Triboelectric Nanogenerators for Future Space Missions
Corresponding Author: Yarjan Abdul Samad
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 98
Abstract
Space exploration is significant for scientific innovation, resource utilization, and planetary security. Space exploration involves several systems including satellites, space suits, communication systems, and robotics, which have to function under harsh space conditions such as extreme temperatures (− 270 to 1650 °C), microgravity (10⁻⁶ g), unhealthy humidity (< 20% RH or > 60% RH), high atmospheric pressure (~ 1450 psi), and radiation (4000–5000 mSv). Conventional energy-harvesting technologies (solar cells, fuel cells, and nuclear energy), that are normally used to power these space systems have certain limitations (e.g., sunlight dependence, weight, degradation, big size, high cost, low capacity, radioactivity, complexity, and low efficiency). The constraints in conventional energy resources have made it imperative to look for non-conventional yet efficient alternatives. A great potential for enhancing efficiency, sustainability, and mission duration in space exploration can be offered by integrating triboelectric nanogenerators (TENGs) with existing energy sources. Recently, the potential of TENG including energy harvesting (from vibrations/movements in satellites and spacecraft), self-powered sensing, and microgravity, for multiple applications in different space missions has been discussed. This review comprehensively covers the use of TENGs for various space applications, such as planetary exploration missions (Mars environment monitoring), manned space equipment, In-orbit robotic operations /collision monitoring, spacecraft's design and structural health monitoring, Aeronautical systems, and conventional energy harvesting (solar and nuclear). This review also discusses the use of self-powered TENG sensors for deep space object perception. At the same time, this review compares TENGs with conventional energy harvesting technologies for space systems. Lastly, this review talks about energy harvesting in satellites, TENG-based satellite communication systems, and future practical implementation challenges (with possible solutions).
Highlights:
1 This review paper highlights the comprehensive evaluation of triboelectric nanogenerators (TENGs) for various space environments.
2 This review paper discusses the multifunctional role of TENGs beyond energy harnessing.
3 This review demonstrates the future trends (possible roadmap) of utilization of TENGs in space exploration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Fraden, Pressure sensors. In: Handbook of Modern Sensors, pp. 375–397. Springer New York (2010). https://doi.org/10.1007/978-1-4419-6466-3_10
- A. Vidwans, S. Choudhary, B. Jolliff, J. Gillis-Davis, P. Biswas, Size and charge distribution characteristics of fine and ultrafine ps in simulated lunar dust: relevance to lunar missions and exploration. Planet. Space Sci. 210, 105392 (2022). https://doi.org/10.1016/j.pss.2021.105392
- J. Goguen, A. Sharits, A. Chiaramonti, T. Lafarge, E. Garboczi, Three-dimensional characterization of p size, shape, and internal porosity for Apollo 11 and Apollo 14 lunar regolith and JSC-1A lunar regolith soil simulant. Icarus 420, 116166 (2024). https://doi.org/10.1016/j.icarus.2024.116166
- K. Bolwin, Application of regenerative fuel cells for space energy storage: a comparison to battery systems. J. Power. Sources 40(3), 307–321 (1992). https://doi.org/10.1016/0378-7753(92)80019-8
- R.C. O’Brien, R.M. Ambrosi, N.P. Bannister, S.D. Howe, H.V. Atkinson, Safe radioisotope thermoelectric generators and heat sources for space applications. J. Nucl. Mater. 377(3), 506–521 (2008). https://doi.org/10.1016/j.jnucmat.2008.04.009
- X. Wang, R. Liang, P. Fisher, W. Chan, J. Xu, Critical design features of thermal-based radioisotope generators: a review of the power solution for polar regions and space. Renew. Sustain. Energy Rev. 119, 109572 (2020). https://doi.org/10.1016/j.rser.2019.109572
- A. Bermudez-Garcia, P. Voarino, O. Raccurt, Environments, needs and opportunities for future space photovoltaic power generation: a review. Appl. Energy 290, 116757 (2021). https://doi.org/10.1016/j.apenergy.2021.116757
- O. Belian, Alternative Power and Propulsion for Space Systems. Aiken, United States, 2023.
- R. Verduci, V. Romano, G. Brunetti, N. Yaghoobi Nia, A. Di Carlo et al., Solar energy in space applications: review and technology perspectives. Adv. Energy Mater. 12(29), 2200125 (2022). https://doi.org/10.1002/aenm.202200125
- W.M. Kelly, Radiation environments and exposure considerations for the multi-mission radioisotope thermoelectric generator. AIP Conf. Proc. 813(1), 906–919 (2006). https://doi.org/10.1063/1.2169273
- M.-L. Seol, J.-W. Han, D.-I. Moon, M. Meyyappan, Triboelectric nanogenerator for Mars environment. Nano Energy 39, 238–244 (2017). https://doi.org/10.1016/j.nanoen.2017.07.004
- K. Liu, X. Tang, Y. Liu, Z. Xu, Z. Yuan et al., Experimental optimization of small–scale structure–adjustable radioisotope thermoelectric generators. Appl. Energy 280, 115907 (2020). https://doi.org/10.1016/j.apenergy.2020.115907
- H.M.M.U. Rehman, A.P.S. Prasanna, M.M. Rehman, M. Khan, S.-J. Kim et al., Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 36, e00596 (2023). https://doi.org/10.1016/j.susmat.2023.e00596
- Y. Li, Y. Guo, F. Fu, Z. Yang, Y. Ling et al., Triboelectric basalt textiles efficiently operating within an ultrawide temperature range. Adv. Mater. 36(28), e2401359 (2024). https://doi.org/10.1002/adma.202401359
- Z. Wang, D. Wu, M. Chi, X. Zou, J. Wang et al., Thermally robust aramid triboelectric materials enabled by heat-induced cross-linking. Adv. Funct. Mater. 35(3), 2413719 (2025). https://doi.org/10.1002/adfm.202413719
- Y. Zhao, H. Yu, R. Cao, Y. Liu, S. Shen et al., Extreme environment-resistant high performance triboelectric nanogenerator for energy harvesting and self-powered positioning system. Nano Today 61, 102616 (2025). https://doi.org/10.1016/j.nantod.2024.102616
- C. Callaty, C. Rodrigues, J. Ventura, Triboelectric nanogenerators in harsh conditions: a critical review. Nano Energy 135, 110661 (2025). https://doi.org/10.1016/j.nanoen.2025.110661
- Y. Liu, M. Zhu, D. Nan, X. Li, Y. Wang et al., Enhanced durability and robustness of triboelectric nanogenerators with blade-enclosed structure for breeze energy harvesting. Adv. Sustain. Syst. 7(2), 2200367 (2023). https://doi.org/10.1002/adsu.202200367
- R. Ali Shaukat, S. Ameen, Q.M. Saqib, M.Y. Chougale, J. Kim et al., Organic semiconductor polymers: a carbazole-based novel tribopositive polymer for energy harvesting with high temperature stability. J. Mater. Chem. A 11(27), 14800–14808 (2023). https://doi.org/10.1039/D3TA01224G
- M. Chen, M. Ji, L. Huang, N. Wu, T. Jiang et al., Highly elastic, lightweight, and high-performance all-aerogel triboelectric nanogenerator for self-powered intelligent fencing training. Mater. Sci. Eng. R. Rep. 165, 101004 (2025). https://doi.org/10.1016/j.mser.2025.101004
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
- C. Qiu, F. Wu, Q. Shi, C. Lee, M.R. Yuce, Sensors and control interface methods based on triboelectric nanogenerator in IoT applications. IEEE Access 7, 92745–92757 (2019). https://doi.org/10.1109/ACCESS.2019.2927394
- G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33, 100882 (2020). https://doi.org/10.1016/j.nantod.2020.100882
- X. Li, J. Luo, K. Han, X. Shi, Z. Ren et al., Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3(2), 133–142 (2022). https://doi.org/10.1038/s43016-021-00449-9
- R. Ali Shaukat, J. Choi, C.K. Jeong, Eco-friendly powder and ps-based triboelectric energy harvesters. J. Powder Mater. 30(6), 528–535 (2023). https://doi.org/10.4150/kpmi.2023.30.6.528
- J. Son, A.M. Tamim, H. Kim, S.H. Jeon, R.A. Shaukat et al., Suction-forced triboelectricity escalation by incorporating biomimetic 3-dimensional surface architectures. Nano Energy 133, 110480 (2025). https://doi.org/10.1016/j.nanoen.2024.110480
- M.M. Rehman, M. Khan, H.M.M.U. Rehman, G.U. Siddiqui, Z. Ahmad et al., Nanomaterials in humidity sensors. In: Handbook of Nanomaterials, Volume 1, pp. 513–566. Elsevier (2024). https://doi.org/10.1016/b978-0-323-95511-9.00027-5
- R. Ali Shaukat, M. Noman, Q.M. Saqib, A. Umair, M.M. Baig et al., Multi-layered quasi-2D perovskite based triboelectric nanogenerator. Colloids Surf A Physicochem Eng Asp 705, 135728 (2025). https://doi.org/10.1016/j.colsurfa.2024.135728
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
- T. Jiang, X. Chen, C.B. Han, W. Tang, Z.L. Wang, Theoretical study of rotary freestanding triboelectric nanogenerators. Adv. Funct. Mater. 25(19), 2928–2938 (2015). https://doi.org/10.1002/adfm.201500447
- C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
- W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
- S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
- S. Hasan, A.Z. Kouzani, S. Adams, J. Long, M.A.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 116, 103685 (2022). https://doi.org/10.1016/j.elstat.2022.103685
- W. Zhang, D. Diao, K. Sun, X. Fan, P. Wang, Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 48, 456–463 (2018). https://doi.org/10.1016/j.nanoen.2018.04.007
- Q.M. Saqib, M.U. Khan, H. Song, M.Y. Chougale, R.A. Shaukat et al., Natural hierarchically structured highly porous tomato peel based tribo- and piezo-electric nanogenerator for efficient energy harvesting. Adv. Sustain. Syst. 5(7), 2100066 (2021). https://doi.org/10.1002/adsu.202100066
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
- Z.L. Wang, On the expanded Maxwell’s equations for moving charged media system–general theory, mathematical solutions and applications in TENG. Mater. Today 52, 348–363 (2022). https://doi.org/10.1016/j.mattod.2021.10.027
- Z.L. Wang, Maxwell’s equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r, t). J. Phys. Commun. 6(8), 085013 (2022). https://doi.org/10.1088/2399-6528/ac871e
- Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
- X.-S. Zhang, M.-D. Han, R.-X. Wang, B. Meng, F.-Y. Zhu et al., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4, 123–131 (2014). https://doi.org/10.1016/j.nanoen.2013.12.016
- A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrost. 62(4), 277–290 (2004). https://doi.org/10.1016/j.elstat.2004.05.005
- Y. Liu, J. Ping, Y. Ying, Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 31(17), 2009994 (2021). https://doi.org/10.1002/adfm.202009994
- R.A. Shaukat, Q.M. Saqib, J. Kim, H. Song, M.U. Khan et al., Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy 96, 107128 (2022). https://doi.org/10.1016/j.nanoen.2022.107128
- M. Noman, Q.M. Saqib, S. Ameen, S.R. Patil, C.S. Patil et al., Controlling triboelectric charge of MOFs by leveraging ligands chemistry. Adv. Sci. 11(35), 2404993 (2024). https://doi.org/10.1002/advs.202404993
- L. Zhao, X. Guo, Y. Pan, S. Jia, L. Liu et al., Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 6(5), e12520 (2024). https://doi.org/10.1002/inf2.12520
- S. Jia, X. Yang, W. Feng, L. Liu, L. Zhao et al., Self-adaptive gyroscope-structured hybrid triboelectric-electromagnetic buoy system for real-time ocean currents monitoring. Small 21(20), 2501073 (2025). https://doi.org/10.1002/smll.202501073
- J. Guo, X. Yang, Y. Xie, J. Zheng, W. Lin et al., Boosting the power conversion efficiency of hybrid triboelectric-photovoltaic cells through the field coupling effect. Device 3(1), 100562 (2025). https://doi.org/10.1016/j.device.2024.100562
- X. Hou, L. Zhang, Y. Su, G. Gao, Y. Liu et al., A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105, 108013 (2023). https://doi.org/10.1016/j.nanoen.2022.108013
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- R.A. Shaukat, A. Cha et al., Zeolite-decorated triboelectric sensors for heavy metal contaminant detection. ACS Appl. Electron. Mater. 7(8), 3439–3447 (2025). https://doi.org/10.1021/acsaelm.5c00136
- X. Chen, T. Jiang, Z.L. Wang, Modeling a dielectric elastomer as driven by triboelectric nanogenerator. Appl. Phys. Lett. 110(3), 033505 (2017). https://doi.org/10.1063/1.4974143
- X. Chen, T. Jiang, Y. Yao, L. Xu, Z. Zhao et al., Stimulating acrylic elastomers by a triboelectric nanogenerator–toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 26(27), 4906–4913 (2016). https://doi.org/10.1002/adfm.201600624
- X. Chen, X. Pu, T. Jiang, A. Yu, L. Xu et al., Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 27(1), 1603788 (2017). https://doi.org/10.1002/adfm.201603788
- Y. Lee, S.H. Cha, Y.-W. Kim, D. Choi, J.-Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9(1), 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
- W.J. Song, Y. Lee, Y. Jung, Y.W. Kang, J. Kim, J.M. Park, Y.L. Park, H.Y. Kim, J.Y. Sun, Soft artificial electroreceptors for noncontact spatial perception. Sci. Adv. 7(48), 9203 (2021). https://doi.org/10.1126/sciadv.abg9203
- Y. Park, J. Jung, Y. Lee, D. Lee, J.J. Vlassak et al., Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. NPJ Flex. Electron. 6, 81 (2022). https://doi.org/10.1038/s41528-022-00215-2
- D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17(12), 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
- W. Kim, H.J. Hwang, D. Bhatia, Y. Lee, J.M. Baik et al., Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency. Nano Energy 21, 19–25 (2016). https://doi.org/10.1016/j.nanoen.2015.12.017
- J. Yu, W. Kim, S. Oh, D. Bhatia, J.-G. Kim et al., Toward optimizing resonance for enhanced triboelectrification of oscillating triboelectric nanogenerators. Int. J. Precis. Eng. Manuf. Green. Technol. 10(2), 409–419 (2023). https://doi.org/10.1007/s40684-022-00442-y
- Y. Lee, W. Kim, D. Bhatia, H.J. Hwang, S. Lee et al., Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 38, 326–334 (2017). https://doi.org/10.1016/j.nanoen.2017.06.015
- Z.L. Wang, Triboelectric nanogenerator (TENG): sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
- Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
- S. Selvam, S. Praveenkumar, J.-H. Yim, Cyclodextrin incorporated textile supercapacitor/piezo-triboelectric nanogenerator hybrid system for versatile temperature dependent wearable wireless devices. Chem. Eng. J. 482, 148929 (2024). https://doi.org/10.1016/j.cej.2024.148929
- S. Gao, T. Ma, N. Zhou, J. Feng, H. Pu et al., Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring. Nano Energy 122, 109330 (2024). https://doi.org/10.1016/j.nanoen.2024.109330
- M.A. Steiner, R.M. France, J. Buencuerpo, J.F. Geisz, M.P. Nielsen et al., High efficiency inverted GaAs and GaInP/GaAs solar cells with strain-balanced GaInAs/GaAsP quantum wells. Adv. Energy Mater. 11(4), 2002874 (2021). https://doi.org/10.1002/aenm.202002874
- E. Yaccuzzi, S. Di Napoli, E.J. Di Liscia, S. Suárez, M. Alurralde et al., Experimental re-evaluation of proton penetration ranges in GaAs and InGaP. J. Phys. D Appl. Phys. 54(11), 115302 (2021). https://doi.org/10.1088/1361-6463/abce7d
- M. Qian, X. Mao, M. Wu, Z. Cao, Q. Liu et al., POSS polyimide sealed flexible triple-junction GaAs thin-film solar cells for space applications. Adv. Mater. Technol. 6(12), 2100603 (2021). https://doi.org/10.1002/admt.202100603
- Z. Teng, M. Zhong, Y. Mao, E. Li, M. Guo et al., A concentrated sunlight energy wireless transmission system for space solar energy harvest. Energy Convers. Manage. 261, 115524 (2022). https://doi.org/10.1016/j.enconman.2022.115524
- R.G. Lange, W.P. Carroll, Review of recent advances of radioisotope power systems. Energy Convers. Manag. 49(3), 393–401 (2008). https://doi.org/10.1016/j.enconman.2007.10.028
- T.C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser et al., Increasing the efficiency of the multi-mission radioisotope thermoelectric generator. J. Electron. Mater. 44(6), 1814–1821 (2015). https://doi.org/10.1007/s11664-014-3564-9
- T. Li, Y. Liu, Y. Zhang, H. Chen, Q. Xiang et al., Comprehensive modeling and characterization of Chang’E-4 radioisotope thermoelectric generator for lunar mission. Appl. Energy 336, 120865 (2023). https://doi.org/10.1016/j.apenergy.2023.120865
- P.P. Murmu, J. Kennedy, Energy harvesting from ambient heat sources using thermoelectric generator—a modelling study. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.528
- R. Graczyk, Energy Harvesters for Space. Physics arXiv:1711.03813 (2017). http://arxiv.org/abs/1711.03813
- A.G. Olabi, M. Al-Murisi, H.M. Maghrabie, B.A. Yousef, E.T. Sayed et al., Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids 16, 100249 (2022). https://doi.org/10.1016/j.ijft.2022.100249
- H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad et al., Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 9, 100063 (2021). https://doi.org/10.1016/j.ijft.2021.100063
- A. Barco, R.M. Ambrosi, H.R. Williams, K. Stephenson, Radioisotope power systems in space missions: overview of the safety aspects and recommendations for the European safety case. J. Space Saf. Eng. 7(2), 137–149 (2020). https://doi.org/10.1016/j.jsse.2020.03.001
- H. Cao, L. Kong, M. Tang, Z. Zhang, X. Wu et al., An electromagnetic energy harvester for applications in a high-speed rail pavement system. Int. J. Mech. Sci. 243, 108018 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108018
- S. Bilen, J. McTernan, B. Gilchrist, I. Bell, N. Voronka et al., Electrodynamic tethers for energy harvesting and propulsion on space platformsAIAA SPACE 2010 conference & exposition. 30 August 2010—02 Sept 2010, Anaheim, California. Reston, Virginia: AIAA, 2010: 8844. https://doi.org/10.2514/6.2010-8844
- B. E. Gilchrist, D. C. Thompson, W. J. Raitt, N. R. Voronka, V. M. Aguero, et al., Measurements of current and voltage in the TSS-1R system using passive current closure and electron beam emission from the Orbiter structure. in 1996 Spring AGU Meet. Am. Geophys. Union, Balt. MD (1996).
- J. Liu, C.R. McInnes, Resonant space tethered system for lunar orbital energy harvesting. Acta Astronaut. 156, 23–32 (2019). https://doi.org/10.1016/j.actaastro.2018.08.037
- H.Y. McSween Jr., V.E. Hamilton, K.A. Farley, Perspectives on mars sample return: a critical resource for planetary science and exploration. Proc. Natl. Acad. Sci. U.S.A. 122(2), e2404248121 (2025). https://doi.org/10.1073/pnas.2404248121
- S. Chatterjee, Life beyond earth. In: From Stardust to First Cells, Springer International Publishing, Cham (2023), pp. 235–252. https://doi.org/10.1007/978-3-031-23397-5_19
- L.K. Barger, J.P. Sullivan, A.S. Vincent, E.R. Fiedler, L.M. McKenna et al., Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. Sleep 35(10), 1423–1435 (2012). https://doi.org/10.5665/sleep.2128
- T. Maity, A. Saxena, Challenges and innovations in food and water availability for a sustainable Mars colonization. Life Sci. Space Res. 42, 27–36 (2024). https://doi.org/10.1016/j.lssr.2024.03.008
- T. Ding, X. Hou, M. Zhu, J. Zhou, Y. Liu et al., A flexible self-perceiving/repairing parachute (FSPRP) system adapted to the Martian dust storm environment. Nano Energy 99, 107358 (2022). https://doi.org/10.1016/j.nanoen.2022.107358
- F. Yang, Z. Wang, B. Xu, Y. Lu, X. Hou et al., A soft-soft contact triboelectric nanogenerator with a ternary four-phase structure for self-powered high-efficiency dust removal on Mars. Adv. Sci. 12(27), 2502956 (2025). https://doi.org/10.1002/advs.202502956
- S.A. Khan, M.M. Rehman, S. Ameen, M. Saqib, M. Khan et al., High performance triboelectric nanogenerator based on purified chitin nanopaper for the applications of self-powered humidity sensing, gait monitoring, and hyperhidrosis sensor. Sustain. Mater. Technol. 40, e00867 (2024). https://doi.org/10.1016/j.susmat.2024.e00867
- A. Haroun, M. Tarek, M. Mosleh, F. Ismail, Recent progress on triboelectric nanogenerators for vibration energy harvesting and vibration sensing. Nanomaterials 12, 2960 (2022). https://doi.org/10.3390/nano12172960
- F. Ventre, S. Mukherjee, G. de Marco, A. Russo, Phase-a design of a triboelectric sensor for space applications. Proc. Int. Astronaut. Congr. IAC 2020-Oct 0–10 (2020).
- K. Kong, L. Wang, H. Wu, Z. Le, Y. Zhang et al., Skin-inspired multimodal tactile sensor aiming at smart space extravehicular multi-finger operations. Chem. Eng. J. 498, 154870 (2024). https://doi.org/10.1016/j.cej.2024.154870
- H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
- Y. Abid, A. Shuja, M. Ali, I. Murtaza, Output current boosting in triboelectric nanogenerators for applications in self-powered energy systems. Eng. Sci. Technol. Int. J. 55, 101749 (2024). https://doi.org/10.1016/j.jestch.2024.101749
- S. Shen, Y. Zhao, R. Cao, H. Wu, W. Zhang et al., Triboelectric polymer with excellent enhanced electrical output performance over a wide temperature range. Nano Energy 110, 108347 (2023). https://doi.org/10.1016/j.nanoen.2023.108347
- B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
- J. Hu, Y. Qian, F. Wei, J. Dai, D. Li et al., High powered output flexible aerogel triboelectric nanogenerator under ultrahigh temperature condition. Nano Energy 121, 109229 (2024). https://doi.org/10.1016/j.nanoen.2023.109229
- Y. Zheng, R. Mao, B. Liu, B. Ma, W. Li et al., Thermally stabilized polyacrylonitrile for flexible triboelectric devices operating from – 29 to 00 °C. Chem. Eng. J. 518, 164573 (2025). https://doi.org/10.1016/j.cej.2025.164573
- L. Zhao, S. Jia, C. Fang, B. Qin, Y. Hu et al., Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature. Chem. Eng. J. 503, 158637 (2025). https://doi.org/10.1016/j.cej.2024.158637
- L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
- L. Zhao, S. Jia, W. Feng, L. Wu, G. Chen et al., Self-retracting triboelectric-electromagnetic hybrid sensor for high-precision displacement and speed monitoring. Nano Energy 140, 110964 (2025). https://doi.org/10.1016/j.nanoen.2025.110964
- S. He, J. Dai, D. Wan, S. Sun, X. Yang et al., Biomimetic bimodal haptic perception using triboelectric effect. Sci. Adv. 10(27), eado6793 (2024). https://doi.org/10.1126/sciadv.ado6793
- M.A. Aleman, A. Gopalarathnam, K. Granlund, Novel surface flow-reversal sensor applied to detection of airfoil stall. J. Aircr. 59(5), 1382–1389 (2022). https://doi.org/10.2514/1.c036732
- Y. Wan, T. Keviczky, Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation. Int. J. Robust Nonlinear Control 29(16), 5394–5411 (2019). https://doi.org/10.1002/rnc.4011
- Z. Zhou, Z. Xu, L.N.Y. Cao, H. Sheng, C. Li et al., Triboelectricity based self-powered digital displacement sensor for aircraft flight actuation. Adv. Funct. Mater. 34(8), 2311839 (2024). https://doi.org/10.1002/adfm.202311839
- X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
- Z. Xu, L.N.Y. Cao, C. Li, Y. Luo, E. Su et al., Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft. Nat. Commun. 14(1), 2792 (2023). https://doi.org/10.1038/s41467-023-38486-6
- Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu et al., Harvesting low-frequency (<5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
- K. Kazemi, M. Ebrahimi, M. Lahonian, A. Babamiri, Micro-scale heat and electricity generation by a hybrid solar collector-chimney, thermoelectric, and wind turbine. Sustain. Energy Technol. Assess. 53, 102394 (2022). https://doi.org/10.1016/j.seta.2022.102394
- Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
- M. Zhu, Y. Yu, J. Zhu, J. Zhang, Q. Gao et al., Bionic blade lift-drag combination triboelectric-electromagnetic hybrid generator with enhanced aerodynamic performance for wind energy harvesting. Adv. Energy Mater. 13(46), 2303119 (2023). https://doi.org/10.1002/aenm.202303119
- Y. Su, X. Hou, L. Li, G. Cao, X. Chen et al., Study on impact energy absorption and adhesion of biomimetic buffer system for space robots. Adv. Space Res. 65(5), 1353–1366 (2020). https://doi.org/10.1016/j.asr.2019.12.006
- T. Tang, X. Hou, Y. Xiao, Y. Su, Y. Shi et al., Research on motion characteristics of space truss-crawling robot. Int. J. Adv. Robot. Syst. 16, 1729881418821578 (2019). https://doi.org/10.1177/1729881418821578
- S. Chien, K.L. Wagstaff, Robotic space exploration agents. Sci. Robot. 2(7), eaan4831 (2017). https://doi.org/10.1126/scirobotics.aan4831
- W. Xu, B. Liang, B. Li, Y. Xu, A universal on-orbit servicing system used in the geostationary orbit. Adv. Space Res. 48(1), 95–119 (2011). https://doi.org/10.1016/j.asr.2011.02.012
- N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, I. Shimoyama, High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers. Sens. Actuat. A Phys. 215, 167–175 (2014). https://doi.org/10.1016/j.sna.2013.09.002
- H.-K. Lee, J. Chung, S.-I. Chang, E. Yoon, Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor. J. Micromech. Microeng. 21(3), 035010 (2011). https://doi.org/10.1088/0960-1317/21/3/035010
- X. Hou, M. Zhu, L. Sun, T. Ding, Z. Huang et al., Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy 93, 106894 (2022). https://doi.org/10.1016/j.nanoen.2021.106894
- Y. Sun, C. Li, Z. Xu, Y. Cao, H. Sheng et al., Conformable multifunctional space fabric by metal 3D printing for collision hazard protection and self-powered monitoring. ACS Appl. Mater. Interfaces 15(49), 57726–57737 (2023). https://doi.org/10.1021/acsami.3c15232
- I. Loomis, Space science. Air force turns a keen eye on space junk. Science 347(6218), 115 (2015)
- L. Zheng, Y. Wu, X. Chen, A. Yu, L. Xu et al., Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 27(16), 1606408 (2017). https://doi.org/10.1002/adfm.201606408
- Z. Ren, J. Nie, J. Shao, Q. Lai, L. Wang et al., Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Adv. Funct. Mater. 28(31), 1802989 (2018). https://doi.org/10.1002/adfm.201802989
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- R. Yan, Z. Sun, W. Du, N. Liu, Q. Sun et al., An electrostatic-induction-enabled anti-touching hydrogel dressing for chronic wound care. Adv. Funct. Mater. 34(37), 2402217 (2024). https://doi.org/10.1002/adfm.202402217
- Y. Wang, X.Y. Wei, S.Y. Kuang, H.Y. Li, Y.H. Chen et al., Triboelectrification-induced self-assembly of macro-sized polymer beads on a nanostructured surface for self-powered patterning. ACS Nano 12(1), 441–447 (2018). https://doi.org/10.1021/acsnano.7b06758
- X. Hou, L. Xin, Y. Fu, Z. Na, G. Gao et al., A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118, 109034 (2023). https://doi.org/10.1016/j.nanoen.2023.109034
- J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality (adv. funct. mater. 39/2021). Adv. Funct. Mater. 31(39), 2170285 (2021). https://doi.org/10.1002/adfm.202170285
- V. Amoli, J.S. Kim, S.Y. Kim, J. Koo, Y.S. Chung et al., Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress. Adv. Funct. Mater. 30(20), 1904532 (2020). https://doi.org/10.1002/adfm.201904532
- J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31(39), 2007428 (2021). https://doi.org/10.1002/adfm.202007428
- X. Yang, G. Liu, Q. Guo, H. Wen, R. Huang et al., Triboelectric sensor array for internet of things based smart traffic monitoring and management system. Nano Energy 92, 106757 (2022). https://doi.org/10.1016/j.nanoen.2021.106757
- H. Wen, X. Yang, R. Huang, D. Zheng, J. Yuan et al., Universal energy solution for triboelectric sensors toward the 5G era and internet of things. Adv. Sci. 10(22), 2302009 (2023). https://doi.org/10.1002/advs.202302009
- O. Kodheli, E. Lagunas, N. Maturo, S.K. Sharma, B. Shankar et al., Satellite communications in the new space era: a survey and future challenges. IEEE Commun. Surv. Tutor. 23(1), 70–109 (2021). https://doi.org/10.1109/COMST.2020.3028247
- H. Al-Hraishawi, H. Chougrani, S. Kisseleff, E. Lagunas, S. Chatzinotas, A survey on nongeostationary satellite systems: the communication perspective. IEEE Commun. Surv. Tutor. 25(1), 101–132 (2023). https://doi.org/10.1109/COMST.2022.3197695
- H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15(2), 621–632 (2022). https://doi.org/10.1039/D1EE02549J
- H. Zhao, M. Xu, M. Shu, J. An, W. Ding et al., Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 13(1), 3325 (2022). https://doi.org/10.1038/s41467-022-31042-8
- S. Kalasin, P. Sangnuang, W. Surareungchai, Wearable triboelectric sensors with self-powered energy: multifunctional laser-engraved electrets to activate satellite communication for life-emergency alert in pandemics. ACS Appl. Electron. Mater. 3(12), 5383–5392 (2021). https://doi.org/10.1021/acsaelm.1c00865
- H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered Arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
- Weather and climate extreme events in a changing climate. In: Climate Change 2021—The Physical Science Basis, Cambridge University Press (2023), pp. 1513–1766. https://doi.org/10.1017/9781009157896.013
- T.S. Balint, J.A. Cutts, E.A. Kolawa, C.E. Peterson, Extreme environment technologies for space and terrestrial applications. Space Explor. Technol. 6960, 696006 (2008). https://doi.org/10.1117/12.780389
- M.I. Dobynde, Y.Y. Shprits, A.Y. Drozdov, J. Hoffman, J. Li, Beating 1 sievert: optimal radiation shielding of astronauts on a mission to Mars. Space Weather 19(9), e2021SW002749 (2021). https://doi.org/10.1029/2021SW002749
- J. Rask, W. Vercoutere, B. J. Navarro, A. Krause, The radiation challenge. National 1–3 (2008).
- S. Ye, C. Cheng, X. Chen, X. Chen, J. Shao et al., High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 60, 701–714 (2019). https://doi.org/10.1016/j.nanoen.2019.03.096
- J. Chancellor, C. Nowadly, J. Williams, S. Aunon-Chancellor, M. Chesal et al., Everything you wanted to know about space radiation but were afraid to ask. J. Environ. Sci. Health C 39(2), 113–128 (2021). https://doi.org/10.1080/26896583.2021.1897273
- A. Sharma, A. Teverovsky, Effect of vacuum environments on performance and reliability of electronic components and packages for space applications. 2007 8th International Conference on Electronic Packaging Technology. IEEE (2008), pp. 1–2.
- B.E. Lindsly, W.B. Berwald, Effect of vacuum on oil wells. (1930).
- S. Reif-Acherman, Juguetes Como instrumentos de enseñanza en ingeniería: el caso del Slinky®. Ingeniería Y Compet. 17(2), 111–122 (2015). https://doi.org/10.25100/iyc.v17i2.2194
- A. Anwar, M. Albano, G. Hassan, A. Delfini, F. Volpini et al., Vacuum effect on spacecraft structure materials. Int. Conf. Aerospace Sci. Aviat. Technol. 16, 1–10 (2015). https://doi.org/10.21608/asat.2015.22908
- Y. Li, F. Galindo, J. Urbina, Q. Zhou, T.-Y. Huang, Meteor detection with a new computer vision approach. Radio Sci. 57(10), e2022RS007515 (2022). https://doi.org/10.1029/2022RS007515
- K.A. Hill, L.A. Rogers, R.L. Hawkes, High geocentric velocity meteor ablation. Astron. Astrophys. 444(2), 615–624 (2005). https://doi.org/10.1051/0004-6361:20053053
- A.V. Moorhead, Deconvoluting measurement uncertainty from the meteor speed distribution. Meteorit. Planet. Sci. 53(6), 1292–1298 (2018). https://doi.org/10.1111/maps.13066
- G.A. Harvey, spectral analysis of a high-velocity meteor. (1977).
- Y. Xiao, Design, fabrication, and application study of droplet tube based triboelectric nanogenerators. Tribol. Ind. 45(4), 699–709 (2023). https://doi.org/10.24874/ti.1493.06.23.08
- A.S. Almuslem, S.F. Shaikh, M.M. Hussain, Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 4(9), 1900145 (2019). https://doi.org/10.1002/admt.201900145
- M. Olsen, J. Örtegren, R. Zhang, S. Reza, H. Andersson et al., Schottky model for triboelectric temperature dependence. Sci. Rep. 8(1), 5293 (2018). https://doi.org/10.1038/s41598-018-23666-y
- C.X. Lu, C.B. Han, G.Q. Gu, J. Chen, Z.W. Yang et al., Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 19(12), 1700275 (2017). https://doi.org/10.1002/adem.201700275
- M.R. Pearson, M.J. Eaton, R. Pullin, C.A. Featherston, K.M. Holford, Energy harvesting for aerospace structural health monitoring systems. J. Phys. Conf. Ser. 382, 012025 (2012). https://doi.org/10.1088/1742-6596/382/1/012025
- H. Shaukat, A. Ali, S. Ali, W.A. Altabey, M. Noori et al., Applications of sustainable hybrid energy harvesting: a review. J. Low Power Electron. Appl. 13(4), 62 (2023). https://doi.org/10.3390/jlpea13040062
- S.A. Bella, R. Cirelli, Á. Romero-Calvo, A. Russo, F. Ventre, Innovative sensor-based network for autonomous on-orbit structural health monitoring. Proc. Int. Astronaut. Congr. IAC 2019-Octob, (2019).
- J. Li, J. Chen, H. Guo, Triboelectric nanogenerators for harvesting wind energy: recent advances and future perspectives. Energies 14(21), 6949 (2021). https://doi.org/10.3390/en14216949
- W. Zhu, C. Hu, C.R. Bowen, Z.L. Wang, Y. Yang, Scavenging low-speed breeze wind energy using a triboelectric nanogenerator installed inside a square variable diameter channel. Nano Energy 100, 107453 (2022). https://doi.org/10.1016/j.nanoen.2022.107453
- Editorial, Materials’ mission to reach strange new worlds. Nat. Rev. Mater. 9(11), 753 (2024). https://doi.org/10.1038/s41578-024-00747-1
- K.J. Kim, Y. Gimmon, S. Sorathia, K.H. Beaton, M.C. Schubert, Exposure to an extreme environment comes at a sensorimotor cost. NPJ Microgravity 4, 17 (2018). https://doi.org/10.1038/s41526-018-0051-2
- Editorial, Space missions out of this world with AI. Nat. Mach. Intell. 5(3), 183 (2023). https://doi.org/10.1038/s42256-023-00643-3
- Z.S. Patel, T.J. Brunstetter, W.J. Tarver, A.M. Whitmire, S.R. Zwart et al., Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity 6, 33 (2020). https://doi.org/10.1038/s41526-020-00124-6
- C. Jiang, Y. Jiang, H. Li, S. Du, Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission. Sci. Rep. 13(1), 3325 (2023). https://doi.org/10.1038/s41598-023-30513-2
- B. Ross, S. Haussener, K. Brinkert, Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars. Nat. Commun. 14, 3141 (2023). https://doi.org/10.1038/s41467-023-38676-2
- D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12, 6 (2020). https://doi.org/10.1038/s41427-019-0176-0
- N. Hiramatsu, S. Hirakawa, Melting behavior of poly(ethylene terephthalate) crystallized and annealed under elevated pressure. Polym. J. 12(2), 105–111 (1980). https://doi.org/10.1295/polymj.12.105
- A. Noritake, M. Hori, M. Shigematsu, M. Tanahashi, Recycling of polyethylene terephthalate using high-pressure steam treatment. Polym. J. 40(6), 498–502 (2008). https://doi.org/10.1295/polymj.PJ2007237
- A. Morikawa, T. Hatakeyama, Synthesis and characterization of novel aromatic polyimides from 1, 4-bis(4-aminophenyl)-2, 3-diphenylnaphthalene and aromatic tetracarboxylic dianhydrides. Polym. J. 31(1), 76–78 (1999). https://doi.org/10.1295/polymj.31.76
- D. Kong, X. Xiao, Rigid high temperature heat-shrinkable polyimide tubes with functionality as reducer couplings. Sci. Rep. 7, 44936 (2017). https://doi.org/10.1038/srep44936
- X. Fan, L. Wang, Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application. Sci. Rep. 5, 12734 (2015). https://doi.org/10.1038/srep12734
- M. Loeblein, A. Bolker, S.H. Tsang, N. Atar, C. Uzan-Saguy et al., 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small 11(48), 6425–6434 (2015). https://doi.org/10.1002/smll.201502670
- G.C. Ram, N.K. Maurya, S. Yuvaraj, K.B. Sindhuri, D.R. Varma et al., Graphene based THz filter design using open-loop resonator for space applications. Diam. Relat. Mater. 151, 111820 (2025). https://doi.org/10.1016/j.diamond.2024.111820
- L. Zhang, Z. Zhang, A. Amini Pishro, S.J. Matlan, Tribological performance of IL/(GO-MWCNT) coatings in high-vacuum and irradiation environments. Sci. Rep. 12(1), 14368 (2022). https://doi.org/10.1038/s41598-022-15914-z
- A.R. Kirmani, T.A. Byers, Z. Ni, K. VanSant, D.K. Saini et al., Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing. Nat. Commun. 15(1), 696 (2024). https://doi.org/10.1038/s41467-024-44876-1
- T. Vogl, K. Sripathy, A. Sharma, P. Reddy, J. Sullivan et al., Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10(1), 1202 (2019). https://doi.org/10.1038/s41467-019-09219-5
- A. Fogtman, S. Baatout, B. Baselet, T. Berger, C.E. Hellweg et al., Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 9(1), 8 (2023). https://doi.org/10.1038/s41526-023-00262-7
- J.E. Koehne, M. Cordeiro, S.D. Thomson, M. Meyyappan, Electrochemical sensors in space missions. Electrochem. Soc. Interface 29(1), 53–57 (2020). https://doi.org/10.1149/2.f07201if
- K. Han, J. Luo, J. Chen, Y. Liu, J. Li et al., Plastic film based lightweight thruster driven by triboelectric nanogenerator for multi-purpose propulsion applications. Nano Energy 101, 107558 (2022). https://doi.org/10.1016/j.nanoen.2022.107558
- Z. Zhang, F. Wen, Z. Sun, X. Guo, T. He et al., Artificial intelligence-enabled sensing technologies in the 5G/Internet of Things era: from virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 4(7), 2100228 (2022). https://doi.org/10.1002/aisy.202100228
- B. Hufenbach, S. Habinc, P. Vuilleumier, Space applications for smart sensors. Eur. Sp. Agency 9–16 (1999). https://amstel.estec.esa.int/tecedm/website/docs_generic/SmartSensor.pdf
- Z. Chen, X. Fu, R. Liu, Y. Song, X. Yin, Fabrication, performance, and potential applications of MXene composite aerogels. Nanomaterials 13(14), 2048 (2023). https://doi.org/10.3390/nano13142048
- O. Casas, Applied Instrumentation. (2024).
- M.A.P. Mahmud, A. Zolfagharian, S. Gharaie, A. Kaynak, S.H. Farjana et al., 3D-printed triboelectric nanogenerators: state of the art, applications, and challenges. Adv. Energy Sustain. Res. 2(3), 2000045 (2021). https://doi.org/10.1002/aesr.202000045
- Y. Tong, Z. Feng, J. Kim, J.L. Robertson, X. Jia et al., 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
- T. Song, S. Jiang, N. Cai, G. Chen, A strategy for human safety monitoring in high-temperature environments by 3D-printed heat-resistant TENG sensors. Chem. Eng. J. 475, 146292 (2023). https://doi.org/10.1016/j.cej.2023.146292
- S. Trigwell, J.G. Captain, E.E. Arens, J.W. Quinn, C.I. Calle, The use of tribocharging in the electrostatic beneficiation of lunar simulant. IEEE Trans. Ind. Appl. 45(3), 1060–1067 (2009). https://doi.org/10.1109/TIA.2009.2018976
- A. Meurisse, J.C. Beltzung, M. Kolbe, A. Cowley, M. Sperl, Influence of mineral composition on sintering lunar regolith. J. Aerosp. Eng. 30(4), 04017014 (2017). https://doi.org/10.1061/(asce)as.1943-5525.0000721
- L.A. Taylor, C.M. Pieters, D. Britt, Evaluations of lunar regolith simulants. Planet. Space Sci. 126, 1–7 (2016). https://doi.org/10.1016/j.pss.2016.04.005
- S.S. Schreiner, J.A. Dominguez, L. Sibille, J.A. Hoffman, Thermophysical property models for lunar regolith. Adv. Space Res. 57(5), 1209–1222 (2016). https://doi.org/10.1016/j.asr.2015.12.035
- Y. Zou, H. Wu, S. Chai, W. Yang, R. Ruan et al., Development and characterization of the PolyU-1 lunar regolith simulant based on Chang’e-5 returned samples. Int. J. Min. Sci. Technol. 34(9), 1317–1326 (2024). https://doi.org/10.1016/j.ijmst.2024.08.006
- M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky, Regolith-based additive manufacturing for sustainable development of lunar infrastructure–an overview. Acta Astronaut. 180, 650–678 (2021). https://doi.org/10.1016/j.actaastro.2021.01.005
- D. Viúdez-Moreiras, M. de la Torre, J. Gómez-Elvira, R.D. Lorenz, V. Apéstigue et al., Winds at the Mars 2020 landing site. 2. Wind variability and turbulence. J. Geophys. Res. Planets 127(12), e2022JE007523 (2022). https://doi.org/10.1029/2022JE007523
- J. Benavides, A. Systems, Astrobee Jose Benavides Background. (2024).
- A.O. Esho, T.D. Iluyomade, T.M. Olatunde, O.P. Igbinenikaro, Next-generation materials for space electronics: a conceptual review. Open Access Res. J. Eng. Technol. 6(02), 051–062 (2024). https://doi.org/10.53022/oarjet.2024.6.2.0020
- T. Scalia, L. Bonventre, M.L. Terranova, From protosolar space to space exploration: the role of graphene in space technology and economy. Nanomaterials 13(4), 680 (2023). https://doi.org/10.3390/nano13040680
- D. Yang, H.K. Nam, Y. Lee, S. Kwon, J. Lee et al., Laser-induced graphene smart textiles for future space suits and telescopes. Adv. Funct. Mater. 35(1), 2411257 (2025). https://doi.org/10.1002/adfm.202411257
- M. Lappa, I. Hamerton, P.C.E. Roberts, A. Kao, M. Domingos et al., Why space: the opportunity for materials science and innovation. (2024).
- L. Wang, Y. Gao, J. Luo, W. Xu, C. Zhang et al., High-performance triboelectric nanogenerator based on NH2-MXene/TiO2@sodium alginate composite film for self-powered cathodic protection. Chem. Eng. J. 506, 159837 (2025). https://doi.org/10.1016/j.cej.2025.159837
- W. Cho, S. Kim, H. Lee, N. Han, H. Kim et al., High-performance yet sustainable triboelectric nanogenerator based on sulfur-rich polymer composite with MXene segregated structure. Adv. Mater. 36(44), 2404163 (2024). https://doi.org/10.1002/adma.202404163
- S. Ghorbanzadeh, W. Zhang, Advances in MXene-based triboelectric nanogenerators. Nano Energy 125, 109558 (2024). https://doi.org/10.1016/j.nanoen.2024.109558
- M. Liu, P. Li, Y.J. Tan, Z. Yang, H.H. See et al., An extreme environment capable self-healing single active layered triboelectric sensors as fully recyclable and transparent human-machine interfaces. Adv. Funct. Mater. 35(4), 2414152 (2025). https://doi.org/10.1002/adfm.202414152
- H. Wang, Z. Zhao, L. Zhang, Z. Su, C. Chen et al., High-performance low-temperature self-healing bio-based polyurethane triboelectric nanogenerator for wireless intelligent target systems. Nano Energy 133, 110438 (2025). https://doi.org/10.1016/j.nanoen.2024.110438
- D. John, A.K. Sukumaran, S.M.A.K. Mohammed, K. Orikasa, L. Lou et al., Cold-sprayed boron-nitride-nanotube-reinforced aluminum matrix composites with improved wear resistance and radiation shielding. Adv. Eng. Mater. 26(23), 2401490 (2024). https://doi.org/10.1002/adem.202401490
- E. Cheraghi, S. Chen, J.T.W. Yeow, Boron nitride-based nanomaterials for radiation shielding: a review. IEEE Nanotechnol. Mag. 15(3), 8–17 (2021). https://doi.org/10.1109/MNANO.2021.3066390
- H.-Y. Chao, A.M. Nolan, A.T. Hall, D. Golberg, C. Park et al., Resistance of boron nitride nanotubes to radiation-induced oxidation. J. Phys. Chem. C. Nanomater. Interfaces 128(43), 18328–18337 (2024). https://doi.org/10.1021/acs.jpcc.4c03814
- D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. U.S.A. 106(49), 20637–20640 (2009). https://doi.org/10.1073/pnas.0909718106
- F. Liang, X. Chao, S. Yu, Y. Gu, X. Zhang et al., An all-fabric droplet-based energy harvester with topology optimization. Adv. Energy Mater. 12(9), 2102991 (2022). https://doi.org/10.1002/aenm.202102991
- F. Liang, X.J. Zhao, H.Y. Li, Y.J. Fan, J.W. Cao et al., Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in situ charged nanocomposite membrane. Nano Energy 69, 104414 (2020). https://doi.org/10.1016/j.nanoen.2019.104414
- L. Li, S. Feng, Y. Bai, X. Yang, M. Liu et al., Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 13(1), 1043 (2022). https://doi.org/10.1038/s41467-022-28689-8
- X. Shi, Y. Wei, B. Tang, Y. Li, L. Lv et al., A kirigami-driven stretchable paper-based hydrovoltaic electricity generator. Adv. Funct. Mater. 35(25), 2419753 (2025). https://doi.org/10.1002/adfm.202419753
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- L. Li, R. Wang, Y. Fu, Z. Jin, J. Chen et al., Fabricating and engineering woody-biomass aerogels for high-performance triboelectric nanogenerators for energy harvesting and biomechanical monitoring. Adv. Funct. Mater. 35(2), 2412324 (2025). https://doi.org/10.1002/adfm.202412324
- L. Zhang, Y. Liao, Y.-C. Wang, S. Zhang, W. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
- G. Li, S. An, P. Wang, S. Xiong, J. Wang et al., Transverse-asymmetric electrode structure design to eliminate charge transfer loss for enhancing output performance of sliding mode TENG. Adv. Funct. Mater. 35(3), 2413359 (2025). https://doi.org/10.1002/adfm.202413359
- Z. Turar, M. Sembay, A. Mubarak, A. Belgibayeva, L. Kong et al., Advances in porous structure design for enhanced piezoelectric and triboelectric nanogenerators: a comprehensive review. Glob. Chall. 9(1), 2400224 (2025). https://doi.org/10.1002/gch2.202400224
- A. Jalali, A. Rajabi-Abhari, H. Zhang, T. Gupta, O.A.T. Dias et al., Cultivation of in situ foam 3D-printing: lightweight and flexible triboelectric nanogenerators employing polyvinylidene fluoride/graphene nanocomposite foams with superior EMI shielding and thermal conductivity. Nano Energy 134, 110554 (2025). https://doi.org/10.1016/j.nanoen.2024.110554
- F. Ou, X. Li, L. Tuo, Z. Zhang, W. Tang et al., Solid-state ion-conductive elastomers with high mechanical robustness and ion-conductivity for highly durable triboelectric nanogenerators. Chem. Eng. J. 505, 159502 (2025). https://doi.org/10.1016/j.cej.2025.159502
- J. Wu, X. Wang, H. Li, F. Wang, W. Yang et al., Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 48, 607–616 (2018). https://doi.org/10.1016/j.nanoen.2018.04.025
- Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903713 (2020). https://doi.org/10.1002/aenm.201903713
- K. Wen, X.-W. Chen, Y.-G. Lu, Research and development on hypervelocity impact protection using whipple shield: an overview. Def. Technol. 17(6), 1864–1886 (2021). https://doi.org/10.1016/j.dt.2020.11.005
- A.J. Piekutowski, K.L. Poormon, E.L. Christiansen, B.A. Davis, Performance of whipple shields at impact velocities above 9km/s. Int. J. Impact Eng 38(6), 495–503 (2011). https://doi.org/10.1016/j.ijimpeng.2010.10.021
- Z. Khosroshahi, F. Karimzadeh, M.H. Enayati, E.N. Kalali, Z. Adabavazeh et al., Shape memory behavior of polyethylene-foam-based nanocomposite for sustainable triboelectric nanogenerators. J. Alloys Compd. 1003, 175582 (2024). https://doi.org/10.1016/j.jallcom.2024.175582
- E. Chatzitheodoridis, C.D. Georgiou, M. Ferus, E. Kalaitzopoulou, H.-A. Stavrakakis et al., Sensing technologies for the challenging lunar environment. Adv. Space Res. 74(7), 3407–3436 (2024). https://doi.org/10.1016/j.asr.2024.06.033
- L.C. Walters, To create space on earth: the space environment simulation laboratory and project apollo. (2003)
- B.E. Cunningham, R.E. Eddy, Space environment simulator for materials studies at NASA ames. J. Spacecr. Rockets 4(2), 280–282 (1967). https://doi.org/10.2514/3.28851
- G. Santin, Space environments and effects analysis for ESA missions. Nucl. Phys. B Proc. Suppl. 150, 377–381 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.04.067
- L. Li, L. Wang, L. Yuan, R. Zheng, Y. Wu et al., Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronaut. 180, 417–428 (2021). https://doi.org/10.1016/j.actaastro.2020.12.054
- P. Investigator, M. Meyyappan, Triboelectric nano generator (TENG) for mars exploration and high altitude power generation on earth. 2616 (2019). https://flightopportunities.ndc.nasa.gov/technologies/222/
- C. Ye, D. Liu, P. Chen, L.N.Y. Cao, X. Li et al., An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 35(11), 2209713 (2023). https://doi.org/10.1002/adma.202209713
- S. Hajra, A. Ali, S. Panda, H. Song, P.M. Rajaitha et al., Synergistic integration of nanogenerators and solar cells: advanced hybrid structures and applications. Adv. Energy Mater. 14(21), 2400025 (2024). https://doi.org/10.1002/aenm.202400025
- C. Liu, T. Shao, Z. Hao, Z. Sui, Z. Ma et al., Hybrid human energy harvesting method of MTEG-TENG based on a flexible shared substrate. Mater. Today Sustain. 26, 100692 (2024). https://doi.org/10.1016/j.mtsust.2024.100692
- L. Fang, C. Chen, H. Zhang, X. Tu, Z. Wang et al., Polynary energy harvesting and multi-parameter sensing in the heatwave environment of industrial factory buildings by an integrated triboelectric–thermoelectric hybrid generator. Mater. Horiz. 11(6), 1414–1425 (2024). https://doi.org/10.1039/D3MH02228E
- Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai et al., Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33(21), 2006545 (2021). https://doi.org/10.1002/adma.202006545
- A.E. Trujillo, M.T. Moraguez, A. Owens, S.I. Wald, O. De Weck, Feasibility Analysis of Commercial In-Space Manufacturing ApplicationsAIAA SPACE and Astronautics Forum and Exposition. 12–14 Sep 2017, Orlando, FL. Reston, Virginia: AIAA, 2017: 5360. https://doi.org/10.2514/6.2017-5360
- A.J. Cavaciuti, J.H. Heying, J. Davis, Manufacturing for the New Space Economy. (2022).
- S. Patane, E.R. Joyce, M.P. Snyder, P. Shestople, Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space HabitatsAIAA SPACE and Astronautics Forum and Exposition. 12–14 Sep 2017, Orlando, FL. Reston, Virginia: AIAA, 2017: 5227. https://doi.org/10.2514/6.2017-5227
- S. Bapat, N. Srimurugan, A.J. Patrick, S. Subbiah, A.P. Malshe, Maintenance factory platform for in-space manufacturing: conceptualizing design architecture. Manuf. Lett. 41, 191–199 (2024). https://doi.org/10.1016/j.mfglet.2024.09.023
- M. Moraguez, O. de Weck, Benefits of in-space manufacturing technology development for human spaceflight. 2020 IEEE Aerospace Conference. IEEE (2020), pp. 1–11.
- A.C. Owens , O.L. De Weck, de Weck ISM model. 1–17 (n.d.).
- Y. Cho, S. Lee, J. Hong, S. Pak, B. Hou et al., Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator. J. Mater. Chem. A 6(26), 12440–12446 (2018). https://doi.org/10.1039/C8TA03870H
- L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
- A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
- Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun et al., Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
- Esho AO, Iluyomade TD, Olatunde TM, Igbinenikaro OP. A comprehensive review of energy-efficient design in satellite communication systems. Int. J. Eng. Res. Updates. 2024;6(02):013-25. https://doi.org/10.53430/ijeru.2024.6.2.0024
- L.K. Slongo, S.V. Martínez, B.V.B. Eiterer, T.G. Pereira, E.A. Bezerra et al., Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization. Acta Astronaut. 147, 141–151 (2018). https://doi.org/10.1016/j.actaastro.2018.03.052
- M. Doff-Sotta, M. Cannon, J.R. Forbes, Spacecraft energy management using convex optimisation. Energy Convers. Manag. X 16, 100325 (2022). https://doi.org/10.1016/j.ecmx.2022.100325
- A.M. McNelis, R. Beach, J.F. Soeder, N. McNelis, R. May et al., Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions12th International Energy Conversion Engineering Conference. July 28–30, 2014, Cleveland, OH. Reston, Virginia: AIAA, 2014, 3835. https://doi.org/10.2514/6.2014-3835
- J.D. Frank, Artificial intelligence: powering human exploration of the Moon and Mars. ASCEND 2020. Virtual Event. AIAA, (2020), AIAA2020–4164. https://doi.org/10.2514/6.2020-4164
- G. Li, S. Wu, Z. Sha, L. Zhao, D. Chu et al., A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations. Nano Energy 108, 108185 (2023). https://doi.org/10.1016/j.nanoen.2023.108185
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
References
J. Fraden, Pressure sensors. In: Handbook of Modern Sensors, pp. 375–397. Springer New York (2010). https://doi.org/10.1007/978-1-4419-6466-3_10
A. Vidwans, S. Choudhary, B. Jolliff, J. Gillis-Davis, P. Biswas, Size and charge distribution characteristics of fine and ultrafine ps in simulated lunar dust: relevance to lunar missions and exploration. Planet. Space Sci. 210, 105392 (2022). https://doi.org/10.1016/j.pss.2021.105392
J. Goguen, A. Sharits, A. Chiaramonti, T. Lafarge, E. Garboczi, Three-dimensional characterization of p size, shape, and internal porosity for Apollo 11 and Apollo 14 lunar regolith and JSC-1A lunar regolith soil simulant. Icarus 420, 116166 (2024). https://doi.org/10.1016/j.icarus.2024.116166
K. Bolwin, Application of regenerative fuel cells for space energy storage: a comparison to battery systems. J. Power. Sources 40(3), 307–321 (1992). https://doi.org/10.1016/0378-7753(92)80019-8
R.C. O’Brien, R.M. Ambrosi, N.P. Bannister, S.D. Howe, H.V. Atkinson, Safe radioisotope thermoelectric generators and heat sources for space applications. J. Nucl. Mater. 377(3), 506–521 (2008). https://doi.org/10.1016/j.jnucmat.2008.04.009
X. Wang, R. Liang, P. Fisher, W. Chan, J. Xu, Critical design features of thermal-based radioisotope generators: a review of the power solution for polar regions and space. Renew. Sustain. Energy Rev. 119, 109572 (2020). https://doi.org/10.1016/j.rser.2019.109572
A. Bermudez-Garcia, P. Voarino, O. Raccurt, Environments, needs and opportunities for future space photovoltaic power generation: a review. Appl. Energy 290, 116757 (2021). https://doi.org/10.1016/j.apenergy.2021.116757
O. Belian, Alternative Power and Propulsion for Space Systems. Aiken, United States, 2023.
R. Verduci, V. Romano, G. Brunetti, N. Yaghoobi Nia, A. Di Carlo et al., Solar energy in space applications: review and technology perspectives. Adv. Energy Mater. 12(29), 2200125 (2022). https://doi.org/10.1002/aenm.202200125
W.M. Kelly, Radiation environments and exposure considerations for the multi-mission radioisotope thermoelectric generator. AIP Conf. Proc. 813(1), 906–919 (2006). https://doi.org/10.1063/1.2169273
M.-L. Seol, J.-W. Han, D.-I. Moon, M. Meyyappan, Triboelectric nanogenerator for Mars environment. Nano Energy 39, 238–244 (2017). https://doi.org/10.1016/j.nanoen.2017.07.004
K. Liu, X. Tang, Y. Liu, Z. Xu, Z. Yuan et al., Experimental optimization of small–scale structure–adjustable radioisotope thermoelectric generators. Appl. Energy 280, 115907 (2020). https://doi.org/10.1016/j.apenergy.2020.115907
H.M.M.U. Rehman, A.P.S. Prasanna, M.M. Rehman, M. Khan, S.-J. Kim et al., Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 36, e00596 (2023). https://doi.org/10.1016/j.susmat.2023.e00596
Y. Li, Y. Guo, F. Fu, Z. Yang, Y. Ling et al., Triboelectric basalt textiles efficiently operating within an ultrawide temperature range. Adv. Mater. 36(28), e2401359 (2024). https://doi.org/10.1002/adma.202401359
Z. Wang, D. Wu, M. Chi, X. Zou, J. Wang et al., Thermally robust aramid triboelectric materials enabled by heat-induced cross-linking. Adv. Funct. Mater. 35(3), 2413719 (2025). https://doi.org/10.1002/adfm.202413719
Y. Zhao, H. Yu, R. Cao, Y. Liu, S. Shen et al., Extreme environment-resistant high performance triboelectric nanogenerator for energy harvesting and self-powered positioning system. Nano Today 61, 102616 (2025). https://doi.org/10.1016/j.nantod.2024.102616
C. Callaty, C. Rodrigues, J. Ventura, Triboelectric nanogenerators in harsh conditions: a critical review. Nano Energy 135, 110661 (2025). https://doi.org/10.1016/j.nanoen.2025.110661
Y. Liu, M. Zhu, D. Nan, X. Li, Y. Wang et al., Enhanced durability and robustness of triboelectric nanogenerators with blade-enclosed structure for breeze energy harvesting. Adv. Sustain. Syst. 7(2), 2200367 (2023). https://doi.org/10.1002/adsu.202200367
R. Ali Shaukat, S. Ameen, Q.M. Saqib, M.Y. Chougale, J. Kim et al., Organic semiconductor polymers: a carbazole-based novel tribopositive polymer for energy harvesting with high temperature stability. J. Mater. Chem. A 11(27), 14800–14808 (2023). https://doi.org/10.1039/D3TA01224G
M. Chen, M. Ji, L. Huang, N. Wu, T. Jiang et al., Highly elastic, lightweight, and high-performance all-aerogel triboelectric nanogenerator for self-powered intelligent fencing training. Mater. Sci. Eng. R. Rep. 165, 101004 (2025). https://doi.org/10.1016/j.mser.2025.101004
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), e2004178 (2021). https://doi.org/10.1002/adma.202004178
C. Qiu, F. Wu, Q. Shi, C. Lee, M.R. Yuce, Sensors and control interface methods based on triboelectric nanogenerator in IoT applications. IEEE Access 7, 92745–92757 (2019). https://doi.org/10.1109/ACCESS.2019.2927394
G. Khandelwal, N.P.M.J. Raj, S.-J. Kim, Triboelectric nanogenerator for healthcare and biomedical applications. Nano Today 33, 100882 (2020). https://doi.org/10.1016/j.nantod.2020.100882
X. Li, J. Luo, K. Han, X. Shi, Z. Ren et al., Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3(2), 133–142 (2022). https://doi.org/10.1038/s43016-021-00449-9
R. Ali Shaukat, J. Choi, C.K. Jeong, Eco-friendly powder and ps-based triboelectric energy harvesters. J. Powder Mater. 30(6), 528–535 (2023). https://doi.org/10.4150/kpmi.2023.30.6.528
J. Son, A.M. Tamim, H. Kim, S.H. Jeon, R.A. Shaukat et al., Suction-forced triboelectricity escalation by incorporating biomimetic 3-dimensional surface architectures. Nano Energy 133, 110480 (2025). https://doi.org/10.1016/j.nanoen.2024.110480
M.M. Rehman, M. Khan, H.M.M.U. Rehman, G.U. Siddiqui, Z. Ahmad et al., Nanomaterials in humidity sensors. In: Handbook of Nanomaterials, Volume 1, pp. 513–566. Elsevier (2024). https://doi.org/10.1016/b978-0-323-95511-9.00027-5
R. Ali Shaukat, M. Noman, Q.M. Saqib, A. Umair, M.M. Baig et al., Multi-layered quasi-2D perovskite based triboelectric nanogenerator. Colloids Surf A Physicochem Eng Asp 705, 135728 (2025). https://doi.org/10.1016/j.colsurfa.2024.135728
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6(12), 3576–3583 (2013). https://doi.org/10.1039/C3EE42571A
T. Jiang, X. Chen, C.B. Han, W. Tang, Z.L. Wang, Theoretical study of rotary freestanding triboelectric nanogenerators. Adv. Funct. Mater. 25(19), 2928–2938 (2015). https://doi.org/10.1002/adfm.201500447
C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26(22), 3580–3591 (2014). https://doi.org/10.1002/adma.201400207
W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26(18), 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
S. Hasan, A.Z. Kouzani, S. Adams, J. Long, M.A.P. Mahmud, Comparative study on the contact-separation mode triboelectric nanogenerator. J. Electrost. 116, 103685 (2022). https://doi.org/10.1016/j.elstat.2022.103685
W. Zhang, D. Diao, K. Sun, X. Fan, P. Wang, Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 48, 456–463 (2018). https://doi.org/10.1016/j.nanoen.2018.04.007
Q.M. Saqib, M.U. Khan, H. Song, M.Y. Chougale, R.A. Shaukat et al., Natural hierarchically structured highly porous tomato peel based tribo- and piezo-electric nanogenerator for efficient energy harvesting. Adv. Sustain. Syst. 5(7), 2100066 (2021). https://doi.org/10.1002/adsu.202100066
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
Z.L. Wang, From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 84(9), 096502 (2021). https://doi.org/10.1088/1361-6633/ac0a50
Z.L. Wang, On the expanded Maxwell’s equations for moving charged media system–general theory, mathematical solutions and applications in TENG. Mater. Today 52, 348–363 (2022). https://doi.org/10.1016/j.mattod.2021.10.027
Z.L. Wang, Maxwell’s equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r, t). J. Phys. Commun. 6(8), 085013 (2022). https://doi.org/10.1088/2399-6528/ac871e
Y. Liu, J. Mo, Q. Fu, Y. Lu, N. Zhang et al., Enhancement of triboelectric charge density by chemical functionalization. Adv. Funct. Mater. 30(50), 2004714 (2020). https://doi.org/10.1002/adfm.202004714
X.-S. Zhang, M.-D. Han, R.-X. Wang, B. Meng, F.-Y. Zhu et al., High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4, 123–131 (2014). https://doi.org/10.1016/j.nanoen.2013.12.016
A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrost. 62(4), 277–290 (2004). https://doi.org/10.1016/j.elstat.2004.05.005
Y. Liu, J. Ping, Y. Ying, Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv. Funct. Mater. 31(17), 2009994 (2021). https://doi.org/10.1002/adfm.202009994
R.A. Shaukat, Q.M. Saqib, J. Kim, H. Song, M.U. Khan et al., Ultra-robust tribo- and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy 96, 107128 (2022). https://doi.org/10.1016/j.nanoen.2022.107128
M. Noman, Q.M. Saqib, S. Ameen, S.R. Patil, C.S. Patil et al., Controlling triboelectric charge of MOFs by leveraging ligands chemistry. Adv. Sci. 11(35), 2404993 (2024). https://doi.org/10.1002/advs.202404993
L. Zhao, X. Guo, Y. Pan, S. Jia, L. Liu et al., Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 6(5), e12520 (2024). https://doi.org/10.1002/inf2.12520
S. Jia, X. Yang, W. Feng, L. Liu, L. Zhao et al., Self-adaptive gyroscope-structured hybrid triboelectric-electromagnetic buoy system for real-time ocean currents monitoring. Small 21(20), 2501073 (2025). https://doi.org/10.1002/smll.202501073
J. Guo, X. Yang, Y. Xie, J. Zheng, W. Lin et al., Boosting the power conversion efficiency of hybrid triboelectric-photovoltaic cells through the field coupling effect. Device 3(1), 100562 (2025). https://doi.org/10.1016/j.device.2024.100562
X. Hou, L. Zhang, Y. Su, G. Gao, Y. Liu et al., A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105, 108013 (2023). https://doi.org/10.1016/j.nanoen.2022.108013
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
R.A. Shaukat, A. Cha et al., Zeolite-decorated triboelectric sensors for heavy metal contaminant detection. ACS Appl. Electron. Mater. 7(8), 3439–3447 (2025). https://doi.org/10.1021/acsaelm.5c00136
X. Chen, T. Jiang, Z.L. Wang, Modeling a dielectric elastomer as driven by triboelectric nanogenerator. Appl. Phys. Lett. 110(3), 033505 (2017). https://doi.org/10.1063/1.4974143
X. Chen, T. Jiang, Y. Yao, L. Xu, Z. Zhao et al., Stimulating acrylic elastomers by a triboelectric nanogenerator–toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 26(27), 4906–4913 (2016). https://doi.org/10.1002/adfm.201600624
X. Chen, X. Pu, T. Jiang, A. Yu, L. Xu et al., Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 27(1), 1603788 (2017). https://doi.org/10.1002/adfm.201603788
Y. Lee, S.H. Cha, Y.-W. Kim, D. Choi, J.-Y. Sun, Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9(1), 1804 (2018). https://doi.org/10.1038/s41467-018-03954-x
W.J. Song, Y. Lee, Y. Jung, Y.W. Kang, J. Kim, J.M. Park, Y.L. Park, H.Y. Kim, J.Y. Sun, Soft artificial electroreceptors for noncontact spatial perception. Sci. Adv. 7(48), 9203 (2021). https://doi.org/10.1126/sciadv.abg9203
Y. Park, J. Jung, Y. Lee, D. Lee, J.J. Vlassak et al., Liquid-metal micro-networks with strain-induced conductivity for soft electronics and robotic skin. NPJ Flex. Electron. 6, 81 (2022). https://doi.org/10.1038/s41528-022-00215-2
D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim et al., Recent advances in triboelectric nanogenerators: from technological progress to commercial applications. ACS Nano 17(12), 11087–11219 (2023). https://doi.org/10.1021/acsnano.2c12458
W. Kim, H.J. Hwang, D. Bhatia, Y. Lee, J.M. Baik et al., Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency. Nano Energy 21, 19–25 (2016). https://doi.org/10.1016/j.nanoen.2015.12.017
J. Yu, W. Kim, S. Oh, D. Bhatia, J.-G. Kim et al., Toward optimizing resonance for enhanced triboelectrification of oscillating triboelectric nanogenerators. Int. J. Precis. Eng. Manuf. Green. Technol. 10(2), 409–419 (2023). https://doi.org/10.1007/s40684-022-00442-y
Y. Lee, W. Kim, D. Bhatia, H.J. Hwang, S. Lee et al., Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system. Nano Energy 38, 326–334 (2017). https://doi.org/10.1016/j.nanoen.2017.06.015
Z.L. Wang, Triboelectric nanogenerator (TENG): sparking an energy and sensor revolution. Adv. Energy Mater. 10(17), 2000137 (2020). https://doi.org/10.1002/aenm.202000137
Z.L. Wang, Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014). https://doi.org/10.1039/C4FD00159A
S. Selvam, S. Praveenkumar, J.-H. Yim, Cyclodextrin incorporated textile supercapacitor/piezo-triboelectric nanogenerator hybrid system for versatile temperature dependent wearable wireless devices. Chem. Eng. J. 482, 148929 (2024). https://doi.org/10.1016/j.cej.2024.148929
S. Gao, T. Ma, N. Zhou, J. Feng, H. Pu et al., Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring. Nano Energy 122, 109330 (2024). https://doi.org/10.1016/j.nanoen.2024.109330
M.A. Steiner, R.M. France, J. Buencuerpo, J.F. Geisz, M.P. Nielsen et al., High efficiency inverted GaAs and GaInP/GaAs solar cells with strain-balanced GaInAs/GaAsP quantum wells. Adv. Energy Mater. 11(4), 2002874 (2021). https://doi.org/10.1002/aenm.202002874
E. Yaccuzzi, S. Di Napoli, E.J. Di Liscia, S. Suárez, M. Alurralde et al., Experimental re-evaluation of proton penetration ranges in GaAs and InGaP. J. Phys. D Appl. Phys. 54(11), 115302 (2021). https://doi.org/10.1088/1361-6463/abce7d
M. Qian, X. Mao, M. Wu, Z. Cao, Q. Liu et al., POSS polyimide sealed flexible triple-junction GaAs thin-film solar cells for space applications. Adv. Mater. Technol. 6(12), 2100603 (2021). https://doi.org/10.1002/admt.202100603
Z. Teng, M. Zhong, Y. Mao, E. Li, M. Guo et al., A concentrated sunlight energy wireless transmission system for space solar energy harvest. Energy Convers. Manage. 261, 115524 (2022). https://doi.org/10.1016/j.enconman.2022.115524
R.G. Lange, W.P. Carroll, Review of recent advances of radioisotope power systems. Energy Convers. Manag. 49(3), 393–401 (2008). https://doi.org/10.1016/j.enconman.2007.10.028
T.C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser et al., Increasing the efficiency of the multi-mission radioisotope thermoelectric generator. J. Electron. Mater. 44(6), 1814–1821 (2015). https://doi.org/10.1007/s11664-014-3564-9
T. Li, Y. Liu, Y. Zhang, H. Chen, Q. Xiang et al., Comprehensive modeling and characterization of Chang’E-4 radioisotope thermoelectric generator for lunar mission. Appl. Energy 336, 120865 (2023). https://doi.org/10.1016/j.apenergy.2023.120865
P.P. Murmu, J. Kennedy, Energy harvesting from ambient heat sources using thermoelectric generator—a modelling study. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.528
R. Graczyk, Energy Harvesters for Space. Physics arXiv:1711.03813 (2017). http://arxiv.org/abs/1711.03813
A.G. Olabi, M. Al-Murisi, H.M. Maghrabie, B.A. Yousef, E.T. Sayed et al., Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems. Int. J. Thermofluids 16, 100249 (2022). https://doi.org/10.1016/j.ijft.2022.100249
H. Jouhara, A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad et al., Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 9, 100063 (2021). https://doi.org/10.1016/j.ijft.2021.100063
A. Barco, R.M. Ambrosi, H.R. Williams, K. Stephenson, Radioisotope power systems in space missions: overview of the safety aspects and recommendations for the European safety case. J. Space Saf. Eng. 7(2), 137–149 (2020). https://doi.org/10.1016/j.jsse.2020.03.001
H. Cao, L. Kong, M. Tang, Z. Zhang, X. Wu et al., An electromagnetic energy harvester for applications in a high-speed rail pavement system. Int. J. Mech. Sci. 243, 108018 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108018
S. Bilen, J. McTernan, B. Gilchrist, I. Bell, N. Voronka et al., Electrodynamic tethers for energy harvesting and propulsion on space platformsAIAA SPACE 2010 conference & exposition. 30 August 2010—02 Sept 2010, Anaheim, California. Reston, Virginia: AIAA, 2010: 8844. https://doi.org/10.2514/6.2010-8844
B. E. Gilchrist, D. C. Thompson, W. J. Raitt, N. R. Voronka, V. M. Aguero, et al., Measurements of current and voltage in the TSS-1R system using passive current closure and electron beam emission from the Orbiter structure. in 1996 Spring AGU Meet. Am. Geophys. Union, Balt. MD (1996).
J. Liu, C.R. McInnes, Resonant space tethered system for lunar orbital energy harvesting. Acta Astronaut. 156, 23–32 (2019). https://doi.org/10.1016/j.actaastro.2018.08.037
H.Y. McSween Jr., V.E. Hamilton, K.A. Farley, Perspectives on mars sample return: a critical resource for planetary science and exploration. Proc. Natl. Acad. Sci. U.S.A. 122(2), e2404248121 (2025). https://doi.org/10.1073/pnas.2404248121
S. Chatterjee, Life beyond earth. In: From Stardust to First Cells, Springer International Publishing, Cham (2023), pp. 235–252. https://doi.org/10.1007/978-3-031-23397-5_19
L.K. Barger, J.P. Sullivan, A.S. Vincent, E.R. Fiedler, L.M. McKenna et al., Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission. Sleep 35(10), 1423–1435 (2012). https://doi.org/10.5665/sleep.2128
T. Maity, A. Saxena, Challenges and innovations in food and water availability for a sustainable Mars colonization. Life Sci. Space Res. 42, 27–36 (2024). https://doi.org/10.1016/j.lssr.2024.03.008
T. Ding, X. Hou, M. Zhu, J. Zhou, Y. Liu et al., A flexible self-perceiving/repairing parachute (FSPRP) system adapted to the Martian dust storm environment. Nano Energy 99, 107358 (2022). https://doi.org/10.1016/j.nanoen.2022.107358
F. Yang, Z. Wang, B. Xu, Y. Lu, X. Hou et al., A soft-soft contact triboelectric nanogenerator with a ternary four-phase structure for self-powered high-efficiency dust removal on Mars. Adv. Sci. 12(27), 2502956 (2025). https://doi.org/10.1002/advs.202502956
S.A. Khan, M.M. Rehman, S. Ameen, M. Saqib, M. Khan et al., High performance triboelectric nanogenerator based on purified chitin nanopaper for the applications of self-powered humidity sensing, gait monitoring, and hyperhidrosis sensor. Sustain. Mater. Technol. 40, e00867 (2024). https://doi.org/10.1016/j.susmat.2024.e00867
A. Haroun, M. Tarek, M. Mosleh, F. Ismail, Recent progress on triboelectric nanogenerators for vibration energy harvesting and vibration sensing. Nanomaterials 12, 2960 (2022). https://doi.org/10.3390/nano12172960
F. Ventre, S. Mukherjee, G. de Marco, A. Russo, Phase-a design of a triboelectric sensor for space applications. Proc. Int. Astronaut. Congr. IAC 2020-Oct 0–10 (2020).
K. Kong, L. Wang, H. Wu, Z. Le, Y. Zhang et al., Skin-inspired multimodal tactile sensor aiming at smart space extravehicular multi-finger operations. Chem. Eng. J. 498, 154870 (2024). https://doi.org/10.1016/j.cej.2024.154870
H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 12, 5470 (2021). https://doi.org/10.1038/s41467-021-25753-7
Y. Abid, A. Shuja, M. Ali, I. Murtaza, Output current boosting in triboelectric nanogenerators for applications in self-powered energy systems. Eng. Sci. Technol. Int. J. 55, 101749 (2024). https://doi.org/10.1016/j.jestch.2024.101749
S. Shen, Y. Zhao, R. Cao, H. Wu, W. Zhang et al., Triboelectric polymer with excellent enhanced electrical output performance over a wide temperature range. Nano Energy 110, 108347 (2023). https://doi.org/10.1016/j.nanoen.2023.108347
B. Cheng, Q. Xu, Y. Ding, S. Bai, X. Jia et al., High performance temperature difference triboelectric nanogenerator. Nat. Commun. 12, 4782 (2021). https://doi.org/10.1038/s41467-021-25043-2
J. Hu, Y. Qian, F. Wei, J. Dai, D. Li et al., High powered output flexible aerogel triboelectric nanogenerator under ultrahigh temperature condition. Nano Energy 121, 109229 (2024). https://doi.org/10.1016/j.nanoen.2023.109229
Y. Zheng, R. Mao, B. Liu, B. Ma, W. Li et al., Thermally stabilized polyacrylonitrile for flexible triboelectric devices operating from – 29 to 00 °C. Chem. Eng. J. 518, 164573 (2025). https://doi.org/10.1016/j.cej.2025.164573
L. Zhao, S. Jia, C. Fang, B. Qin, Y. Hu et al., Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature. Chem. Eng. J. 503, 158637 (2025). https://doi.org/10.1016/j.cej.2024.158637
L. Zhao, C. Fang, B. Qin, X. Yang, P. Poechmueller, Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 127, 109772 (2024). https://doi.org/10.1016/j.nanoen.2024.109772
L. Zhao, S. Jia, W. Feng, L. Wu, G. Chen et al., Self-retracting triboelectric-electromagnetic hybrid sensor for high-precision displacement and speed monitoring. Nano Energy 140, 110964 (2025). https://doi.org/10.1016/j.nanoen.2025.110964
S. He, J. Dai, D. Wan, S. Sun, X. Yang et al., Biomimetic bimodal haptic perception using triboelectric effect. Sci. Adv. 10(27), eado6793 (2024). https://doi.org/10.1126/sciadv.ado6793
M.A. Aleman, A. Gopalarathnam, K. Granlund, Novel surface flow-reversal sensor applied to detection of airfoil stall. J. Aircr. 59(5), 1382–1389 (2022). https://doi.org/10.2514/1.c036732
Y. Wan, T. Keviczky, Real-time nonlinear moving horizon observer with pre-estimation for aircraft sensor fault detection and estimation. Int. J. Robust Nonlinear Control 29(16), 5394–5411 (2019). https://doi.org/10.1002/rnc.4011
Z. Zhou, Z. Xu, L.N.Y. Cao, H. Sheng, C. Li et al., Triboelectricity based self-powered digital displacement sensor for aircraft flight actuation. Adv. Funct. Mater. 34(8), 2311839 (2024). https://doi.org/10.1002/adfm.202311839
X. Cao, Y. Jie, N. Wang, Z.L. Wang, Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
Z. Xu, L.N.Y. Cao, C. Li, Y. Luo, E. Su et al., Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft. Nat. Commun. 14(1), 2792 (2023). https://doi.org/10.1038/s41467-023-38486-6
Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu et al., Harvesting low-frequency (<5 hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10(4), 4797–4805 (2016). https://doi.org/10.1021/acsnano.6b01569
K. Kazemi, M. Ebrahimi, M. Lahonian, A. Babamiri, Micro-scale heat and electricity generation by a hybrid solar collector-chimney, thermoelectric, and wind turbine. Sustain. Energy Technol. Assess. 53, 102394 (2022). https://doi.org/10.1016/j.seta.2022.102394
Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006). https://doi.org/10.1126/science.1124005
M. Zhu, Y. Yu, J. Zhu, J. Zhang, Q. Gao et al., Bionic blade lift-drag combination triboelectric-electromagnetic hybrid generator with enhanced aerodynamic performance for wind energy harvesting. Adv. Energy Mater. 13(46), 2303119 (2023). https://doi.org/10.1002/aenm.202303119
Y. Su, X. Hou, L. Li, G. Cao, X. Chen et al., Study on impact energy absorption and adhesion of biomimetic buffer system for space robots. Adv. Space Res. 65(5), 1353–1366 (2020). https://doi.org/10.1016/j.asr.2019.12.006
T. Tang, X. Hou, Y. Xiao, Y. Su, Y. Shi et al., Research on motion characteristics of space truss-crawling robot. Int. J. Adv. Robot. Syst. 16, 1729881418821578 (2019). https://doi.org/10.1177/1729881418821578
S. Chien, K.L. Wagstaff, Robotic space exploration agents. Sci. Robot. 2(7), eaan4831 (2017). https://doi.org/10.1126/scirobotics.aan4831
W. Xu, B. Liang, B. Li, Y. Xu, A universal on-orbit servicing system used in the geostationary orbit. Adv. Space Res. 48(1), 95–119 (2011). https://doi.org/10.1016/j.asr.2011.02.012
N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, I. Shimoyama, High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers. Sens. Actuat. A Phys. 215, 167–175 (2014). https://doi.org/10.1016/j.sna.2013.09.002
H.-K. Lee, J. Chung, S.-I. Chang, E. Yoon, Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor. J. Micromech. Microeng. 21(3), 035010 (2011). https://doi.org/10.1088/0960-1317/21/3/035010
X. Hou, M. Zhu, L. Sun, T. Ding, Z. Huang et al., Scalable self-attaching/assembling robotic cluster (S2A2RC) system enabled by triboelectric sensors for in-orbit spacecraft application. Nano Energy 93, 106894 (2022). https://doi.org/10.1016/j.nanoen.2021.106894
Y. Sun, C. Li, Z. Xu, Y. Cao, H. Sheng et al., Conformable multifunctional space fabric by metal 3D printing for collision hazard protection and self-powered monitoring. ACS Appl. Mater. Interfaces 15(49), 57726–57737 (2023). https://doi.org/10.1021/acsami.3c15232
I. Loomis, Space science. Air force turns a keen eye on space junk. Science 347(6218), 115 (2015)
L. Zheng, Y. Wu, X. Chen, A. Yu, L. Xu et al., Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 27(16), 1606408 (2017). https://doi.org/10.1002/adfm.201606408
Z. Ren, J. Nie, J. Shao, Q. Lai, L. Wang et al., Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Adv. Funct. Mater. 28(31), 1802989 (2018). https://doi.org/10.1002/adfm.201802989
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
R. Yan, Z. Sun, W. Du, N. Liu, Q. Sun et al., An electrostatic-induction-enabled anti-touching hydrogel dressing for chronic wound care. Adv. Funct. Mater. 34(37), 2402217 (2024). https://doi.org/10.1002/adfm.202402217
Y. Wang, X.Y. Wei, S.Y. Kuang, H.Y. Li, Y.H. Chen et al., Triboelectrification-induced self-assembly of macro-sized polymer beads on a nanostructured surface for self-powered patterning. ACS Nano 12(1), 441–447 (2018). https://doi.org/10.1021/acsnano.7b06758
X. Hou, L. Xin, Y. Fu, Z. Na, G. Gao et al., A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118, 109034 (2023). https://doi.org/10.1016/j.nanoen.2023.109034
J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality (adv. funct. mater. 39/2021). Adv. Funct. Mater. 31(39), 2170285 (2021). https://doi.org/10.1002/adfm.202170285
V. Amoli, J.S. Kim, S.Y. Kim, J. Koo, Y.S. Chung et al., Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress. Adv. Funct. Mater. 30(20), 1904532 (2020). https://doi.org/10.1002/adfm.201904532
J. Yin, R. Hinchet, H. Shea, C. Majidi, Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31(39), 2007428 (2021). https://doi.org/10.1002/adfm.202007428
X. Yang, G. Liu, Q. Guo, H. Wen, R. Huang et al., Triboelectric sensor array for internet of things based smart traffic monitoring and management system. Nano Energy 92, 106757 (2022). https://doi.org/10.1016/j.nanoen.2021.106757
H. Wen, X. Yang, R. Huang, D. Zheng, J. Yuan et al., Universal energy solution for triboelectric sensors toward the 5G era and internet of things. Adv. Sci. 10(22), 2302009 (2023). https://doi.org/10.1002/advs.202302009
O. Kodheli, E. Lagunas, N. Maturo, S.K. Sharma, B. Shankar et al., Satellite communications in the new space era: a survey and future challenges. IEEE Commun. Surv. Tutor. 23(1), 70–109 (2021). https://doi.org/10.1109/COMST.2020.3028247
H. Al-Hraishawi, H. Chougrani, S. Kisseleff, E. Lagunas, S. Chatzinotas, A survey on nongeostationary satellite systems: the communication perspective. IEEE Commun. Surv. Tutor. 25(1), 101–132 (2023). https://doi.org/10.1109/COMST.2022.3197695
H. Hong, X. Yang, H. Cui, D. Zheng, H. Wen et al., Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 15(2), 621–632 (2022). https://doi.org/10.1039/D1EE02549J
H. Zhao, M. Xu, M. Shu, J. An, W. Ding et al., Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat. Commun. 13(1), 3325 (2022). https://doi.org/10.1038/s41467-022-31042-8
S. Kalasin, P. Sangnuang, W. Surareungchai, Wearable triboelectric sensors with self-powered energy: multifunctional laser-engraved electrets to activate satellite communication for life-emergency alert in pandemics. ACS Appl. Electron. Mater. 3(12), 5383–5392 (2021). https://doi.org/10.1021/acsaelm.1c00865
H. Jung, B. Friedman, W. Hwang, A. Copping, R. Branch et al., Self-powered Arctic satellite communication system by harvesting wave energy using a triboelectric nanogenerator. Nano Energy 114, 108633 (2023). https://doi.org/10.1016/j.nanoen.2023.108633
Weather and climate extreme events in a changing climate. In: Climate Change 2021—The Physical Science Basis, Cambridge University Press (2023), pp. 1513–1766. https://doi.org/10.1017/9781009157896.013
T.S. Balint, J.A. Cutts, E.A. Kolawa, C.E. Peterson, Extreme environment technologies for space and terrestrial applications. Space Explor. Technol. 6960, 696006 (2008). https://doi.org/10.1117/12.780389
M.I. Dobynde, Y.Y. Shprits, A.Y. Drozdov, J. Hoffman, J. Li, Beating 1 sievert: optimal radiation shielding of astronauts on a mission to Mars. Space Weather 19(9), e2021SW002749 (2021). https://doi.org/10.1029/2021SW002749
J. Rask, W. Vercoutere, B. J. Navarro, A. Krause, The radiation challenge. National 1–3 (2008).
S. Ye, C. Cheng, X. Chen, X. Chen, J. Shao et al., High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space. Nano Energy 60, 701–714 (2019). https://doi.org/10.1016/j.nanoen.2019.03.096
J. Chancellor, C. Nowadly, J. Williams, S. Aunon-Chancellor, M. Chesal et al., Everything you wanted to know about space radiation but were afraid to ask. J. Environ. Sci. Health C 39(2), 113–128 (2021). https://doi.org/10.1080/26896583.2021.1897273
A. Sharma, A. Teverovsky, Effect of vacuum environments on performance and reliability of electronic components and packages for space applications. 2007 8th International Conference on Electronic Packaging Technology. IEEE (2008), pp. 1–2.
B.E. Lindsly, W.B. Berwald, Effect of vacuum on oil wells. (1930).
S. Reif-Acherman, Juguetes Como instrumentos de enseñanza en ingeniería: el caso del Slinky®. Ingeniería Y Compet. 17(2), 111–122 (2015). https://doi.org/10.25100/iyc.v17i2.2194
A. Anwar, M. Albano, G. Hassan, A. Delfini, F. Volpini et al., Vacuum effect on spacecraft structure materials. Int. Conf. Aerospace Sci. Aviat. Technol. 16, 1–10 (2015). https://doi.org/10.21608/asat.2015.22908
Y. Li, F. Galindo, J. Urbina, Q. Zhou, T.-Y. Huang, Meteor detection with a new computer vision approach. Radio Sci. 57(10), e2022RS007515 (2022). https://doi.org/10.1029/2022RS007515
K.A. Hill, L.A. Rogers, R.L. Hawkes, High geocentric velocity meteor ablation. Astron. Astrophys. 444(2), 615–624 (2005). https://doi.org/10.1051/0004-6361:20053053
A.V. Moorhead, Deconvoluting measurement uncertainty from the meteor speed distribution. Meteorit. Planet. Sci. 53(6), 1292–1298 (2018). https://doi.org/10.1111/maps.13066
G.A. Harvey, spectral analysis of a high-velocity meteor. (1977).
Y. Xiao, Design, fabrication, and application study of droplet tube based triboelectric nanogenerators. Tribol. Ind. 45(4), 699–709 (2023). https://doi.org/10.24874/ti.1493.06.23.08
A.S. Almuslem, S.F. Shaikh, M.M. Hussain, Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 4(9), 1900145 (2019). https://doi.org/10.1002/admt.201900145
M. Olsen, J. Örtegren, R. Zhang, S. Reza, H. Andersson et al., Schottky model for triboelectric temperature dependence. Sci. Rep. 8(1), 5293 (2018). https://doi.org/10.1038/s41598-018-23666-y
C.X. Lu, C.B. Han, G.Q. Gu, J. Chen, Z.W. Yang et al., Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 19(12), 1700275 (2017). https://doi.org/10.1002/adem.201700275
M.R. Pearson, M.J. Eaton, R. Pullin, C.A. Featherston, K.M. Holford, Energy harvesting for aerospace structural health monitoring systems. J. Phys. Conf. Ser. 382, 012025 (2012). https://doi.org/10.1088/1742-6596/382/1/012025
H. Shaukat, A. Ali, S. Ali, W.A. Altabey, M. Noori et al., Applications of sustainable hybrid energy harvesting: a review. J. Low Power Electron. Appl. 13(4), 62 (2023). https://doi.org/10.3390/jlpea13040062
S.A. Bella, R. Cirelli, Á. Romero-Calvo, A. Russo, F. Ventre, Innovative sensor-based network for autonomous on-orbit structural health monitoring. Proc. Int. Astronaut. Congr. IAC 2019-Octob, (2019).
J. Li, J. Chen, H. Guo, Triboelectric nanogenerators for harvesting wind energy: recent advances and future perspectives. Energies 14(21), 6949 (2021). https://doi.org/10.3390/en14216949
W. Zhu, C. Hu, C.R. Bowen, Z.L. Wang, Y. Yang, Scavenging low-speed breeze wind energy using a triboelectric nanogenerator installed inside a square variable diameter channel. Nano Energy 100, 107453 (2022). https://doi.org/10.1016/j.nanoen.2022.107453
Editorial, Materials’ mission to reach strange new worlds. Nat. Rev. Mater. 9(11), 753 (2024). https://doi.org/10.1038/s41578-024-00747-1
K.J. Kim, Y. Gimmon, S. Sorathia, K.H. Beaton, M.C. Schubert, Exposure to an extreme environment comes at a sensorimotor cost. NPJ Microgravity 4, 17 (2018). https://doi.org/10.1038/s41526-018-0051-2
Editorial, Space missions out of this world with AI. Nat. Mach. Intell. 5(3), 183 (2023). https://doi.org/10.1038/s42256-023-00643-3
Z.S. Patel, T.J. Brunstetter, W.J. Tarver, A.M. Whitmire, S.R. Zwart et al., Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. NPJ Microgravity 6, 33 (2020). https://doi.org/10.1038/s41526-020-00124-6
C. Jiang, Y. Jiang, H. Li, S. Du, Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission. Sci. Rep. 13(1), 3325 (2023). https://doi.org/10.1038/s41598-023-30513-2
B. Ross, S. Haussener, K. Brinkert, Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars. Nat. Commun. 14, 3141 (2023). https://doi.org/10.1038/s41467-023-38676-2
D.W. Kim, J.H. Lee, J.K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 12, 6 (2020). https://doi.org/10.1038/s41427-019-0176-0
N. Hiramatsu, S. Hirakawa, Melting behavior of poly(ethylene terephthalate) crystallized and annealed under elevated pressure. Polym. J. 12(2), 105–111 (1980). https://doi.org/10.1295/polymj.12.105
A. Noritake, M. Hori, M. Shigematsu, M. Tanahashi, Recycling of polyethylene terephthalate using high-pressure steam treatment. Polym. J. 40(6), 498–502 (2008). https://doi.org/10.1295/polymj.PJ2007237
A. Morikawa, T. Hatakeyama, Synthesis and characterization of novel aromatic polyimides from 1, 4-bis(4-aminophenyl)-2, 3-diphenylnaphthalene and aromatic tetracarboxylic dianhydrides. Polym. J. 31(1), 76–78 (1999). https://doi.org/10.1295/polymj.31.76
D. Kong, X. Xiao, Rigid high temperature heat-shrinkable polyimide tubes with functionality as reducer couplings. Sci. Rep. 7, 44936 (2017). https://doi.org/10.1038/srep44936
X. Fan, L. Wang, Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application. Sci. Rep. 5, 12734 (2015). https://doi.org/10.1038/srep12734
M. Loeblein, A. Bolker, S.H. Tsang, N. Atar, C. Uzan-Saguy et al., 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small 11(48), 6425–6434 (2015). https://doi.org/10.1002/smll.201502670
G.C. Ram, N.K. Maurya, S. Yuvaraj, K.B. Sindhuri, D.R. Varma et al., Graphene based THz filter design using open-loop resonator for space applications. Diam. Relat. Mater. 151, 111820 (2025). https://doi.org/10.1016/j.diamond.2024.111820
L. Zhang, Z. Zhang, A. Amini Pishro, S.J. Matlan, Tribological performance of IL/(GO-MWCNT) coatings in high-vacuum and irradiation environments. Sci. Rep. 12(1), 14368 (2022). https://doi.org/10.1038/s41598-022-15914-z
A.R. Kirmani, T.A. Byers, Z. Ni, K. VanSant, D.K. Saini et al., Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing. Nat. Commun. 15(1), 696 (2024). https://doi.org/10.1038/s41467-024-44876-1
T. Vogl, K. Sripathy, A. Sharma, P. Reddy, J. Sullivan et al., Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10(1), 1202 (2019). https://doi.org/10.1038/s41467-019-09219-5
A. Fogtman, S. Baatout, B. Baselet, T. Berger, C.E. Hellweg et al., Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 9(1), 8 (2023). https://doi.org/10.1038/s41526-023-00262-7
J.E. Koehne, M. Cordeiro, S.D. Thomson, M. Meyyappan, Electrochemical sensors in space missions. Electrochem. Soc. Interface 29(1), 53–57 (2020). https://doi.org/10.1149/2.f07201if
K. Han, J. Luo, J. Chen, Y. Liu, J. Li et al., Plastic film based lightweight thruster driven by triboelectric nanogenerator for multi-purpose propulsion applications. Nano Energy 101, 107558 (2022). https://doi.org/10.1016/j.nanoen.2022.107558
Z. Zhang, F. Wen, Z. Sun, X. Guo, T. He et al., Artificial intelligence-enabled sensing technologies in the 5G/Internet of Things era: from virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 4(7), 2100228 (2022). https://doi.org/10.1002/aisy.202100228
B. Hufenbach, S. Habinc, P. Vuilleumier, Space applications for smart sensors. Eur. Sp. Agency 9–16 (1999). https://amstel.estec.esa.int/tecedm/website/docs_generic/SmartSensor.pdf
Z. Chen, X. Fu, R. Liu, Y. Song, X. Yin, Fabrication, performance, and potential applications of MXene composite aerogels. Nanomaterials 13(14), 2048 (2023). https://doi.org/10.3390/nano13142048
O. Casas, Applied Instrumentation. (2024).
M.A.P. Mahmud, A. Zolfagharian, S. Gharaie, A. Kaynak, S.H. Farjana et al., 3D-printed triboelectric nanogenerators: state of the art, applications, and challenges. Adv. Energy Sustain. Res. 2(3), 2000045 (2021). https://doi.org/10.1002/aesr.202000045
Y. Tong, Z. Feng, J. Kim, J.L. Robertson, X. Jia et al., 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 75, 104973 (2020). https://doi.org/10.1016/j.nanoen.2020.104973
T. Song, S. Jiang, N. Cai, G. Chen, A strategy for human safety monitoring in high-temperature environments by 3D-printed heat-resistant TENG sensors. Chem. Eng. J. 475, 146292 (2023). https://doi.org/10.1016/j.cej.2023.146292
S. Trigwell, J.G. Captain, E.E. Arens, J.W. Quinn, C.I. Calle, The use of tribocharging in the electrostatic beneficiation of lunar simulant. IEEE Trans. Ind. Appl. 45(3), 1060–1067 (2009). https://doi.org/10.1109/TIA.2009.2018976
A. Meurisse, J.C. Beltzung, M. Kolbe, A. Cowley, M. Sperl, Influence of mineral composition on sintering lunar regolith. J. Aerosp. Eng. 30(4), 04017014 (2017). https://doi.org/10.1061/(asce)as.1943-5525.0000721
L.A. Taylor, C.M. Pieters, D. Britt, Evaluations of lunar regolith simulants. Planet. Space Sci. 126, 1–7 (2016). https://doi.org/10.1016/j.pss.2016.04.005
S.S. Schreiner, J.A. Dominguez, L. Sibille, J.A. Hoffman, Thermophysical property models for lunar regolith. Adv. Space Res. 57(5), 1209–1222 (2016). https://doi.org/10.1016/j.asr.2015.12.035
Y. Zou, H. Wu, S. Chai, W. Yang, R. Ruan et al., Development and characterization of the PolyU-1 lunar regolith simulant based on Chang’e-5 returned samples. Int. J. Min. Sci. Technol. 34(9), 1317–1326 (2024). https://doi.org/10.1016/j.ijmst.2024.08.006
M. Isachenkov, S. Chugunov, I. Akhatov, I. Shishkovsky, Regolith-based additive manufacturing for sustainable development of lunar infrastructure–an overview. Acta Astronaut. 180, 650–678 (2021). https://doi.org/10.1016/j.actaastro.2021.01.005
D. Viúdez-Moreiras, M. de la Torre, J. Gómez-Elvira, R.D. Lorenz, V. Apéstigue et al., Winds at the Mars 2020 landing site. 2. Wind variability and turbulence. J. Geophys. Res. Planets 127(12), e2022JE007523 (2022). https://doi.org/10.1029/2022JE007523
J. Benavides, A. Systems, Astrobee Jose Benavides Background. (2024).
A.O. Esho, T.D. Iluyomade, T.M. Olatunde, O.P. Igbinenikaro, Next-generation materials for space electronics: a conceptual review. Open Access Res. J. Eng. Technol. 6(02), 051–062 (2024). https://doi.org/10.53022/oarjet.2024.6.2.0020
T. Scalia, L. Bonventre, M.L. Terranova, From protosolar space to space exploration: the role of graphene in space technology and economy. Nanomaterials 13(4), 680 (2023). https://doi.org/10.3390/nano13040680
D. Yang, H.K. Nam, Y. Lee, S. Kwon, J. Lee et al., Laser-induced graphene smart textiles for future space suits and telescopes. Adv. Funct. Mater. 35(1), 2411257 (2025). https://doi.org/10.1002/adfm.202411257
M. Lappa, I. Hamerton, P.C.E. Roberts, A. Kao, M. Domingos et al., Why space: the opportunity for materials science and innovation. (2024).
L. Wang, Y. Gao, J. Luo, W. Xu, C. Zhang et al., High-performance triboelectric nanogenerator based on NH2-MXene/TiO2@sodium alginate composite film for self-powered cathodic protection. Chem. Eng. J. 506, 159837 (2025). https://doi.org/10.1016/j.cej.2025.159837
W. Cho, S. Kim, H. Lee, N. Han, H. Kim et al., High-performance yet sustainable triboelectric nanogenerator based on sulfur-rich polymer composite with MXene segregated structure. Adv. Mater. 36(44), 2404163 (2024). https://doi.org/10.1002/adma.202404163
S. Ghorbanzadeh, W. Zhang, Advances in MXene-based triboelectric nanogenerators. Nano Energy 125, 109558 (2024). https://doi.org/10.1016/j.nanoen.2024.109558
M. Liu, P. Li, Y.J. Tan, Z. Yang, H.H. See et al., An extreme environment capable self-healing single active layered triboelectric sensors as fully recyclable and transparent human-machine interfaces. Adv. Funct. Mater. 35(4), 2414152 (2025). https://doi.org/10.1002/adfm.202414152
H. Wang, Z. Zhao, L. Zhang, Z. Su, C. Chen et al., High-performance low-temperature self-healing bio-based polyurethane triboelectric nanogenerator for wireless intelligent target systems. Nano Energy 133, 110438 (2025). https://doi.org/10.1016/j.nanoen.2024.110438
D. John, A.K. Sukumaran, S.M.A.K. Mohammed, K. Orikasa, L. Lou et al., Cold-sprayed boron-nitride-nanotube-reinforced aluminum matrix composites with improved wear resistance and radiation shielding. Adv. Eng. Mater. 26(23), 2401490 (2024). https://doi.org/10.1002/adem.202401490
E. Cheraghi, S. Chen, J.T.W. Yeow, Boron nitride-based nanomaterials for radiation shielding: a review. IEEE Nanotechnol. Mag. 15(3), 8–17 (2021). https://doi.org/10.1109/MNANO.2021.3066390
H.-Y. Chao, A.M. Nolan, A.T. Hall, D. Golberg, C. Park et al., Resistance of boron nitride nanotubes to radiation-induced oxidation. J. Phys. Chem. C. Nanomater. Interfaces 128(43), 18328–18337 (2024). https://doi.org/10.1021/acs.jpcc.4c03814
D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. U.S.A. 106(49), 20637–20640 (2009). https://doi.org/10.1073/pnas.0909718106
F. Liang, X. Chao, S. Yu, Y. Gu, X. Zhang et al., An all-fabric droplet-based energy harvester with topology optimization. Adv. Energy Mater. 12(9), 2102991 (2022). https://doi.org/10.1002/aenm.202102991
F. Liang, X.J. Zhao, H.Y. Li, Y.J. Fan, J.W. Cao et al., Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in situ charged nanocomposite membrane. Nano Energy 69, 104414 (2020). https://doi.org/10.1016/j.nanoen.2019.104414
L. Li, S. Feng, Y. Bai, X. Yang, M. Liu et al., Enhancing hydrovoltaic power generation through heat conduction effects. Nat. Commun. 13(1), 1043 (2022). https://doi.org/10.1038/s41467-022-28689-8
X. Shi, Y. Wei, B. Tang, Y. Li, L. Lv et al., A kirigami-driven stretchable paper-based hydrovoltaic electricity generator. Adv. Funct. Mater. 35(25), 2419753 (2025). https://doi.org/10.1002/adfm.202419753
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
L. Li, R. Wang, Y. Fu, Z. Jin, J. Chen et al., Fabricating and engineering woody-biomass aerogels for high-performance triboelectric nanogenerators for energy harvesting and biomechanical monitoring. Adv. Funct. Mater. 35(2), 2412324 (2025). https://doi.org/10.1002/adfm.202412324
L. Zhang, Y. Liao, Y.-C. Wang, S. Zhang, W. Yang et al., Cellulose II aerogel-based triboelectric nanogenerator. Adv. Funct. Mater. 30(28), 2001763 (2020). https://doi.org/10.1002/adfm.202001763
G. Li, S. An, P. Wang, S. Xiong, J. Wang et al., Transverse-asymmetric electrode structure design to eliminate charge transfer loss for enhancing output performance of sliding mode TENG. Adv. Funct. Mater. 35(3), 2413359 (2025). https://doi.org/10.1002/adfm.202413359
Z. Turar, M. Sembay, A. Mubarak, A. Belgibayeva, L. Kong et al., Advances in porous structure design for enhanced piezoelectric and triboelectric nanogenerators: a comprehensive review. Glob. Chall. 9(1), 2400224 (2025). https://doi.org/10.1002/gch2.202400224
A. Jalali, A. Rajabi-Abhari, H. Zhang, T. Gupta, O.A.T. Dias et al., Cultivation of in situ foam 3D-printing: lightweight and flexible triboelectric nanogenerators employing polyvinylidene fluoride/graphene nanocomposite foams with superior EMI shielding and thermal conductivity. Nano Energy 134, 110554 (2025). https://doi.org/10.1016/j.nanoen.2024.110554
F. Ou, X. Li, L. Tuo, Z. Zhang, W. Tang et al., Solid-state ion-conductive elastomers with high mechanical robustness and ion-conductivity for highly durable triboelectric nanogenerators. Chem. Eng. J. 505, 159502 (2025). https://doi.org/10.1016/j.cej.2025.159502
J. Wu, X. Wang, H. Li, F. Wang, W. Yang et al., Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations. Nano Energy 48, 607–616 (2018). https://doi.org/10.1016/j.nanoen.2018.04.025
Z. Zhang, D. Jiang, J. Zhao, G. Liu, T. Bu et al., Tribovoltaic effect on metal–semiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 10(9), 1903713 (2020). https://doi.org/10.1002/aenm.201903713
K. Wen, X.-W. Chen, Y.-G. Lu, Research and development on hypervelocity impact protection using whipple shield: an overview. Def. Technol. 17(6), 1864–1886 (2021). https://doi.org/10.1016/j.dt.2020.11.005
A.J. Piekutowski, K.L. Poormon, E.L. Christiansen, B.A. Davis, Performance of whipple shields at impact velocities above 9km/s. Int. J. Impact Eng 38(6), 495–503 (2011). https://doi.org/10.1016/j.ijimpeng.2010.10.021
Z. Khosroshahi, F. Karimzadeh, M.H. Enayati, E.N. Kalali, Z. Adabavazeh et al., Shape memory behavior of polyethylene-foam-based nanocomposite for sustainable triboelectric nanogenerators. J. Alloys Compd. 1003, 175582 (2024). https://doi.org/10.1016/j.jallcom.2024.175582
E. Chatzitheodoridis, C.D. Georgiou, M. Ferus, E. Kalaitzopoulou, H.-A. Stavrakakis et al., Sensing technologies for the challenging lunar environment. Adv. Space Res. 74(7), 3407–3436 (2024). https://doi.org/10.1016/j.asr.2024.06.033
L.C. Walters, To create space on earth: the space environment simulation laboratory and project apollo. (2003)
B.E. Cunningham, R.E. Eddy, Space environment simulator for materials studies at NASA ames. J. Spacecr. Rockets 4(2), 280–282 (1967). https://doi.org/10.2514/3.28851
G. Santin, Space environments and effects analysis for ESA missions. Nucl. Phys. B Proc. Suppl. 150, 377–381 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.04.067
L. Li, L. Wang, L. Yuan, R. Zheng, Y. Wu et al., Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronaut. 180, 417–428 (2021). https://doi.org/10.1016/j.actaastro.2020.12.054
P. Investigator, M. Meyyappan, Triboelectric nano generator (TENG) for mars exploration and high altitude power generation on earth. 2616 (2019). https://flightopportunities.ndc.nasa.gov/technologies/222/
C. Ye, D. Liu, P. Chen, L.N.Y. Cao, X. Li et al., An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 35(11), 2209713 (2023). https://doi.org/10.1002/adma.202209713
S. Hajra, A. Ali, S. Panda, H. Song, P.M. Rajaitha et al., Synergistic integration of nanogenerators and solar cells: advanced hybrid structures and applications. Adv. Energy Mater. 14(21), 2400025 (2024). https://doi.org/10.1002/aenm.202400025
C. Liu, T. Shao, Z. Hao, Z. Sui, Z. Ma et al., Hybrid human energy harvesting method of MTEG-TENG based on a flexible shared substrate. Mater. Today Sustain. 26, 100692 (2024). https://doi.org/10.1016/j.mtsust.2024.100692
L. Fang, C. Chen, H. Zhang, X. Tu, Z. Wang et al., Polynary energy harvesting and multi-parameter sensing in the heatwave environment of industrial factory buildings by an integrated triboelectric–thermoelectric hybrid generator. Mater. Horiz. 11(6), 1414–1425 (2024). https://doi.org/10.1039/D3MH02228E
Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai et al., Perovskite solar cells for space applications: progress and challenges. Adv. Mater. 33(21), 2006545 (2021). https://doi.org/10.1002/adma.202006545
A.E. Trujillo, M.T. Moraguez, A. Owens, S.I. Wald, O. De Weck, Feasibility Analysis of Commercial In-Space Manufacturing ApplicationsAIAA SPACE and Astronautics Forum and Exposition. 12–14 Sep 2017, Orlando, FL. Reston, Virginia: AIAA, 2017: 5360. https://doi.org/10.2514/6.2017-5360
A.J. Cavaciuti, J.H. Heying, J. Davis, Manufacturing for the New Space Economy. (2022).
S. Patane, E.R. Joyce, M.P. Snyder, P. Shestople, Archinaut: In-Space Manufacturing and Assembly for Next-Generation Space HabitatsAIAA SPACE and Astronautics Forum and Exposition. 12–14 Sep 2017, Orlando, FL. Reston, Virginia: AIAA, 2017: 5227. https://doi.org/10.2514/6.2017-5227
S. Bapat, N. Srimurugan, A.J. Patrick, S. Subbiah, A.P. Malshe, Maintenance factory platform for in-space manufacturing: conceptualizing design architecture. Manuf. Lett. 41, 191–199 (2024). https://doi.org/10.1016/j.mfglet.2024.09.023
M. Moraguez, O. de Weck, Benefits of in-space manufacturing technology development for human spaceflight. 2020 IEEE Aerospace Conference. IEEE (2020), pp. 1–11.
A.C. Owens , O.L. De Weck, de Weck ISM model. 1–17 (n.d.).
Y. Cho, S. Lee, J. Hong, S. Pak, B. Hou et al., Sustainable hybrid energy harvester based on air stable quantum dot solar cells and triboelectric nanogenerator. J. Mater. Chem. A 6(26), 12440–12446 (2018). https://doi.org/10.1039/C8TA03870H
L. Xie, N. Zhai, Y. Liu, Z. Wen, X. Sun, Hybrid triboelectric nanogenerators: from energy complementation to integration. Research 2021, 9143762 (2021). https://doi.org/10.34133/2021/9143762
A. Ahmed, I. Hassan, M.F. El-Kady, A. Radhi, C.K. Jeong et al., Integrated triboelectric nanogenerators in the era of the Internet of Things. Adv. Sci. 6(24), 1802230 (2019). https://doi.org/10.1002/advs.201802230
Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun et al., Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12(3), 2893–2899 (2018). https://doi.org/10.1021/acsnano.8b00416
Esho AO, Iluyomade TD, Olatunde TM, Igbinenikaro OP. A comprehensive review of energy-efficient design in satellite communication systems. Int. J. Eng. Res. Updates. 2024;6(02):013-25. https://doi.org/10.53430/ijeru.2024.6.2.0024
L.K. Slongo, S.V. Martínez, B.V.B. Eiterer, T.G. Pereira, E.A. Bezerra et al., Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization. Acta Astronaut. 147, 141–151 (2018). https://doi.org/10.1016/j.actaastro.2018.03.052
M. Doff-Sotta, M. Cannon, J.R. Forbes, Spacecraft energy management using convex optimisation. Energy Convers. Manag. X 16, 100325 (2022). https://doi.org/10.1016/j.ecmx.2022.100325
A.M. McNelis, R. Beach, J.F. Soeder, N. McNelis, R. May et al., Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions12th International Energy Conversion Engineering Conference. July 28–30, 2014, Cleveland, OH. Reston, Virginia: AIAA, 2014, 3835. https://doi.org/10.2514/6.2014-3835
J.D. Frank, Artificial intelligence: powering human exploration of the Moon and Mars. ASCEND 2020. Virtual Event. AIAA, (2020), AIAA2020–4164. https://doi.org/10.2514/6.2020-4164
G. Li, S. Wu, Z. Sha, L. Zhao, D. Chu et al., A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations. Nano Energy 108, 108185 (2023). https://doi.org/10.1016/j.nanoen.2023.108185
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11(1), 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3