Halide Perovskite Heterostructures for High-Performance Light-Emitting Diodes
Corresponding Author: Changjiu Sun
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 185
Abstract
Metal halide perovskites have emerged as highly promising candidates for the emissive layer in next-generation light-emitting diodes (LEDs) due to their narrow emission linewidths, high photoluminescence quantum yields, and tunable emission wavelengths. Achieving high-performance perovskite LEDs (PeLEDs) requires the emissive layer to possess efficient radiative recombination, low defect density, minimal ion mobility, and effective carrier confinement. Perovskite/perovskite heterostructure (PPHS) offers a compelling approach for engineering emissive layers with these desired attributes, owing to their ability to passivate surface defects, tailor bandgaps, and suppress ion migration. PeLEDs based on PPHS have demonstrated superior performance compared to single-phase devices, particularly in terms of external quantum efficiency and operational stability. This review provides a comprehensive overview of the typical PPHS architectures applied in PeLEDs, including vertical, lateral, and bulk configurations. We discuss representative fabrication strategies and the associated optoelectronic properties of these heterostructures, highlighting the mechanisms by which they enhance device efficiency and stability. Finally, we explore the remaining challenges and prospects for the application of PPHS in PeLEDs and other luminescent technologies.
Highlights:
1 This review systematically summarizes the application of perovskite/perovskite heterostructures (PPHSs) in light-emitting diodes (LEDs), highlighting their critical roles in defect passivation, carrier confinement, lattice stabilization, and light management.
2 This review categorized PPHSs by dimensional combinations (e.g., 3D/3D, 2D/3D, 0D/3D) and spatial architectures—vertical, lateral, and bulk heterostructures—elucidating the structure-property relationships for efficient LEDs.
3 Key challenges and future directions are outlined, including advances in high-resolution characterization, carrier dynamics analysis, and controlled synthesis of PPHSs for next-generation optoelectronic applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
- T.-H. Han, K.Y. Jang, Y. Dong, R.H. Friend, E.H. Sargent et al., A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7(10), 757–777 (2022). https://doi.org/10.1038/s41578-022-00459-4
- X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
- Y. Liu, Z. Ma, J. Zhang, Y. He, J. Dai et al., Light-emitting diodes based on metal halide perovskite and perovskite related nanocrystals. Adv. Mater. 37(25), 2415606 (2025). https://doi.org/10.1002/adma.202415606
- A.F. Gualdrón-Reyes, S. Masi, I. Mora-Sero, Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 3(6), 499–511 (2021). https://doi.org/10.1016/j.trechm.2021.03.005
- J. Chen, G.-P. Zhu, K.-L. Wang, C.-H. Chen, T.-Y. Teng et al., Unveiling full-dimensional distribution of trap states toward highly efficient perovskite photovoltaics. eScience 5(2), 100326 (2025). https://doi.org/10.1016/j.esci.2024.100326
- N. Jiang, Z. Wang, Y. Zheng, Q. Guo, W. Niu et al., 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy 97, 107181 (2022). https://doi.org/10.1016/j.nanoen.2022.107181
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- Y.-H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17(6), 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
- C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
- M. Li, Y. Yang, Z. Kuang, C. Hao, S. Wang et al., Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630(8017), 631–635 (2024). https://doi.org/10.1038/s41586-024-07460-7
- W. Bai, T. Xuan, H. Zhao, H. Dong, X. Cheng et al., Perovskite light-emitting diodes with an external quantum efficiency exceeding 30. Adv. Mater. 35(39), e2302283 (2023). https://doi.org/10.1002/adma.202302283
- J. Jiang, Z. Xia, M. Shi, Z. Yin, W. Huang et al., Efficient red perovskite LEDs with iodine management via volatile additive I2. Adv. Mater. 37(32), 2503699 (2025). https://doi.org/10.1002/adma.202503699
- C. Peng, H. Yao, O. Ali, W. Chen, Y. Yang et al., Weakly space-confined all-inorganic perovskites for light-emitting diodes. Nature 643(8070), 96–103 (2025). https://doi.org/10.1038/s41586-025-09137-1
- C. Li, K.P. Loh, K. Leng, Organic-inorganic hybrid perovskites and their heterostructures. Matter 5(12), 4153–4169 (2022). https://doi.org/10.1016/j.matt.2022.11.002
- X. Cheng, Y. Han, B.-B. Cui, Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater. 10(5), 2102224 (2022). https://doi.org/10.1002/adom.202102224
- Z. Zhang, S. Wang, X. Liu, Y. Chen, C. Su et al., Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5(4), 2000937 (2021). https://doi.org/10.1002/smtd.202000937
- M. Wang, Z. Wan, X. Meng, Z. Li, X. Ding et al., Heterostructured Co/Mo-sulfide catalyst enables unbiased solar water splitting by integration with perovskite solar cells. Appl. Catal. B Environ. 309, 121272 (2022). https://doi.org/10.1016/j.apcatb.2022.121272
- Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
- Z. Dong, Z. Zhang, Y. Jiang, Y. Chu, J. Xu, Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem. Eng. J. 433, 133762 (2022). https://doi.org/10.1016/j.cej.2021.133762
- D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
- S. Chander, S.K. Tripathi, Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review. Mater. Adv. 3(19), 7198–7211 (2022). https://doi.org/10.1039/D2MA00700B
- T. Wang, W. Deng, J. Cao, F. Yan, Recent progress on heterojunction engineering in perovskite solar cells. Adv. Energy Mater. 13(33), 2201436 (2023). https://doi.org/10.1002/aenm.202201436
- X. Wu, B. Li, Z. Zhu, C.-C. Chueh, A.K.Y. Jen, Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50(23), 13090–13128 (2021). https://doi.org/10.1039/D1CS00841B
- B.M. Wieliczka, S.N. Habisreutinger, K. Schutt, J.L. Blackburn, J.M. Luther, Nanocrystal-enabled perovskite heterojunctions in photovoltaic applications and beyond. Adv. Energy Mater. 13(22), 2204351 (2023). https://doi.org/10.1002/aenm.202204351
- D.-H. Kang, S.-G. Kim, Y.C. Kim, I.T. Han, H.J. Jang et al., CsPbBr3/CH3NH3PbCl3 double layer enhances efficiency and lifetime of perovskite light-emitting diodes. ACS Energy Lett. 5(7), 2191–2199 (2020). https://doi.org/10.1021/acsenergylett.0c01036
- J. Wang, L. Bi, X. Huang, Q. Feng, M. Liu et al., Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4(6), 100308 (2024). https://doi.org/10.1016/j.esci.2024.100308
- Y. Wang, Z. Chen, F. Deschler, X. Sun, T.-M. Lu et al., Epitaxial halide perovskite lateral double heterostructure. ACS Nano 11(3), 3355–3364 (2017). https://doi.org/10.1021/acsnano.7b00724
- P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
- X. Li, W. Ma, D. Liang, W. Cai, S. Zhao et al., High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2(6), 646–654 (2022). https://doi.org/10.1016/j.esci.2022.10.005
- P. Liu, Y. Xu, B. Li, Y. Zhang, H. Lian et al., Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence. Nano Res. 17(3), 1636–1645 (2024). https://doi.org/10.1007/s12274-023-5922-5
- Y. Liu, Z. Li, J. Xu, Y. Dong, B. Chen et al., Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J. Am. Chem. Soc. 144(9), 4009–4016 (2022). https://doi.org/10.1021/jacs.1c12556
- P.C. Sercel, J.L. Lyons, D. Wickramaratne, R. Vaxenburg, N. Bernstein et al., Exciton fine structure in perovskite nanocrystals. Nano Lett. 19(6), 4068–4077 (2019). https://doi.org/10.1021/acs.nanolett.9b01467
- P. Pang, Z. Xing, J. Xia, B. Wang, Z. Zhang et al., Deep-blue light-emitting diodes constructed with perovskite quasi-2D and nanocrystal mixtures. Adv. Opt. Mater. 10(20), 2201112 (2022). https://doi.org/10.1002/adom.202201112
- Z. Xing, G. Jin, Q. Du, P. Pang, T. Liu et al., Ions-induced assembly of perovskite nanocomposites for highly efficient light-emitting diodes with EQE exceeding 30%. Adv. Mater. 36(46), 2406706 (2024). https://doi.org/10.1002/adma.202406706
- Q. Zhang, D. Zhang, Z. Liao, Y.B. Cao, M. Kumar et al., Perovskite light-emitting diodes with quantum wires and nanorods. Adv. Mater. 37(23), 2405418 (2025). https://doi.org/10.1002/adma.202405418
- L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao et al., Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666–12731 (2015). https://doi.org/10.1021/acs.chemrev.5b00098
- Z. Zhou, H.W. Qiao, Y. Hou, H.G. Yang, S. Yang, Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14(1), 127–157 (2021). https://doi.org/10.1039/d0ee02902e
- J.Y. Park, Y.H. Lee, M.A. Zaman Mamun, M.M. Fahimul Islam, S. Zhang et al., Electrically induced directional ion migration in two-dimensional perovskite heterostructures. Matter 7(5), 1817–1832 (2024). https://doi.org/10.1016/j.matt.2024.03.005
- C.P. Clark, J.E. Mann, J.S. Bangsund, W.-J. Hsu, E.S. Aydil et al., Formation of stable metal halide perovskite/perovskite heterojunctions. ACS Energy Lett. 5(11), 3443–3451 (2020). https://doi.org/10.1021/acsenergylett.0c01609
- W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu et al., Ion migration in organic–inorganic hybrid perovskite solar cells: current understanding and perspectives. Small 18(15), 2105783 (2022). https://doi.org/10.1002/smll.202105783
- N. Li, Y. Jia, Y. Guo, N. Zhao, Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34(19), e2108102 (2022). https://doi.org/10.1002/adma.202108102
- L. Zhang, Y. Jiang, Y. Feng, M. Cui, S. Li et al., Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62(21), e202302184 (2023). https://doi.org/10.1002/anie.202302184
- G. Sarkar, P. Deswal, D. Ghosh, Ion diffusion dynamics and halogen mixing at the heterojunction of halide perovskites: atomistic insights. J. Phys. Chem. C 128(4), 1762–1772 (2024). https://doi.org/10.1021/acs.jpcc.3c06329
- D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
- M.P. Hautzinger, E.K. Raulerson, S.P. Harvey, T. Liu, D. Duke et al., Metal halide perovskite heterostructures: blocking anion diffusion with single-layer graphene. J. Am. Chem. Soc. 145(4), 2052–2057 (2023). https://doi.org/10.1021/jacs.2c12441
- S.-H. Chin, L. Mardegan, F. Palazon, M. Sessolo, H.J. Bolink, Dimensionality controls anion intermixing in electroluminescent perovskite heterojunctions. ACS Photonics 9(7), 2483–2488 (2022). https://doi.org/10.1021/acsphotonics.2c00604
- Z. Hu, X. Liu, P.L. Hernández-Martínez, S. Zhang, P. Gu et al., Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat 4(3), e12290 (2022). https://doi.org/10.1002/inf2.12290
- C. Lin, Y. Tang, W. Xu, P. Kumar, L. Dou, Charge transfer in 2D halide perovskites and 2D/3D heterostructures. ACS Energy Lett. 9(8), 3877–3886 (2024). https://doi.org/10.1021/acsenergylett.4c01530
- Z. Han, Y. Song, Y. Jia, Y. Wang, J. Shi et al., Classification and characterization methods for heterojunctions. Adv. Mater. Interfaces 12(15), 2500191 (2025). https://doi.org/10.1002/admi.202500191
- J.T. DuBose, P.V. Kamat, Energy versus electron transfer: managing excited-state interactions in perovskite nanocrystal–molecular hybrids. Chem. Rev. 122(15), 12475–12494 (2022). https://doi.org/10.1021/acs.chemrev.2c00172
- L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong et al., Efficient energy funneling in quasi-2D perovskites: from light emission to lasing. Adv. Mater. 32(16), 1906571 (2020). https://doi.org/10.1002/adma.201906571
- Y. Song, C. Zhang, W. Liu, X. Li, H. Long et al., High-efficiency energy transfer in perovskite heterostructures. Opt. Express 26(14), 18448–18456 (2018). https://doi.org/10.1364/OE.26.018448
- X. Chen, P.V. Kamat, C. Janáky, G.F. Samu, Charge transfer kinetics in halide perovskites: on the constraints of time-resolved spectroscopy measurements. ACS Energy Lett. 9(6), 3187–3203 (2024). https://doi.org/10.1021/acsenergylett.4c00736
- S. Deng, J.M. Snaider, Y. Gao, E. Shi, L. Jin et al., Long-lived charge separation in two-dimensional ligand-perovskite heterostructures. J. Chem. Phys. 152(4), 044711 (2020). https://doi.org/10.1063/1.5131801
- N.T. Shewmon, H. Yu, I. Constantinou, E. Klump, F. So, Formation of perovskite heterostructures by ion exchange. ACS Appl. Mater. Interfaces 8(48), 33273–33279 (2016). https://doi.org/10.1021/acsami.6b10034
- Y. Lei, Y. Chen, R. Zhang, Y. Li, Q. Yan et al., A fabrication process for flexible single-crystal perovskite devices. Nature 583(7818), 790–795 (2020). https://doi.org/10.1038/s41586-020-2526-z
- L. Ye, Y. Gao, Y. Feng, X. Zhu, Z. Ma et al., Suppressing interlayer ion migration in CsPbX3 nanocrystal films for realizing efficient and stable electroluminescence. Adv. Mater. 37(33), 2505214 (2025). https://doi.org/10.1002/adma.202505214
- Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang et al., High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv. Mater. 33(2), 2001367 (2021). https://doi.org/10.1002/adma.202001367
- B. Zhang, X. Wu, S. Zhou, G. Liang, Q. Hu, Self-trapped exciton emission in inorganic copper(I) metal halides. Front. Optoelectron. 14(4), 459–472 (2021). https://doi.org/10.1007/s12200-021-1133-4
- W. Zhang, Z. Chu, J. Jiang, S. Zhang, H. Hao et al., High-performance white emission from Cu-based perovskite compound. Adv. Opt. Mater. 12(18), 2400092 (2024). https://doi.org/10.1002/adom.202400092
- J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15(3), 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
- Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
- J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10(1), 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
- D. Zhang, J. Liu, X. Duan, K. Chen, B. Yu et al., Efficient deep-red perovskite light-emitting diodes based on a vertical 3D/2D perovskite heterojunction. Adv. Funct. Mater. 34(39), 2403874 (2024). https://doi.org/10.1002/adfm.202403874
- K. Zhang, Z. Su, Y. Shen, L.-X. Cao, X.-Y. Zeng et al., Top-down exfoliation process constructing 2D/3D heterojunction toward ultrapure blue perovskite light-emitting diodes. ACS Nano 18(5), 4570–4578 (2024). https://doi.org/10.1021/acsnano.3c12433
- S.-D. Baek, W. Shao, W. Feng, Y. Tang, Y.H. Lee et al., Grain engineering for efficient near-infrared perovskite light-emitting diodes. Nat. Commun. 15, 10760 (2024). https://doi.org/10.1038/s41467-024-55075-3
- Z. Zhu, C. Zhu, L. Yang, Q. Chen, L. Zhang et al., Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21(9), 1042–1049 (2022). https://doi.org/10.1038/s41563-022-01311-4
- H. Min, N. Wang, N. Chen, Y. Tong, Y. Wang et al., Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes. Nat. Nanotechnol. 19(5), 632–637 (2024). https://doi.org/10.1038/s41565-023-01588-9
- S. Ye, Y. Chen, H. Wu, H. Lang, H. Wang et al., Heterodimensional epitaxy of CsSnI3 microcrystalline cubes for bright and efficient near-infrared light-emitting diode. Adv. Mater. (2025). https://doi.org/10.1002/adma.202512927
- Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
- C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6(1), 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
- I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko et al., CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10(19), 3746–3749 (2017). https://doi.org/10.1002/cssc.201701131
- X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng et al., All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 26(25), 4595–4600 (2016). https://doi.org/10.1002/adfm.201600958
- J. Lv, L. Fang, J. Shen, Synthesis of highly luminescent CsPb2Br5 nanoplatelets and their application for light-emitting diodes. Mater. Lett. 211, 199–202 (2018). https://doi.org/10.1016/j.matlet.2017.09.106
- S.K. Balakrishnan, P.V. Kamat, Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 30(1), 74–78 (2018). https://doi.org/10.1021/acs.chemmater.7b04142
- B.-S. Zhu, H.-Z. Li, J. Ge, H.-D. Li, Y.-C. Yin et al., Room temperature precipitated dual phase CsPbBr3–CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 10(41), 19262–19271 (2018). https://doi.org/10.1039/C8NR06879H
- L. Wang, D. Ma, C. Guo, X. Jiang, M. Li et al., CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 543, 148782 (2021). https://doi.org/10.1016/j.apsusc.2020.148782
- Y. Wang, S. Jin, S. Jiang, S. Zhai, L. Liu et al., CsPb2Br5 plates/quasi-2D perovskite heterojunction for efficient sky-blue light-emitting diodes. ACS Appl. Mater. Interfaces 16(42), 57355–57364 (2024). https://doi.org/10.1021/acsami.4c11568
- C. Abia, C.A. López, J. Gainza, J.E.F.S. Rodrigues, B. Fragoso et al., Structural features and optical properties of all-inorganic zero-dimensional halides Cs4PbBr6–xIx obtained by mechanochemistry. ACS Appl. Mater. Interfaces 15(34), 40762–40771 (2023). https://doi.org/10.1021/acsami.3c07707
- Y. Ke, J. Guo, D. Kong, J. Wang, G. Kusch et al., Efficient and bright deep-red light-emitting diodes based on a lateral 0D/3D perovskite heterostructure. Adv. Mater. 36(20), e2207301 (2024). https://doi.org/10.1002/adma.202207301
- O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12(5), 445–451 (2013). https://doi.org/10.1038/nmat3539
- Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan et al., Quantum-dot-in-perovskite solids. Nature 523(7560), 324–328 (2015). https://doi.org/10.1038/nature14563
- Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143(38), 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
- X. Gong, X. Hao, J. Si, Y. Deng, K. An et al., High-performance all-inorganic architecture perovskite light-emitting diodes based on tens-of-nanometers-sized CsPbBr3 emitters in a carrier-confined heterostructure. ACS Nano 18(12), 8673–8682 (2024). https://doi.org/10.1021/acsnano.3c09004
- N. Meng, Y. Li, X. Shi, Z. Wang, J. Liu et al., Fully thermal-evaporated perovskite light-emitting diodes with brightness exceeding 240 000 nits. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202510484
- Z. Xia, J. Jiang, A. Wang, D. An, Z. Li et al., Overall performance improvement of perovskite green LEDs by CsPbBr3&Cs4PbBr6 nanocrystals and molecular doping. Adv. Mater. 37(34), 2506187 (2025). https://doi.org/10.1002/adma.202506187
- H.-H. Li, Y. Wang, Z.-S. Liu, F. Zhao, Y.-K. Wang et al., Hybrid-dimensional heterostructure enables efficient near-infrared perovskite quantum dot light-emitting diodes. ACS Nano 19(28), 25930–25938 (2025). https://doi.org/10.1021/acsnano.5c05939
- X.Y. Chin, A. Perumal, A. Bruno, N. Yantara, S.A. Veldhuis et al., Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ. Sci. 11(7), 1770–1778 (2018). https://doi.org/10.1039/C8EE00293B
- K. Wei, T. Zhou, Y. Jiang, C. Sun, Y. Liu et al., Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature 638(8052), 949–956 (2025). https://doi.org/10.1038/s41586-024-08503-9
- M. Xia, T. Wang, Y. Lu, Y. Li, B. Li et al., Kinetic Wulff-shaped heteroepitaxy of phase-pure 2D perovskite heterostructures with deterministic slab thickness. Nat. Synth. 4(3), 380–390 (2025). https://doi.org/10.1038/s44160-024-00692-5
- E. Shi, B. Yuan, S.B. Shiring, Y. Gao, Akriti et al., Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580(7805), 614–620 (2020). https://doi.org/10.1038/s41586-020-2219-7
- B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
- C. Rossi, R. Scarfiello, R. Brescia, L. Goldoni, G. Caputo et al., Exploiting the transformative features of metal halides for the synthesis of CsPbBr3@SiO2 core–shell nanocrystals. Chem. Mater. 34(1), 405–413 (2022). https://doi.org/10.1021/acs.chemmater.1c03749
- G.H. Ahmed, J. Yin, O.M. Bakr, O.F. Mohammed, Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett. 6(4), 1340–1357 (2021). https://doi.org/10.1021/acsenergylett.1c00076
- C. Zhang, S. Wang, X. Li, M. Yuan, L. Turyanska et al., Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 30(31), 1910582 (2020). https://doi.org/10.1002/adfm.201910582
- J. Ye, D. Gaur, C. Mi, Z. Chen, I.L. Fernández et al., Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem. Soc. Rev. 53(16), 8095–8122 (2024). https://doi.org/10.1039/d4cs00077c
- Y. Feng, H. Li, M. Zhu, Y. Gao, Q. Cai et al., Nucleophilic reaction-enabled chloride modification on CsPbI3 quantum dots for pure red light-emitting diodes with efficiency exceeding 26%. Angew. Chem. Int. Ed. 63(11), e202318777 (2024). https://doi.org/10.1002/anie.202318777
- Y.-H. Song, B. Li, Z.-J. Wang, X.-L. Tai, G.-J. Ding et al., Intragrain 3D perovskite heterostructure for high-performance pure-red perovskite LEDs. Nature 641(8062), 352–357 (2025). https://doi.org/10.1038/s41586-025-08867-6
- W. Xu, J. Liu, B. Dong, J. Huang, H. Shi et al., Atomic-scale imaging of ytterbium ions in lead halide perovskites. Sci. Adv. 9(35), eadi7931 (2023). https://doi.org/10.1126/sciadv.adi7931
- S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
- M.-Y. Kuo, N. Spitha, M.P. Hautzinger, P.-L. Hsieh, J. Li et al., Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J. Am. Chem. Soc. 143(13), 4969–4978 (2021). https://doi.org/10.1021/jacs.0c10000
- R. Quintero-Bermudez, A.H. Proppe, A. Mahata, P. Todorović́, S.O. Kelley et al., Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141(34), 13459–13467 (2019). https://doi.org/10.1021/jacs.9b04801
- X. Xu, X. Wang, Perovskite nano-heterojunctions: synthesis, structures, properties, challenges, and prospects. Small Struct. 1(1), 2000009 (2020). https://doi.org/10.1002/sstr.202000009
- X. Huang, Q. Xiong, Z. Su, J. Zhou, F. Cao et al., Orthogonal solvent approach in dimensionality-heterointerface perovskite photovoltaics. ACS Energy Lett. 10(2), 982–990 (2025). https://doi.org/10.1021/acsenergylett.4c03263
- M. Yuan, J. Feng, H. Li, H. Gao, Y. Qiu et al., Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20(3), 381–387 (2025). https://doi.org/10.1038/s41565-024-01841-9
- Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), e2203529 (2022). https://doi.org/10.1002/adma.202203529
- J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park et al., Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614(7946), 81–87 (2023). https://doi.org/10.1038/s41586-022-05612-1
- Y. Ren, Z. Wang, Y. Wang, W. Wang, L. Feng et al., Halide perovskite lateral heterostructures for energy routing based photonic applications. Adv. Opt. Mater. 8(24), 2001347 (2020). https://doi.org/10.1002/adom.202001347
- Y.-H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371(6534), 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
- P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang et al., Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13(9), 894–899 (2017). https://doi.org/10.1038/nphys4145
- W. Zhao, R. Su, Y. Huang, J. Wu, C.F. Fong et al., Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites. Nat. Commun. 11(1), 5665 (2020). https://doi.org/10.1038/s41467-020-19471-9
- Y. Xu, J. Li, W. Xu, X. Fan, S. Yang et al., Elucidating interfacial carrier transfer dynamics for circularly polarized emission in self-assembled perovskite heterostructures. ACS Nano 19(15), 15030–15039 (2025). https://doi.org/10.1021/acsnano.5c01450
References
B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photonics 10(5), 295–302 (2016). https://doi.org/10.1038/nphoton.2016.62
T.-H. Han, K.Y. Jang, Y. Dong, R.H. Friend, E.H. Sargent et al., A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7(10), 757–777 (2022). https://doi.org/10.1038/s41578-022-00459-4
X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20(1), 10–21 (2021). https://doi.org/10.1038/s41563-020-0784-7
Y. Liu, Z. Ma, J. Zhang, Y. He, J. Dai et al., Light-emitting diodes based on metal halide perovskite and perovskite related nanocrystals. Adv. Mater. 37(25), 2415606 (2025). https://doi.org/10.1002/adma.202415606
A.F. Gualdrón-Reyes, S. Masi, I. Mora-Sero, Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield. Trends Chem. 3(6), 499–511 (2021). https://doi.org/10.1016/j.trechm.2021.03.005
J. Chen, G.-P. Zhu, K.-L. Wang, C.-H. Chen, T.-Y. Teng et al., Unveiling full-dimensional distribution of trap states toward highly efficient perovskite photovoltaics. eScience 5(2), 100326 (2025). https://doi.org/10.1016/j.esci.2024.100326
N. Jiang, Z. Wang, Y. Zheng, Q. Guo, W. Niu et al., 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano Energy 97, 107181 (2022). https://doi.org/10.1016/j.nanoen.2022.107181
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
Y.-H. Kim, J. Park, S. Kim, J.S. Kim, H. Xu et al., Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17(6), 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4
C. Sun, Y. Jiang, M. Cui, L. Qiao, J. Wei et al., High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021). https://doi.org/10.1038/s41467-021-22529-x
M. Li, Y. Yang, Z. Kuang, C. Hao, S. Wang et al., Acceleration of radiative recombination for efficient perovskite LEDs. Nature 630(8017), 631–635 (2024). https://doi.org/10.1038/s41586-024-07460-7
W. Bai, T. Xuan, H. Zhao, H. Dong, X. Cheng et al., Perovskite light-emitting diodes with an external quantum efficiency exceeding 30. Adv. Mater. 35(39), e2302283 (2023). https://doi.org/10.1002/adma.202302283
J. Jiang, Z. Xia, M. Shi, Z. Yin, W. Huang et al., Efficient red perovskite LEDs with iodine management via volatile additive I2. Adv. Mater. 37(32), 2503699 (2025). https://doi.org/10.1002/adma.202503699
C. Peng, H. Yao, O. Ali, W. Chen, Y. Yang et al., Weakly space-confined all-inorganic perovskites for light-emitting diodes. Nature 643(8070), 96–103 (2025). https://doi.org/10.1038/s41586-025-09137-1
C. Li, K.P. Loh, K. Leng, Organic-inorganic hybrid perovskites and their heterostructures. Matter 5(12), 4153–4169 (2022). https://doi.org/10.1016/j.matt.2022.11.002
X. Cheng, Y. Han, B.-B. Cui, Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater. 10(5), 2102224 (2022). https://doi.org/10.1002/adom.202102224
Z. Zhang, S. Wang, X. Liu, Y. Chen, C. Su et al., Metal halide perovskite/2D material heterostructures: syntheses and applications. Small Methods 5(4), 2000937 (2021). https://doi.org/10.1002/smtd.202000937
M. Wang, Z. Wan, X. Meng, Z. Li, X. Ding et al., Heterostructured Co/Mo-sulfide catalyst enables unbiased solar water splitting by integration with perovskite solar cells. Appl. Catal. B Environ. 309, 121272 (2022). https://doi.org/10.1016/j.apcatb.2022.121272
Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018
Z. Dong, Z. Zhang, Y. Jiang, Y. Chu, J. Xu, Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction. Chem. Eng. J. 433, 133762 (2022). https://doi.org/10.1016/j.cej.2021.133762
D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342
S. Chander, S.K. Tripathi, Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review. Mater. Adv. 3(19), 7198–7211 (2022). https://doi.org/10.1039/D2MA00700B
T. Wang, W. Deng, J. Cao, F. Yan, Recent progress on heterojunction engineering in perovskite solar cells. Adv. Energy Mater. 13(33), 2201436 (2023). https://doi.org/10.1002/aenm.202201436
X. Wu, B. Li, Z. Zhu, C.-C. Chueh, A.K.Y. Jen, Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 50(23), 13090–13128 (2021). https://doi.org/10.1039/D1CS00841B
B.M. Wieliczka, S.N. Habisreutinger, K. Schutt, J.L. Blackburn, J.M. Luther, Nanocrystal-enabled perovskite heterojunctions in photovoltaic applications and beyond. Adv. Energy Mater. 13(22), 2204351 (2023). https://doi.org/10.1002/aenm.202204351
D.-H. Kang, S.-G. Kim, Y.C. Kim, I.T. Han, H.J. Jang et al., CsPbBr3/CH3NH3PbCl3 double layer enhances efficiency and lifetime of perovskite light-emitting diodes. ACS Energy Lett. 5(7), 2191–2199 (2020). https://doi.org/10.1021/acsenergylett.0c01036
J. Wang, L. Bi, X. Huang, Q. Feng, M. Liu et al., Bilayer interface engineering through 2D/3D perovskite and surface dipole for inverted perovskite solar modules. eScience 4(6), 100308 (2024). https://doi.org/10.1016/j.esci.2024.100308
Y. Wang, Z. Chen, F. Deschler, X. Sun, T.-M. Lu et al., Epitaxial halide perovskite lateral double heterostructure. ACS Nano 11(3), 3355–3364 (2017). https://doi.org/10.1021/acsnano.7b00724
P. Du, J. Li, L. Wang, L. Sun, X. Wang et al., Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nat. Commun. 12(1), 4751 (2021). https://doi.org/10.1038/s41467-021-25093-6
X. Li, W. Ma, D. Liang, W. Cai, S. Zhao et al., High-performance CsPbBr3@Cs4PbBr6/SiO2 nanocrystals via double coating layers for white light emission and visible light communication. eScience 2(6), 646–654 (2022). https://doi.org/10.1016/j.esci.2022.10.005
P. Liu, Y. Xu, B. Li, Y. Zhang, H. Lian et al., Structural engineering of BaWO4/CsPbX3/CsPb2X5 (X = Cl, Br, I) heterostructures towards ultrastable and tunable photoluminescence. Nano Res. 17(3), 1636–1645 (2024). https://doi.org/10.1007/s12274-023-5922-5
Y. Liu, Z. Li, J. Xu, Y. Dong, B. Chen et al., Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes. J. Am. Chem. Soc. 144(9), 4009–4016 (2022). https://doi.org/10.1021/jacs.1c12556
P.C. Sercel, J.L. Lyons, D. Wickramaratne, R. Vaxenburg, N. Bernstein et al., Exciton fine structure in perovskite nanocrystals. Nano Lett. 19(6), 4068–4077 (2019). https://doi.org/10.1021/acs.nanolett.9b01467
P. Pang, Z. Xing, J. Xia, B. Wang, Z. Zhang et al., Deep-blue light-emitting diodes constructed with perovskite quasi-2D and nanocrystal mixtures. Adv. Opt. Mater. 10(20), 2201112 (2022). https://doi.org/10.1002/adom.202201112
Z. Xing, G. Jin, Q. Du, P. Pang, T. Liu et al., Ions-induced assembly of perovskite nanocomposites for highly efficient light-emitting diodes with EQE exceeding 30%. Adv. Mater. 36(46), 2406706 (2024). https://doi.org/10.1002/adma.202406706
Q. Zhang, D. Zhang, Z. Liao, Y.B. Cao, M. Kumar et al., Perovskite light-emitting diodes with quantum wires and nanorods. Adv. Mater. 37(23), 2405418 (2025). https://doi.org/10.1002/adma.202405418
L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao et al., Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666–12731 (2015). https://doi.org/10.1021/acs.chemrev.5b00098
Z. Zhou, H.W. Qiao, Y. Hou, H.G. Yang, S. Yang, Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14(1), 127–157 (2021). https://doi.org/10.1039/d0ee02902e
J.Y. Park, Y.H. Lee, M.A. Zaman Mamun, M.M. Fahimul Islam, S. Zhang et al., Electrically induced directional ion migration in two-dimensional perovskite heterostructures. Matter 7(5), 1817–1832 (2024). https://doi.org/10.1016/j.matt.2024.03.005
C.P. Clark, J.E. Mann, J.S. Bangsund, W.-J. Hsu, E.S. Aydil et al., Formation of stable metal halide perovskite/perovskite heterojunctions. ACS Energy Lett. 5(11), 3443–3451 (2020). https://doi.org/10.1021/acsenergylett.0c01609
W. Zhu, S. Wang, X. Zhang, A. Wang, C. Wu et al., Ion migration in organic–inorganic hybrid perovskite solar cells: current understanding and perspectives. Small 18(15), 2105783 (2022). https://doi.org/10.1002/smll.202105783
N. Li, Y. Jia, Y. Guo, N. Zhao, Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv. Mater. 34(19), e2108102 (2022). https://doi.org/10.1002/adma.202108102
L. Zhang, Y. Jiang, Y. Feng, M. Cui, S. Li et al., Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 62(21), e202302184 (2023). https://doi.org/10.1002/anie.202302184
G. Sarkar, P. Deswal, D. Ghosh, Ion diffusion dynamics and halogen mixing at the heterojunction of halide perovskites: atomistic insights. J. Phys. Chem. C 128(4), 1762–1772 (2024). https://doi.org/10.1021/acs.jpcc.3c06329
D.-J. Xue, Y. Hou, S.-C. Liu, M. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
M.P. Hautzinger, E.K. Raulerson, S.P. Harvey, T. Liu, D. Duke et al., Metal halide perovskite heterostructures: blocking anion diffusion with single-layer graphene. J. Am. Chem. Soc. 145(4), 2052–2057 (2023). https://doi.org/10.1021/jacs.2c12441
S.-H. Chin, L. Mardegan, F. Palazon, M. Sessolo, H.J. Bolink, Dimensionality controls anion intermixing in electroluminescent perovskite heterojunctions. ACS Photonics 9(7), 2483–2488 (2022). https://doi.org/10.1021/acsphotonics.2c00604
Z. Hu, X. Liu, P.L. Hernández-Martínez, S. Zhang, P. Gu et al., Interfacial charge and energy transfer in van der Waals heterojunctions. InfoMat 4(3), e12290 (2022). https://doi.org/10.1002/inf2.12290
C. Lin, Y. Tang, W. Xu, P. Kumar, L. Dou, Charge transfer in 2D halide perovskites and 2D/3D heterostructures. ACS Energy Lett. 9(8), 3877–3886 (2024). https://doi.org/10.1021/acsenergylett.4c01530
Z. Han, Y. Song, Y. Jia, Y. Wang, J. Shi et al., Classification and characterization methods for heterojunctions. Adv. Mater. Interfaces 12(15), 2500191 (2025). https://doi.org/10.1002/admi.202500191
J.T. DuBose, P.V. Kamat, Energy versus electron transfer: managing excited-state interactions in perovskite nanocrystal–molecular hybrids. Chem. Rev. 122(15), 12475–12494 (2022). https://doi.org/10.1021/acs.chemrev.2c00172
L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong et al., Efficient energy funneling in quasi-2D perovskites: from light emission to lasing. Adv. Mater. 32(16), 1906571 (2020). https://doi.org/10.1002/adma.201906571
Y. Song, C. Zhang, W. Liu, X. Li, H. Long et al., High-efficiency energy transfer in perovskite heterostructures. Opt. Express 26(14), 18448–18456 (2018). https://doi.org/10.1364/OE.26.018448
X. Chen, P.V. Kamat, C. Janáky, G.F. Samu, Charge transfer kinetics in halide perovskites: on the constraints of time-resolved spectroscopy measurements. ACS Energy Lett. 9(6), 3187–3203 (2024). https://doi.org/10.1021/acsenergylett.4c00736
S. Deng, J.M. Snaider, Y. Gao, E. Shi, L. Jin et al., Long-lived charge separation in two-dimensional ligand-perovskite heterostructures. J. Chem. Phys. 152(4), 044711 (2020). https://doi.org/10.1063/1.5131801
N.T. Shewmon, H. Yu, I. Constantinou, E. Klump, F. So, Formation of perovskite heterostructures by ion exchange. ACS Appl. Mater. Interfaces 8(48), 33273–33279 (2016). https://doi.org/10.1021/acsami.6b10034
Y. Lei, Y. Chen, R. Zhang, Y. Li, Q. Yan et al., A fabrication process for flexible single-crystal perovskite devices. Nature 583(7818), 790–795 (2020). https://doi.org/10.1038/s41586-020-2526-z
L. Ye, Y. Gao, Y. Feng, X. Zhu, Z. Ma et al., Suppressing interlayer ion migration in CsPbX3 nanocrystal films for realizing efficient and stable electroluminescence. Adv. Mater. 37(33), 2505214 (2025). https://doi.org/10.1002/adma.202505214
Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang et al., High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Adv. Mater. 33(2), 2001367 (2021). https://doi.org/10.1002/adma.202001367
B. Zhang, X. Wu, S. Zhou, G. Liang, Q. Hu, Self-trapped exciton emission in inorganic copper(I) metal halides. Front. Optoelectron. 14(4), 459–472 (2021). https://doi.org/10.1007/s12200-021-1133-4
W. Zhang, Z. Chu, J. Jiang, S. Zhang, H. Hao et al., High-performance white emission from Cu-based perovskite compound. Adv. Opt. Mater. 12(18), 2400092 (2024). https://doi.org/10.1002/adom.202400092
J. Chen, J. Wang, X. Xu, J. Li, J. Song et al., Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 15(3), 238–244 (2021). https://doi.org/10.1038/s41566-020-00743-1
Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11(2), 108–115 (2017). https://doi.org/10.1038/nphoton.2016.269
J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei et al., High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10(1), 61 (2021). https://doi.org/10.1038/s41377-021-00501-0
D. Zhang, J. Liu, X. Duan, K. Chen, B. Yu et al., Efficient deep-red perovskite light-emitting diodes based on a vertical 3D/2D perovskite heterojunction. Adv. Funct. Mater. 34(39), 2403874 (2024). https://doi.org/10.1002/adfm.202403874
K. Zhang, Z. Su, Y. Shen, L.-X. Cao, X.-Y. Zeng et al., Top-down exfoliation process constructing 2D/3D heterojunction toward ultrapure blue perovskite light-emitting diodes. ACS Nano 18(5), 4570–4578 (2024). https://doi.org/10.1021/acsnano.3c12433
S.-D. Baek, W. Shao, W. Feng, Y. Tang, Y.H. Lee et al., Grain engineering for efficient near-infrared perovskite light-emitting diodes. Nat. Commun. 15, 10760 (2024). https://doi.org/10.1038/s41467-024-55075-3
Z. Zhu, C. Zhu, L. Yang, Q. Chen, L. Zhang et al., Room-temperature epitaxial welding of 3D and 2D perovskites. Nat. Mater. 21(9), 1042–1049 (2022). https://doi.org/10.1038/s41563-022-01311-4
H. Min, N. Wang, N. Chen, Y. Tong, Y. Wang et al., Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes. Nat. Nanotechnol. 19(5), 632–637 (2024). https://doi.org/10.1038/s41565-023-01588-9
S. Ye, Y. Chen, H. Wu, H. Lang, H. Wang et al., Heterodimensional epitaxy of CsSnI3 microcrystalline cubes for bright and efficient near-infrared light-emitting diode. Adv. Mater. (2025). https://doi.org/10.1002/adma.202512927
Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz et al., Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017). https://doi.org/10.1038/nenergy.2017.135
C. Luo, G. Zheng, F. Gao, X. Wang, Y. Zhao et al., Facet orientation tailoring via 2D-seed- induced growth enables highly efficient and stable perovskite solar cells. Joule 6(1), 240–257 (2022). https://doi.org/10.1016/j.joule.2021.12.006
I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko et al., CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10(19), 3746–3749 (2017). https://doi.org/10.1002/cssc.201701131
X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng et al., All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 26(25), 4595–4600 (2016). https://doi.org/10.1002/adfm.201600958
J. Lv, L. Fang, J. Shen, Synthesis of highly luminescent CsPb2Br5 nanoplatelets and their application for light-emitting diodes. Mater. Lett. 211, 199–202 (2018). https://doi.org/10.1016/j.matlet.2017.09.106
S.K. Balakrishnan, P.V. Kamat, Ligand assisted transformation of cubic CsPbBr3 nanocrystals into two-dimensional CsPb2Br5 nanosheets. Chem. Mater. 30(1), 74–78 (2018). https://doi.org/10.1021/acs.chemmater.7b04142
B.-S. Zhu, H.-Z. Li, J. Ge, H.-D. Li, Y.-C. Yin et al., Room temperature precipitated dual phase CsPbBr3–CsPb2Br5 nanocrystals for stable perovskite light emitting diodes. Nanoscale 10(41), 19262–19271 (2018). https://doi.org/10.1039/C8NR06879H
L. Wang, D. Ma, C. Guo, X. Jiang, M. Li et al., CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 543, 148782 (2021). https://doi.org/10.1016/j.apsusc.2020.148782
Y. Wang, S. Jin, S. Jiang, S. Zhai, L. Liu et al., CsPb2Br5 plates/quasi-2D perovskite heterojunction for efficient sky-blue light-emitting diodes. ACS Appl. Mater. Interfaces 16(42), 57355–57364 (2024). https://doi.org/10.1021/acsami.4c11568
C. Abia, C.A. López, J. Gainza, J.E.F.S. Rodrigues, B. Fragoso et al., Structural features and optical properties of all-inorganic zero-dimensional halides Cs4PbBr6–xIx obtained by mechanochemistry. ACS Appl. Mater. Interfaces 15(34), 40762–40771 (2023). https://doi.org/10.1021/acsami.3c07707
Y. Ke, J. Guo, D. Kong, J. Wang, G. Kusch et al., Efficient and bright deep-red light-emitting diodes based on a lateral 0D/3D perovskite heterostructure. Adv. Mater. 36(20), e2207301 (2024). https://doi.org/10.1002/adma.202207301
O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12(5), 445–451 (2013). https://doi.org/10.1038/nmat3539
Z. Ning, X. Gong, R. Comin, G. Walters, F. Fan et al., Quantum-dot-in-perovskite solids. Nature 523(7560), 324–328 (2015). https://doi.org/10.1038/nature14563
Y. Liu, Y. Dong, T. Zhu, D. Ma, A. Proppe et al., Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143(38), 15606–15615 (2021). https://doi.org/10.1021/jacs.1c02148
X. Gong, X. Hao, J. Si, Y. Deng, K. An et al., High-performance all-inorganic architecture perovskite light-emitting diodes based on tens-of-nanometers-sized CsPbBr3 emitters in a carrier-confined heterostructure. ACS Nano 18(12), 8673–8682 (2024). https://doi.org/10.1021/acsnano.3c09004
N. Meng, Y. Li, X. Shi, Z. Wang, J. Liu et al., Fully thermal-evaporated perovskite light-emitting diodes with brightness exceeding 240 000 nits. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202510484
Z. Xia, J. Jiang, A. Wang, D. An, Z. Li et al., Overall performance improvement of perovskite green LEDs by CsPbBr3&Cs4PbBr6 nanocrystals and molecular doping. Adv. Mater. 37(34), 2506187 (2025). https://doi.org/10.1002/adma.202506187
H.-H. Li, Y. Wang, Z.-S. Liu, F. Zhao, Y.-K. Wang et al., Hybrid-dimensional heterostructure enables efficient near-infrared perovskite quantum dot light-emitting diodes. ACS Nano 19(28), 25930–25938 (2025). https://doi.org/10.1021/acsnano.5c05939
X.Y. Chin, A. Perumal, A. Bruno, N. Yantara, S.A. Veldhuis et al., Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade. Energy Environ. Sci. 11(7), 1770–1778 (2018). https://doi.org/10.1039/C8EE00293B
K. Wei, T. Zhou, Y. Jiang, C. Sun, Y. Liu et al., Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature 638(8052), 949–956 (2025). https://doi.org/10.1038/s41586-024-08503-9
M. Xia, T. Wang, Y. Lu, Y. Li, B. Li et al., Kinetic Wulff-shaped heteroepitaxy of phase-pure 2D perovskite heterostructures with deterministic slab thickness. Nat. Synth. 4(3), 380–390 (2025). https://doi.org/10.1038/s44160-024-00692-5
E. Shi, B. Yuan, S.B. Shiring, Y. Gao, Akriti et al., Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580(7805), 614–620 (2020). https://doi.org/10.1038/s41586-020-2219-7
B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna et al., High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12(12), 783–789 (2018). https://doi.org/10.1038/s41566-018-0283-4
C. Rossi, R. Scarfiello, R. Brescia, L. Goldoni, G. Caputo et al., Exploiting the transformative features of metal halides for the synthesis of CsPbBr3@SiO2 core–shell nanocrystals. Chem. Mater. 34(1), 405–413 (2022). https://doi.org/10.1021/acs.chemmater.1c03749
G.H. Ahmed, J. Yin, O.M. Bakr, O.F. Mohammed, Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett. 6(4), 1340–1357 (2021). https://doi.org/10.1021/acsenergylett.1c00076
C. Zhang, S. Wang, X. Li, M. Yuan, L. Turyanska et al., Core/shell perovskite nanocrystals: synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications. Adv. Funct. Mater. 30(31), 1910582 (2020). https://doi.org/10.1002/adfm.201910582
J. Ye, D. Gaur, C. Mi, Z. Chen, I.L. Fernández et al., Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem. Soc. Rev. 53(16), 8095–8122 (2024). https://doi.org/10.1039/d4cs00077c
Y. Feng, H. Li, M. Zhu, Y. Gao, Q. Cai et al., Nucleophilic reaction-enabled chloride modification on CsPbI3 quantum dots for pure red light-emitting diodes with efficiency exceeding 26%. Angew. Chem. Int. Ed. 63(11), e202318777 (2024). https://doi.org/10.1002/anie.202318777
Y.-H. Song, B. Li, Z.-J. Wang, X.-L. Tai, G.-J. Ding et al., Intragrain 3D perovskite heterostructure for high-performance pure-red perovskite LEDs. Nature 641(8062), 352–357 (2025). https://doi.org/10.1038/s41586-025-08867-6
W. Xu, J. Liu, B. Dong, J. Huang, H. Shi et al., Atomic-scale imaging of ytterbium ions in lead halide perovskites. Sci. Adv. 9(35), eadi7931 (2023). https://doi.org/10.1126/sciadv.adi7931
S. Sidhik, Y. Wang, M. De Siena, R. Asadpour, A.J. Torma et al., Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377(6613), 1425–1430 (2022). https://doi.org/10.1126/science.abq7652
M.-Y. Kuo, N. Spitha, M.P. Hautzinger, P.-L. Hsieh, J. Li et al., Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J. Am. Chem. Soc. 143(13), 4969–4978 (2021). https://doi.org/10.1021/jacs.0c10000
R. Quintero-Bermudez, A.H. Proppe, A. Mahata, P. Todorović́, S.O. Kelley et al., Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites. J. Am. Chem. Soc. 141(34), 13459–13467 (2019). https://doi.org/10.1021/jacs.9b04801
X. Xu, X. Wang, Perovskite nano-heterojunctions: synthesis, structures, properties, challenges, and prospects. Small Struct. 1(1), 2000009 (2020). https://doi.org/10.1002/sstr.202000009
X. Huang, Q. Xiong, Z. Su, J. Zhou, F. Cao et al., Orthogonal solvent approach in dimensionality-heterointerface perovskite photovoltaics. ACS Energy Lett. 10(2), 982–990 (2025). https://doi.org/10.1021/acsenergylett.4c03263
M. Yuan, J. Feng, H. Li, H. Gao, Y. Qiu et al., Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays. Nat. Nanotechnol. 20(3), 381–387 (2025). https://doi.org/10.1038/s41565-024-01841-9
Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen et al., Mass transfer printing of metal-halide perovskite films and nanostructures. Adv. Mater. 34(35), e2203529 (2022). https://doi.org/10.1002/adma.202203529
J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park et al., Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614(7946), 81–87 (2023). https://doi.org/10.1038/s41586-022-05612-1
Y. Ren, Z. Wang, Y. Wang, W. Wang, L. Feng et al., Halide perovskite lateral heterostructures for energy routing based photonic applications. Adv. Opt. Mater. 8(24), 2001347 (2020). https://doi.org/10.1002/adom.202001347
Y.-H. Kim, Y. Zhai, H. Lu, X. Pan, C. Xiao et al., Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371(6534), 1129–1133 (2021). https://doi.org/10.1126/science.abf5291
P. Odenthal, W. Talmadge, N. Gundlach, R. Wang, C. Zhang et al., Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13(9), 894–899 (2017). https://doi.org/10.1038/nphys4145
W. Zhao, R. Su, Y. Huang, J. Wu, C.F. Fong et al., Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites. Nat. Commun. 11(1), 5665 (2020). https://doi.org/10.1038/s41467-020-19471-9
Y. Xu, J. Li, W. Xu, X. Fan, S. Yang et al., Elucidating interfacial carrier transfer dynamics for circularly polarized emission in self-assembled perovskite heterostructures. ACS Nano 19(15), 15030–15039 (2025). https://doi.org/10.1021/acsnano.5c01450