Synergistic Design of Flexible Nanopapers for High-Performance Proton Pseudocapacitors
Corresponding Author: Yuanming Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 158
Abstract
Two-dimensional materials for flexible energy storage commonly face huge challenges in limited active surface and hindered charge transport. Herein, we report an innovative asymmetric pseudocapacitor based on synergistic design of modified MXene and graphene, integrating gas-induced rapid expansion technology and precise surface chemical regulation methods. For graphene modification, rapid vaporization induces exfoliation and expansion of graphene oxide layers. Subsequently, pseudocapacitive oxygen-containing groups were selectively introduced through acid oxidation, yielding expanded-and-oxidized graphene (OEG) for positive porous-nanopaper electrode. For MXene modification, alkali-treated MXene underwent hydrazine assistance to facilitate gas expansion and –NH2 grafting, producing MXene-NH2 (NOM) for negative porous-nanopaper electrode. Density functional theory calculations show that –COOH more effectively modulate graphene’s electronic structure by inducing charge redistribution and creating active sites, thereby enhancing H+ adsorption and ion interactions compared to –OH. Meanwhile, –NH2 on MXene enable electron delocalization and dynamic Ti–N–H+ interactions, speeding up proton adsorption/desorption and boosting both pseudocapacitance and conductivity. Through collaborative optimized spatial architecture and surface properties, flexible OEGB and NOMB exhibited of 333.6 and 500.5 F g−1 at high mass loading, respectively. The assembled proton pseudocapacitor readily achieved energy and power densities of 58.9 Wh kg−1 and 3802 W kg−1, respectively, with excellent stability for potential applications.
Highlights:
1 By utilizing water vaporization to increase the surface area of graphene and precisely controlling the ratio of oxygen-containing functional groups, the optimal –COOH:–OH ratio of 1:1 was successfully achieved, resulting in a maximum pseudocapacitance of 430.5 F g−1.
2 Through hydrazine-assisted hydrothermal reaction, –F groups on the MXene surface were substituted with –NH2, while gas generation facilitated the creation of a porous structure, boosting the capacitance to 500.5 F g−1 under high mass loading conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Keum, J.W. Kim, S.Y. Hong, J.G. Son, S.-S. Lee et al., Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 32(51), 2002180 (2020). https://doi.org/10.1002/adma.202002180
- D. Liu, Y. Xue, X. Yang, Y. Shen, P. Zhang et al., Flexible fiber-shaped supercapacitors: structures, materials, fabrication methods, and applications. Interdiscip. Mater. 4(3), 377–411 (2025). https://doi.org/10.1002/idm2.12243
- H. Luo, D. Su, S. Yang, Y. Li, Z. Shan et al., Diversified battery recycling: advances in recovery techniques and value-added functional applications. Nano Energy 139, 110973 (2025). https://doi.org/10.1016/j.nanoen.2025.110973
- M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
- F. Yi, H. Ren, J. Shan, X. Sun, D. Wei et al., Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018). https://doi.org/10.1039/c7cs00849j
- P. Nakhanivej, X. Yu, S.K. Park, S. Kim, J.-Y. Hong et al., Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 18(2), 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2
- M. Wu, J. Liao, L. Yu, R. Lv, P. Li et al., 2020 roadmap on carbon materials for energy storage and conversion. Chem. Asian J. 15(7), 995–1013 (2020). https://doi.org/10.1002/asia.201901802
- B.R. Sutherland, Charging up stationary energy storage. Joule 3(1), 1–3 (2019). https://doi.org/10.1016/j.joule.2018.12.022
- X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
- T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. 32(5), 2107720 (2022). https://doi.org/10.1002/adfm.202107720
- X. Li, Y. Wu, T. Chen, Q. wang, C. Lu et al., Construction of proton channels in POMCPs@MXene electrodes for flexible all-solid-state symmetrical supercapacitors. Chem. Eng. J. 519, 164816 (2025). https://doi.org/10.1016/j.cej.2025.164816
- D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15(3), 5000–5010 (2021). https://doi.org/10.1021/acsnano.0c09959
- Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13(9), 2203683 (2023). https://doi.org/10.1002/aenm.202203683
- S. Xu, Y. Li, T. Mo, G. Wei, Y. Yang, Highly matched porous MXene anodes and graphene cathodes for high-performance aqueous asymmetric supercapacitors. Energy Storage Mater. 69, 103379 (2024). https://doi.org/10.1016/j.ensm.2024.103379
- M. Pandey, K. Deshmukh, A. Raman, A. Asok, S. Appukuttan et al., Prospects of MXene and graphene for energy storage and conversion. Renew. Sustain. Energy Rev. 189, 114030 (2024). https://doi.org/10.1016/j.rser.2023.114030
- Y. Yu, H. Zhang, Y. Xie, F. Jiang, X. Gao et al., Vertically aligned graphene-MXene nanosheets based electrodes for high electrochemical performance asymmetric supercapacitor. Chem. Eng. J. 482, 149063 (2024). https://doi.org/10.1016/j.cej.2024.149063
- J. Zeng, C. Xu, T. Gao, X. Jiang, X.-B. Wang, Porous monoliths of 3D graphene for electric double-layer supercapacitors. Carbon Energy 3(2), 193–224 (2021). https://doi.org/10.1002/cey2.107
- J. Huang, K. Yuan, Y. Chen, Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges. Adv. Funct. Mater. 32(4), 2108107 (2022). https://doi.org/10.1002/adfm.202108107
- W. Guo, C. Yu, S. Li, J. Qiu, Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy Environ. Sci. 14(2), 576–601 (2021). https://doi.org/10.1039/d0ee02649b
- R. Ibragimova, M.J. Puska, H.-P. Komsa, pH-dependent distribution of functional groups on titanium-based MXenes. ACS Nano 13(8), 9171–9181 (2019). https://doi.org/10.1021/acsnano.9b03511
- J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
- Y. Luo, W. Que, Y. Tang, Y. Kang, X. Bin et al., Regulating functional groups enhances the performance of flexible microporous MXene/bacterial cellulose electrodes in supercapacitors. ACS Nano 18(18), 11675–11687 (2024). https://doi.org/10.1021/acsnano.3c11547
- K. Xu, C. Merlet, Z. Lin, H. Shao, P.-L. Taberna et al., Effects of functional groups and anion size on the charging mechanisms in layered electrode materials. Energy Storage Mater. 33, 460–469 (2020). https://doi.org/10.1016/j.ensm.2020.08.030
- J. Zhang, W. Lv, D. Zheng, Q. Liang, D.-W. Wang et al., The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
- J.H. Jeong, G.-W. Lee, Y.H. Kim, Y.J. Choi, K.C. Roh et al., A holey graphene-based hybrid supercapacitor. Chem. Eng. J. 378, 122126 (2019). https://doi.org/10.1016/j.cej.2019.122126
- N. Lan, Y. Shen, J. Li, H. He, C. Zhang, Cell-shearing chemistry directed closed-pore regeneration in biomass-derived hard carbons for ultrafast sodium storage. Adv. Mater. 37(22), e2412989 (2025). https://doi.org/10.1002/adma.202412989
- D. Du, H. Chen, S. Sun, L. Zeng, Z. Wu et al., Accelerating sulfur redox kinetics via 3D-printed multifunctional cathodes for high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces 17(22), 32362–32372 (2025). https://doi.org/10.1021/acsami.5c03556
- Y. Al Haj, A.B. Soliman, J. Vapaavuori, M. Elbahri, Carbon aerogels derived from anion-modified nanocellulose for adaptive supercapacitor performance. Adv. Funct. Mater. 34(28), 2313117 (2024). https://doi.org/10.1002/adfm.202313117
- C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu et al., Recent advances in MXene-based aerogels: fabrication, performance and application. Adv. Funct. Mater. 33(9), 2211889 (2023). https://doi.org/10.1002/adfm.202211889
- H. Shi, L. Jiang, S. Sun, Z. Guo, H. Guo et al., Functionalized graphene microspheres for high volumetric energy density supercapacitors. Carbon 236, 120097 (2025). https://doi.org/10.1016/j.carbon.2025.120097
- S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu et al., A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power. Sources 387, 43–48 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.055
- K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos et al., Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 33(4), 2004560 (2021). https://doi.org/10.1002/adma.202004560
- L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
- Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15(5), 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215
- H. Zhu, Z. Liang, S. Xue, X. Ren, X. Liang et al., DFT practice in MXene-based materials for electrocatalysis and energy storage: from basics to applications. Ceram. Int. 48(19), 27217–27239 (2022). https://doi.org/10.1016/j.ceramint.2022.06.070
- J. Dong, L. Hua, Z. Lu, F. Xie, X. Xu et al., Double cross-linking system for constructing tortuosity-lowered and strength-enhanced porous MXene films with superior capacitive performance and electromagnetic shielding efficiency. Energy Storage Mater. 72, 103686 (2024). https://doi.org/10.1016/j.ensm.2024.103686
- R. Gusain, N. Kumar, S. Seyedin, Y. Jiang, Composites of 2D materials and bacterial cellulose for sustainable energy storage and environmental remediation. Adv. Sustain. Syst. 8(12), 2400341 (2024). https://doi.org/10.1002/adsu.202400341
- Z.-J. Zheng, H. Ye, Z.-P. Guo, Bacterial cellulose applications in electrochemical energy storage devices. Adv. Mater. 37(22), 2412908 (2025). https://doi.org/10.1002/adma.202412908
- H. Yu, J.-G. Kim, D.-M. Lee, S. Lee, M.G. Han et al., Active material-free continuous carbon nanotube fibers with unprecedented enhancement of physicochemical properties for fiber-type solid-state supercapacitors. Adv. Energy Mater. 14(6), 2303003 (2024). https://doi.org/10.1002/aenm.202303003
- W. Wu, S. Lin, T. Chen, L. Li, Y. Pan et al., Performance evaluation of asymmetric supercapacitor based on Ti3C2Tx-paper. J. Alloys Compd. 729, 1165–1171 (2017). https://doi.org/10.1016/j.jallcom.2017.09.256
- S.B. Patil, R.P. Nikam, V.C. Lokhande, C.D. Lokhande, R.S. Patil, Tungsten oxide/reduced graphene oxide composite electrodes for solid-state asymmetric supercapacitor application. Adv. Compos. Hybrid Mater. 8(2), 175 (2025). https://doi.org/10.1007/s42114-025-01268-3
- Y. Liu, L. Yang, Z. Qin, Polyaniline nanoarrays grown on holey graphene constructed by frozen interfacial polymerization as binder−free and flexible gel electrode for high−performance supercapacitor. Carbon 225, 119100 (2024). https://doi.org/10.1016/j.carbon.2024.119100
- T. Yu, J. Chen, G. Zheng, W. Ma, C. Wang et al., Application of N/P-rGO composite electrode materials and novel electrolytes in high-performance supercapacitors. Chem. Eng. J. 492, 152426 (2024). https://doi.org/10.1016/j.cej.2024.152426
- M. Xu, Y. Mao, W. Hu, All-hydrogel yarn-based supercapacitor wrapped with multifunctional cotton fiber for energy storage and sensing. Nano Energy 130, 110142 (2024). https://doi.org/10.1016/j.nanoen.2024.110142
- H. Zong, A. Zhang, J. Dong, Y. He, H. Fu et al., Flexible asymmetric supercapacitor based on open-hollow Nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 475, 146088 (2023). https://doi.org/10.1016/j.cej.2023.146088
References
K. Keum, J.W. Kim, S.Y. Hong, J.G. Son, S.-S. Lee et al., Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 32(51), 2002180 (2020). https://doi.org/10.1002/adma.202002180
D. Liu, Y. Xue, X. Yang, Y. Shen, P. Zhang et al., Flexible fiber-shaped supercapacitors: structures, materials, fabrication methods, and applications. Interdiscip. Mater. 4(3), 377–411 (2025). https://doi.org/10.1002/idm2.12243
H. Luo, D. Su, S. Yang, Y. Li, Z. Shan et al., Diversified battery recycling: advances in recovery techniques and value-added functional applications. Nano Energy 139, 110973 (2025). https://doi.org/10.1016/j.nanoen.2025.110973
M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang et al., Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 49(18), 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a
F. Yi, H. Ren, J. Shan, X. Sun, D. Wei et al., Wearable energy sources based on 2D materials. Chem. Soc. Rev. 47(9), 3152–3188 (2018). https://doi.org/10.1039/c7cs00849j
P. Nakhanivej, X. Yu, S.K. Park, S. Kim, J.-Y. Hong et al., Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 18(2), 156–162 (2019). https://doi.org/10.1038/s41563-018-0230-2
M. Wu, J. Liao, L. Yu, R. Lv, P. Li et al., 2020 roadmap on carbon materials for energy storage and conversion. Chem. Asian J. 15(7), 995–1013 (2020). https://doi.org/10.1002/asia.201901802
B.R. Sutherland, Charging up stationary energy storage. Joule 3(1), 1–3 (2019). https://doi.org/10.1016/j.joule.2018.12.022
X. Li, Z. Huang, C.E. Shuck, G. Liang, Y. Gogotsi et al., MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6(6), 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8
T. Xu, Z. Li, D. Wang, M. Zhang, L. Ai et al., A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Adv. Funct. Mater. 32(5), 2107720 (2022). https://doi.org/10.1002/adfm.202107720
X. Li, Y. Wu, T. Chen, Q. wang, C. Lu et al., Construction of proton channels in POMCPs@MXene electrodes for flexible all-solid-state symmetrical supercapacitors. Chem. Eng. J. 519, 164816 (2025). https://doi.org/10.1016/j.cej.2025.164816
D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano 15(3), 5000–5010 (2021). https://doi.org/10.1021/acsnano.0c09959
Z. Fan, Y. Wang, Z. Xie, D. Wang, Y. Yuan et al., Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 5(10), 1800750 (2018). https://doi.org/10.1002/advs.201800750
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27(30), 1701264 (2017). https://doi.org/10.1002/adfm.201701264
L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 13(9), 2203683 (2023). https://doi.org/10.1002/aenm.202203683
S. Xu, Y. Li, T. Mo, G. Wei, Y. Yang, Highly matched porous MXene anodes and graphene cathodes for high-performance aqueous asymmetric supercapacitors. Energy Storage Mater. 69, 103379 (2024). https://doi.org/10.1016/j.ensm.2024.103379
M. Pandey, K. Deshmukh, A. Raman, A. Asok, S. Appukuttan et al., Prospects of MXene and graphene for energy storage and conversion. Renew. Sustain. Energy Rev. 189, 114030 (2024). https://doi.org/10.1016/j.rser.2023.114030
Y. Yu, H. Zhang, Y. Xie, F. Jiang, X. Gao et al., Vertically aligned graphene-MXene nanosheets based electrodes for high electrochemical performance asymmetric supercapacitor. Chem. Eng. J. 482, 149063 (2024). https://doi.org/10.1016/j.cej.2024.149063
J. Zeng, C. Xu, T. Gao, X. Jiang, X.-B. Wang, Porous monoliths of 3D graphene for electric double-layer supercapacitors. Carbon Energy 3(2), 193–224 (2021). https://doi.org/10.1002/cey2.107
J. Huang, K. Yuan, Y. Chen, Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges. Adv. Funct. Mater. 32(4), 2108107 (2022). https://doi.org/10.1002/adfm.202108107
W. Guo, C. Yu, S. Li, J. Qiu, Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy Environ. Sci. 14(2), 576–601 (2021). https://doi.org/10.1039/d0ee02649b
R. Ibragimova, M.J. Puska, H.-P. Komsa, pH-dependent distribution of functional groups on titanium-based MXenes. ACS Nano 13(8), 9171–9181 (2019). https://doi.org/10.1021/acsnano.9b03511
J. Hao, S. Zhang, H. Wu, L. Yuan, K. Davey et al., Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 53(9), 4312–4332 (2024). https://doi.org/10.1039/d3cs00771e
Y. Luo, W. Que, Y. Tang, Y. Kang, X. Bin et al., Regulating functional groups enhances the performance of flexible microporous MXene/bacterial cellulose electrodes in supercapacitors. ACS Nano 18(18), 11675–11687 (2024). https://doi.org/10.1021/acsnano.3c11547
K. Xu, C. Merlet, Z. Lin, H. Shao, P.-L. Taberna et al., Effects of functional groups and anion size on the charging mechanisms in layered electrode materials. Energy Storage Mater. 33, 460–469 (2020). https://doi.org/10.1016/j.ensm.2020.08.030
J. Zhang, W. Lv, D. Zheng, Q. Liang, D.-W. Wang et al., The interplay of oxygen functional groups and folded texture in densified graphene electrodes for compact sodium-ion capacitors. Adv. Energy Mater. 8(11), 1702395 (2018). https://doi.org/10.1002/aenm.201702395
J.H. Jeong, G.-W. Lee, Y.H. Kim, Y.J. Choi, K.C. Roh et al., A holey graphene-based hybrid supercapacitor. Chem. Eng. J. 378, 122126 (2019). https://doi.org/10.1016/j.cej.2019.122126
N. Lan, Y. Shen, J. Li, H. He, C. Zhang, Cell-shearing chemistry directed closed-pore regeneration in biomass-derived hard carbons for ultrafast sodium storage. Adv. Mater. 37(22), e2412989 (2025). https://doi.org/10.1002/adma.202412989
D. Du, H. Chen, S. Sun, L. Zeng, Z. Wu et al., Accelerating sulfur redox kinetics via 3D-printed multifunctional cathodes for high-energy-density lithium–sulfur batteries. ACS Appl. Mater. Interfaces 17(22), 32362–32372 (2025). https://doi.org/10.1021/acsami.5c03556
Y. Al Haj, A.B. Soliman, J. Vapaavuori, M. Elbahri, Carbon aerogels derived from anion-modified nanocellulose for adaptive supercapacitor performance. Adv. Funct. Mater. 34(28), 2313117 (2024). https://doi.org/10.1002/adfm.202313117
C. Wei, Q. Zhang, Z. Wang, W. Yang, H. Lu et al., Recent advances in MXene-based aerogels: fabrication, performance and application. Adv. Funct. Mater. 33(9), 2211889 (2023). https://doi.org/10.1002/adfm.202211889
H. Shi, L. Jiang, S. Sun, Z. Guo, H. Guo et al., Functionalized graphene microspheres for high volumetric energy density supercapacitors. Carbon 236, 120097 (2025). https://doi.org/10.1016/j.carbon.2025.120097
S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu et al., A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power. Sources 387, 43–48 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.055
K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos et al., Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 33(4), 2004560 (2021). https://doi.org/10.1002/adma.202004560
L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372(6547), eabf1581 (2021). https://doi.org/10.1126/science.abf1581
Z. Jin, C. Liu, Z. Liu, J. Han, Y. Fang et al., Rational design of hydroxyl-rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater. 10(22), 2000797 (2020). https://doi.org/10.1002/aenm.202000797
Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15(5), 9065–9075 (2021). https://doi.org/10.1021/acsnano.1c02215
H. Zhu, Z. Liang, S. Xue, X. Ren, X. Liang et al., DFT practice in MXene-based materials for electrocatalysis and energy storage: from basics to applications. Ceram. Int. 48(19), 27217–27239 (2022). https://doi.org/10.1016/j.ceramint.2022.06.070
J. Dong, L. Hua, Z. Lu, F. Xie, X. Xu et al., Double cross-linking system for constructing tortuosity-lowered and strength-enhanced porous MXene films with superior capacitive performance and electromagnetic shielding efficiency. Energy Storage Mater. 72, 103686 (2024). https://doi.org/10.1016/j.ensm.2024.103686
R. Gusain, N. Kumar, S. Seyedin, Y. Jiang, Composites of 2D materials and bacterial cellulose for sustainable energy storage and environmental remediation. Adv. Sustain. Syst. 8(12), 2400341 (2024). https://doi.org/10.1002/adsu.202400341
Z.-J. Zheng, H. Ye, Z.-P. Guo, Bacterial cellulose applications in electrochemical energy storage devices. Adv. Mater. 37(22), 2412908 (2025). https://doi.org/10.1002/adma.202412908
H. Yu, J.-G. Kim, D.-M. Lee, S. Lee, M.G. Han et al., Active material-free continuous carbon nanotube fibers with unprecedented enhancement of physicochemical properties for fiber-type solid-state supercapacitors. Adv. Energy Mater. 14(6), 2303003 (2024). https://doi.org/10.1002/aenm.202303003
W. Wu, S. Lin, T. Chen, L. Li, Y. Pan et al., Performance evaluation of asymmetric supercapacitor based on Ti3C2Tx-paper. J. Alloys Compd. 729, 1165–1171 (2017). https://doi.org/10.1016/j.jallcom.2017.09.256
S.B. Patil, R.P. Nikam, V.C. Lokhande, C.D. Lokhande, R.S. Patil, Tungsten oxide/reduced graphene oxide composite electrodes for solid-state asymmetric supercapacitor application. Adv. Compos. Hybrid Mater. 8(2), 175 (2025). https://doi.org/10.1007/s42114-025-01268-3
Y. Liu, L. Yang, Z. Qin, Polyaniline nanoarrays grown on holey graphene constructed by frozen interfacial polymerization as binder−free and flexible gel electrode for high−performance supercapacitor. Carbon 225, 119100 (2024). https://doi.org/10.1016/j.carbon.2024.119100
T. Yu, J. Chen, G. Zheng, W. Ma, C. Wang et al., Application of N/P-rGO composite electrode materials and novel electrolytes in high-performance supercapacitors. Chem. Eng. J. 492, 152426 (2024). https://doi.org/10.1016/j.cej.2024.152426
M. Xu, Y. Mao, W. Hu, All-hydrogel yarn-based supercapacitor wrapped with multifunctional cotton fiber for energy storage and sensing. Nano Energy 130, 110142 (2024). https://doi.org/10.1016/j.nanoen.2024.110142
H. Zong, A. Zhang, J. Dong, Y. He, H. Fu et al., Flexible asymmetric supercapacitor based on open-hollow Nickel-MOFs/reduced graphene oxide aerogel electrodes. Chem. Eng. J. 475, 146088 (2023). https://doi.org/10.1016/j.cej.2023.146088