366 (2020). https://doi.org/10.1002/anie.202011347
L. Zou, C.-C. Hou, Q. Wang, Y.-S. Wei, Z. Liu et al., A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem. Int. Ed. 59(44), 19627–19632 (2020). https://doi.org/10.1002/anie.202004737
S. Chen, D.M. Koshy, Y. Tsao, R. Pfattner, X. Yan et al., Highly tunable and facile synthesis of uniform carbon flower ps. J. Am. Chem. Soc. 140(32), 10297–10304 (2018). https://doi.org/10.1021/jacs.8b05825
Z. Zhao, L. Duan, Y. Zhao, L. Wang, J. Zhang et al., Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 144(26), 11767–11777 (2022). https://doi.org/10.1021/jacs.2c03814
Q. Fu, Y. Sheng, H. Tang, Z. Zhu, M. Ruan et al., Growth mechanism deconvolution of self-limiting supraps based on microfluidic system. ACS Nano 9(1), 172–179 (2015). https://doi.org/10.1021/nn5027998
J. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng et al., Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Adv. Sci. 8(18), 2100120 (2021). https://doi.org/10.1002/advs.202100120
Y. Xia, T.D. Nguyen, M. Yang, B. Lee, A. Santos et al., Self-assembly of self-limiting monodisperse supraps from polydisperse nanops. Nat. Nanotechnol. 6(9), 580–587 (2011). https://doi.org/10.1038/nnano.2011.121
J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam et al., Crystallization by p attachment in synthetic, biogenic, and geologic environments. Science 349(6247), aaa6760 (2015). https://doi.org/10.1126/science.aaa6760
Y. Yi, S. Hu, C. Liu, Y. Yan, L. Lei et al., Self-templating synthesis strategy of oxygen-doped carbon from unique wasted pulping liquid directly as a cathode material for high-performance zinc ion hybrid capacitors. J. Colloid Interface Sci. 675, 569–579 (2024). https://doi.org/10.1016/j.jcis.2024.07.056
H. Fan, X. Hu, S. Zhang, Z. Xu, G. Gao et al., Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon 180, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.04.093
J. Liang, S. Chen, M. Xie, Y. Wang, X. Guo et al., Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A 2(40), 16884–16891 (2014). https://doi.org/10.1039/C4TA03209H
Y. Li, K. Xiao, C. Huang, J. Wang, M. Gao et al., Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 13(1), 1 (2020). https://doi.org/10.1007/s40820-020-00525-y
F. Li, Y.-L. Liu, G.-G. Wang, S.-Y. Zhang, D.-Q. Zhao et al., 3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 435, 135052 (2022). https://doi.org/10.1016/j.cej.2022.135052
S. Yu, Y. Zhang, Y. Mu, B. Guo, G. Zeng et al., Towards reusable 3D-printed graphite framework for zinc anode in aqueous zinc battery. Energy Storage Mater. 70, 103454 (2024). https://doi.org/10.1016/j.ensm.2024.103454
X. Xing, X. Wang, W. Wang, C. Yang, H. Wang, Hierarchically porous N-doped carbon nanosheet aerogel cathodes for Zn-ion hybrid supercapacitors with superhigh energy density. J. Energy Storage 68, 107822 (2023). https://doi.org/10.1016/j.est.2023.107822
H.-P. Cong, J.-F. Chen, S.-H. Yu, Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43(21), 7295–7325 (2014). https://doi.org/10.1039/C4CS00181H
S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutiérrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem. Soc. Rev. 42(2), 794–830 (2013). https://doi.org/10.1039/C2CS35353A
C.-C. Hou, Y. Wang, L. Zou, M. Wang, H. Liu et al., A gas-steamed MOF route to P-doped open carbon cages with enhanced Zn-ion energy storage capability and ultrastability. Adv. Mater. 33(31), 2101698 (2021). https://doi.org/10.1002/adma.202101698
Y.A. Kumar, S. Vignesh, T. Ramachandran, K.D. Kumar, A.G. Al-Sehemi et al., Solidifying the future: Metal-organic frameworks in zinc battery development. J. Energy Storage 97, 112826 (2024). https://doi.org/10.1016/j.est.2024.112826
N.R. Catarineu, D. Lin, C. Zhu, D.I. Oyarzun, Y. Li, High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chem. Eng. J. 465, 142544 (2023). https://doi.org/10.1016/j.cej.2023.142544
Y. Zeng, P. Gordiichuk, T. Ichihara, G. Zhang, E. Sandoz-Rosado et al., Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602(7895), 91–95 (2022). https://doi.org/10.1038/s41586-021-04296-3
Z. Zhao, Y. Zhao, R. Lin, Y. Ma, L. Wang et al., Modular super-assembly of hierarchical superstructures from monomicelle building blocks. Sci. Adv. 8(19), eabo0283 (2022). https://doi.org/10.1126/sciadv.abo0283
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen et al., Revealing noncovalent interactions. J. Am. Chem. Soc. 132(18), 6498–6506 (2010). https://doi.org/10.1021/ja100936w
P. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
S. Wu, Y. Zhang, G. Li, Y. Hou, M. Cao et al., Simple, fast, and energy saving: room temperature synthesis of high-entropy alloy by liquid-metal-mediated mechanochemistry. Matter 8(3), 101986 (2025). https://doi.org/10.1016/j.matt.2025.101986
Y. Li, A. Gao, A. Liu, Y. Wang, Z. Wei et al., Protein-tannin organic polymer-based oxygen-enriched graded porous carbon as a cathode for metal-ion hybrid capacitors. ACS Appl. Mater. Interfaces 17(10), 15468–15479 (2025). https://doi.org/10.1021/acsami.4c22039
T. Shi, Z. Song, C. Hu, Q. Huang, Y. Lv et al., Low-redox-barrier two-electron p-type phenoselenazine cathode for superior zinc-organic batteries. Angew. Chem. Int. Ed. 64(25), e202501278 (2025). https://doi.org/10.1002/anie.202501278
K. Yun, G.-H. An, Surface protection and nucleation enhancement of zinc anode with graphene and doped carbon nanotubes for high-performance energy storage. Chem. Eng. J. 479, 147303 (2024). https://doi.org/10.1016/j.cej.2023.147303
Y. Zou, C. Liu, C. Zhang, L. Yuan, J. Li et al., Epitaxial growth of metal-organic framework nanosheets into single-crystalline orthogonal arrays. Nat. Commun. 14(1), 5780 (2023). https://doi.org/10.1038/s41467-023-41517-x
X. Li, Y. Li, X. Zhao, F. Kang, L. Dong, Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 53, 505–513 (2022). https://doi.org/10.1016/j.ensm.2022.09.023
Y. Li, W. Yang, W. Yang, Z. Wang, J. Rong et al., Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 13(1), 95 (2021). https://doi.org/10.1007/s40820-021-00625-3
H. Yu, Q. Li, W. Liu, H. Wang, X. Ni et al., Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors. J. Energy Chem. 73, 565–574 (2022). https://doi.org/10.1016/j.jechem.2022.06.028
W. Du, Q. Huang, X. Zheng, Y. Lv, L. Miao et al., High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks. Energy Environ. Sci. 18(13), 6540–6547 (2025). https://doi.org/10.1039/D5EE00365B