Ultrafast Sulfur Redox Dynamics Enabled by a PPy@N-TiO2 Z-Scheme Heterojunction Photoelectrode for Photo-Assisted Lithium–Sulfur Batteries
Corresponding Author: Yibo He
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 92
Abstract
Photo-assisted lithium–sulfur batteries (PALSBs) offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs. However, designing an efficient photoelectrode for practical implementation remains a significant challenge. Herein, we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs. Specifically, polypyrrole (PPy) is in situ vapor-phase polymerized on the surface of N-doped TiO2 nanorods supported on carbon cloth (N-TiO2/CC), thereby forming a well-defined p–n heterojunction. This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field. Thus, the PPy@N-TiO2/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur, enabling ultrafast sulfur redox dynamics, as convincingly validated by both theoretical simulations and experimental results. Consequently, the PPy@N-TiO2/CC PALSB achieves a high discharge capacity of 1653 mAh g−1, reaching 98.7% of the theoretical value. Furthermore, 5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1, achieving dual-mode energy harvesting capabilities. This work successfully integrates solar energy conversion and storage within a rechargeable battery system, providing a promising strategy for sustainable energy storage technologies.
Highlights:
1 A novel polymer–inorganic hybrid photoelectrode (PPy@N-TiO2/CC) with a Z-scheme heterostructure was first constructed for high-efficiency photo-assisted lithium–sulfur battery (PALSB).
2 PPy@N-TiO2/CC acts not only as a photocatalyst to accelerate sulfur redox reductions through photocatalytic, photoconductive, and photo-charge effects, but also as an electrocatalyst to facilitate intermediate polysulfide conversion.
3 PALSB achieves an ultrahigh discharge capacity of 1653 mAh g−1 and dual-mode energy harvesting: 5 h of photo-charging delivers a discharge capacity of 333 mAh g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Yang, K. Zhang, Y. Zuo, J. Song, Y. Yang et al., Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries. Nat. Sustain. 7(9), 1204–1214 (2024). https://doi.org/10.1038/s41893-024-01402-x
- L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
- K. Yang, F. Zhao, J. Li, H. Yang, Y. Wang et al., Designing organic–inorganic hybrid materials to construct a complementary interface with versatility for Li–S batteries. Adv. Funct. Mater. 34(51), 2410236 (2024). https://doi.org/10.1002/adfm.202410236
- K. Yang, F. Zhao, C. Li, S. Zhou, J. Li et al., Developing a one-pot strategy to synthesize metal–covalent organic frameworks as catalysts for polysulfide conversion and ion calibrators for lithium deposition. Adv. Funct. Mater. 35(26), 2501980 (2025). https://doi.org/10.1002/adfm.202501980
- W. Jiang, T. Zhang, R. Mao, Z. Song, S. Liu et al., An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries. eScience 4(3), 100203 (2024). https://doi.org/10.1016/j.esci.2023.100203
- Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16(1), 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
- X. Kang, T. He, H. Dang, X. Li, Y. Wang et al., Designing amino functionalized titanium-organic framework on separators toward sieving and redistribution of polysulfides in lithium-sulfur batteries. Nano-Micro Lett. 17(1), 277 (2025). https://doi.org/10.1007/s40820-025-01733-0
- C.Y. Zhang, J. Yu, C. Huang, G. Sun, L. Balcells et al., Metal doping activation of anion-mediated electron transfer in catalytic reactions. J. Am. Chem. Soc. 147(8), 7070–7082 (2025). https://doi.org/10.1021/jacs.4c18236
- B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang et al., Recent advances in rare earth compounds for lithium–sulfur batteries. eScience 4(3), 100180 (2024). https://doi.org/10.1016/j.esci.2023.100180
- J. Wu, B. Zhang, Z. Zhao, Y. Hou, Y. Wang et al., Breaking boundaries: advancing trisulfur radical-mediated catalysis for high-performance lithium-sulfur batteries. Nano-Micro Lett. 17(1), 213 (2025). https://doi.org/10.1007/s40820-025-01710-7
- L. Nie, Y. Li, X. Wu, M. Zhang, X. Wu et al., Scalable ultrathin solid electrolyte from recycled Antheraea pernyi silk with regulated ion transport for solid-state Li–S batteries. eScience 5(4), 100395 (2025). https://doi.org/10.1016/j.esci.2025.100395
- W. Wang, Y.-C. Lu, External field–assisted batteries toward performance improvement. SusMat 3(2), 146–159 (2023). https://doi.org/10.1002/sus2.119
- A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32(14), 1907516 (2020). https://doi.org/10.1002/adma.201907516
- C.Y. Zhang, L. Gong, C. Zhang, X. Cheng, L. Balcells et al., Sodium-sulfur batteries with unprecedented capacity, cycling stability and operation temperature range enabled by a CoFe2O4 catalytic additive under an external magnetic field. Adv. Funct. Mater. 33(48), 2305908 (2023). https://doi.org/10.1002/adfm.202305908
- C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61(49), e202211570 (2022). https://doi.org/10.1002/anie.202211570
- Z. Ma, S. Wang, Z. Ma, J. Li, L. Zhao et al., Efficient and stable photoassisted lithium-ion battery enabled by photocathode with synergistically boosted carriers dynamics. Nano-Micro Lett. 17(1), 74 (2024). https://doi.org/10.1007/s40820-024-01570-7
- T. Wu, Z. Liu, H. Lin, P. Gao, W. Shen, Free-standing ultrathin silicon wafers and solar cells through edges reinforcement. Nat. Commun. 15(1), 3843 (2024). https://doi.org/10.1038/s41467-024-48290-5
- B.D. Boruah, B. Wen, M. De Volder, Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 21(8), 3527–3532 (2021). https://doi.org/10.1021/acs.nanolett.1c00298
- B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13(8), 2414–2421 (2020). https://doi.org/10.1039/d0ee01392g
- L. Li, F. Ma, C. Jia, Q. Li, X. He et al., Size-controlled boron-based bifunctional photocathodes for high-efficiency photo-assisted Li-O2 batteries. Adv. Sci. 10(22), 2301682 (2023). https://doi.org/10.1002/advs.202301682
- D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li-CO(2) battery working at an ultra-wide operation temperature. ACS Nano 16(8), 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
- N. Li, Y. Wang, D. Tang, H. Zhou, Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54(32), 9271–9274 (2015). https://doi.org/10.1002/anie.201503425
- Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
- T. Yang, H. Mao, Q. Zhang, C. Xu, Q. Gao et al., Complementary weaknesses: a win-win approach for rGO/CdS to improve the energy conversion performance of integrated photorechargeable Li−S batteries. Angew. Chem. Int. Ed. 63(22), e202403022 (2024). https://doi.org/10.1002/anie.202403022
- J. Li, C. Ren, L. Zhang, W. Jiang, H. Liu et al., Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery. J. Energy Chem. 65, 205–209 (2022). https://doi.org/10.1016/j.jechem.2021.05.044
- Y. Qu, X. He, J. Hu, L. Duan, J. Wang et al., Three-electrode in mono-electrolyte for integrated photo-assisted lithium sulfur battery. J. Power. Sources 555, 232374 (2023). https://doi.org/10.1016/j.jpowsour.2022.232374
- T.-T. Li, Y.-B. Yang, B.-S. Zhao, Y. Wu, X.-W. Wu et al., Photo-rechargeable all-solid-state lithium − sulfur batteries based on perovskite indoor photovoltaic modules. Chem. Eng. J. 455, 140684 (2023). https://doi.org/10.1016/j.cej.2022.140684
- P. Chen, G.-R. Li, T.-T. Li, X.-P. Gao, Solar-driven rechargeable lithium–sulfur battery. Adv. Sci. 6(15), 1900620 (2019). https://doi.org/10.1002/advs.201900620
- Y. Liu, F. Wu, Z. Hu, F. Zhang, K. Wang et al., Regulating sulfur redox kinetics by coupling photocatalysis for high-performance photo-assisted lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(25), e202402624 (2024). https://doi.org/10.1002/anie.202402624
- J.-Y. Wu, Y. Wang, L.-N. Song, Y.-F. Wang, X.-X. Wang et al., Coordination defect-induced lewis pairs in metal−organic frameworks boosted sulfur kinetics for bifunctional photo-assisted Li−S batteries. Adv. Funct. Mater. 34(41), 2404211 (2024). https://doi.org/10.1002/adfm.202404211
- S. Yi, Z. Su, H. Chen, Z. Zhao, X. Wang et al., Bi/Bi2O3/TiO2 heterojunction photocathode for high-efficiency visible-light-driven lithium-sulfur batteries: advancing light harvesting and polysulfide conversion. Appl. Catal. B Environ. Energy 348, 123853 (2024). https://doi.org/10.1016/j.apcatb.2024.123853
- Y.-H. Liu, C.-Y. Yang, C.-Y. Yu, J.-C. Yu, M.-C. Han et al., Synergistic coupling of optical field and built-in electric field for lithium-sulfur batteries with high cyclabilities and energy densities. Next Energy 4, 100134 (2024). https://doi.org/10.1016/j.nxener.2024.100134
- F. Zhao, K. Yang, Y. Liu, J. Li, C. Li et al., Developing a multifunctional cathode for photoassisted lithium-sulfur battery. Adv. Sci. 11(35), 2402978 (2024). https://doi.org/10.1002/advs.202402978
- R. Ghosh, A. Baut, G. Belleri, M. Kappl, H.-J. Butt et al., Photocatalytically reactive surfaces for simultaneous water harvesting and treatment. Nat. Sustain. 6(12), 1663–1672 (2023). https://doi.org/10.1038/s41893-023-01159-9
- M. Duflot, C. Marchal, V. Artero, K.C. Christoforidis, V. Keller, Modulation of NH2-UiO-66 based MOFs for gas phase CO2 photocatalytic reduction. Adv. Energy Mater. 15(24), 2500104 (2025). https://doi.org/10.1002/aenm.202500104
- A. Shu, C. Qin, M. Li, L. Zhao, Z. Shangguan et al., Electric effects reinforce charge carrier behaviour for photocatalysis. Energy Environ. Sci. 17(14), 4907–4928 (2024). https://doi.org/10.1039/d4ee01379d
- G. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu et al., A layered Bi2Te3@PPy cathode for aqueous zinc-ion batteries: mechanism and application in printed flexible batteries. Adv. Mater. 36(1), 2305128 (2024). https://doi.org/10.1002/adma.202305128
- T. Liu, L. Chen, X. Wang, Y. Huang, M. Wang et al., Polypyrrole-coated V2O5 nanobelts arrays on carbon cloth for high performance zinc energy storage. Electrochim. Acta 441, 141806 (2023). https://doi.org/10.1016/j.electacta.2022.141806
- Y. Wu, W. Yuan, P. Wang, X. Wu, J. Chen et al., Conformal engineering of both electrodes toward high-performance flexible quasi-solid-state Zn-ion micro-supercapacitors. Adv. Sci. 11(24), 2308021 (2024). https://doi.org/10.1002/advs.202308021
- X. Sun, X. Lv, M. Zhang, K. Shi, Z. Li et al., Construction of selective ion transport polymer at anode–electrolyte interface for stable aqueous zinc-ion batteries. ACS Nano 18(11), 8452–8462 (2024). https://doi.org/10.1021/acsnano.3c13127
- A.L. Mohamed, M.E. El-Naggar, A.G. Hassabo, Preparation of hybrid nanops to enhance the electrical conductivity and performance properties of cotton fabrics. J. Mater. Res. Technol. 12, 542–554 (2021). https://doi.org/10.1016/j.jmrt.2021.02.035
- N. Luhakhra, S.K. Tiwari, Evidence of charge transfer across the organic-inorganic hetero-junction based visible light driven photo-catalyst. Colloids Surf. A, Physicochem. Eng. Aspects 677, 132332 (2023). https://doi.org/10.1016/j.colsurfa.2023.132332
- X. Yuan, H. Remita, Conjugated polymer polypyrrole nanostructures: synthesis and photocatalytic applications. Top. Curr. Chem. 380(5), 32 (2022). https://doi.org/10.1007/s41061-022-00388-4
- X. Zhang, M. Gao, L. Tong, K. Cai, Polypyrrole/nylon membrane composite film for ultra-flexible all-solid supercapacitor. J. Materiomics 6(2), 339–347 (2020). https://doi.org/10.1016/j.jmat.2019.11.004
- M.B. González, O.V. Quinzani, M.E. Vela, A.A. Rubert, G. Benítez et al., Study of the electrosynthesis of hollow rectangular microtubes of polypyrrole. Synth. Met. 162(13–14), 1133–1139 (2012). https://doi.org/10.1016/j.synthmet.2012.05.013
- T. Wu, G. Sun, W. Lu, L. Zhao, A. Mauger et al., A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries. Electrochim. Acta 353, 136529 (2020). https://doi.org/10.1016/j.electacta.2020.136529
- Y. Liu, S. Ding, J. Xu, H. Zhang, S. Yang et al., Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chin. J. Catal. 38(6), 1052–1062 (2017). https://doi.org/10.1016/S1872-2067(17)62845-6
- M. Rakshit, S. Ghosal, D. Jana, D. Banerjee, Polypyrrole/tin sulfide hybrid nanocomposites as promising thermoelectric materials: a combined experimental and DFT study. ACS Appl. Energy Mater. 7(9), 3983–3995 (2024). https://doi.org/10.1021/acsaem.4c00271
- Q. Wang, S. Zheng, W. Ma, J. Qian, L. Huang et al., Facile synthesis of direct Z-scheme PPy/NH2-UiO-66 heterojunction for enhanced photocatalytic Cr(VI) reduction, industrial electroplating wastewater treatment, and tetracycline degradation. Appl. Catal. B Environ. Energy 344, 123669 (2024). https://doi.org/10.1016/j.apcatb.2023.123669
- R. Soni, J. Hu, J.B. Robinson, A.J.E. Rettie, T.S. Miller, Predicting cell failure and performance decline in lithium-sulfur batteries using distribution of relaxation times analysis. Cell Rep. Phys. Sci. 5(2), 101833 (2024). https://doi.org/10.1016/j.xcrp.2024.101833
- R. Soni, J.B. Robinson, P.R. Shearing, D.J.L. Brett, A.J.E. Rettie et al., Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 51, 97–107 (2022). https://doi.org/10.1016/j.ensm.2022.06.016
- Z. Guan, X. Chen, F. Chu, R. Deng, S. Wang et al., Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li–S conversion chemistry. Adv. Energy Mater. 13(45), 2302850 (2023). https://doi.org/10.1002/aenm.202302850
- Y. Xiao, S. Guo, Y. Xiang, D. Li, C. Zheng et al., Engineering configuration compatibility and electronic structure in axially assembled metal–organic framework nanowires for high-performance lithium sulfur batteries. ACS Energy Lett. 8(12), 5107–5115 (2023). https://doi.org/10.1021/acsenergylett.3c01698
- R. Chu, T.T. Nguyen, H. Song, Y. Bai, D.T. Tran et al., Enriched vacancies of ruthenium doped niobium oxide on hollow graphene sphere as sulfur reduction reaction promoter in lithium sulfur batteries. Appl. Catal. B Environ. Energy 352, 124030 (2024). https://doi.org/10.1016/j.apcatb.2024.124030
- S. Lang, S.-H. Yu, X. Feng, M.R. Krumov, H.D. Abruña, Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13(1), 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w
References
T. Yang, K. Zhang, Y. Zuo, J. Song, Y. Yang et al., Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries. Nat. Sustain. 7(9), 1204–1214 (2024). https://doi.org/10.1038/s41893-024-01402-x
L. Chen, G. Cao, Y. Li, G. Zu, R. Duan et al., A review on engineering transition metal compound catalysts to accelerate the redox kinetics of sulfur cathodes for lithium-sulfur batteries. Nano-Micro Lett. 16(1), 97 (2024). https://doi.org/10.1007/s40820-023-01299-9
K. Yang, F. Zhao, J. Li, H. Yang, Y. Wang et al., Designing organic–inorganic hybrid materials to construct a complementary interface with versatility for Li–S batteries. Adv. Funct. Mater. 34(51), 2410236 (2024). https://doi.org/10.1002/adfm.202410236
K. Yang, F. Zhao, C. Li, S. Zhou, J. Li et al., Developing a one-pot strategy to synthesize metal–covalent organic frameworks as catalysts for polysulfide conversion and ion calibrators for lithium deposition. Adv. Funct. Mater. 35(26), 2501980 (2025). https://doi.org/10.1002/adfm.202501980
W. Jiang, T. Zhang, R. Mao, Z. Song, S. Liu et al., An all-biomaterials-based aqueous binder based on adsorption redox-mediated synergism for advanced lithium–sulfur batteries. eScience 4(3), 100203 (2024). https://doi.org/10.1016/j.esci.2023.100203
Q. Gu, Y. Cao, J. Chen, Y. Qi, Z. Zhai et al., Fluorine-modulated MXene-derived catalysts for multiphase sulfur conversion in lithium-sulfur battery. Nano-Micro Lett. 16(1), 266 (2024). https://doi.org/10.1007/s40820-024-01482-6
X. Kang, T. He, H. Dang, X. Li, Y. Wang et al., Designing amino functionalized titanium-organic framework on separators toward sieving and redistribution of polysulfides in lithium-sulfur batteries. Nano-Micro Lett. 17(1), 277 (2025). https://doi.org/10.1007/s40820-025-01733-0
C.Y. Zhang, J. Yu, C. Huang, G. Sun, L. Balcells et al., Metal doping activation of anion-mediated electron transfer in catalytic reactions. J. Am. Chem. Soc. 147(8), 7070–7082 (2025). https://doi.org/10.1021/jacs.4c18236
B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang et al., Recent advances in rare earth compounds for lithium–sulfur batteries. eScience 4(3), 100180 (2024). https://doi.org/10.1016/j.esci.2023.100180
J. Wu, B. Zhang, Z. Zhao, Y. Hou, Y. Wang et al., Breaking boundaries: advancing trisulfur radical-mediated catalysis for high-performance lithium-sulfur batteries. Nano-Micro Lett. 17(1), 213 (2025). https://doi.org/10.1007/s40820-025-01710-7
L. Nie, Y. Li, X. Wu, M. Zhang, X. Wu et al., Scalable ultrathin solid electrolyte from recycled Antheraea pernyi silk with regulated ion transport for solid-state Li–S batteries. eScience 5(4), 100395 (2025). https://doi.org/10.1016/j.esci.2025.100395
W. Wang, Y.-C. Lu, External field–assisted batteries toward performance improvement. SusMat 3(2), 146–159 (2023). https://doi.org/10.1002/sus2.119
A. Huang, H. Liu, O. Manor, P. Liu, J. Friend, Enabling rapid charging lithium metal batteries via surface acoustic wave-driven electrolyte flow. Adv. Mater. 32(14), 1907516 (2020). https://doi.org/10.1002/adma.201907516
C.Y. Zhang, L. Gong, C. Zhang, X. Cheng, L. Balcells et al., Sodium-sulfur batteries with unprecedented capacity, cycling stability and operation temperature range enabled by a CoFe2O4 catalytic additive under an external magnetic field. Adv. Funct. Mater. 33(48), 2305908 (2023). https://doi.org/10.1002/adfm.202305908
C.Y. Zhang, C. Zhang, G.W. Sun, J.L. Pan, L. Gong et al., Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field. Angew. Chem. Int. Ed. 61(49), e202211570 (2022). https://doi.org/10.1002/anie.202211570
Z. Ma, S. Wang, Z. Ma, J. Li, L. Zhao et al., Efficient and stable photoassisted lithium-ion battery enabled by photocathode with synergistically boosted carriers dynamics. Nano-Micro Lett. 17(1), 74 (2024). https://doi.org/10.1007/s40820-024-01570-7
T. Wu, Z. Liu, H. Lin, P. Gao, W. Shen, Free-standing ultrathin silicon wafers and solar cells through edges reinforcement. Nat. Commun. 15(1), 3843 (2024). https://doi.org/10.1038/s41467-024-48290-5
B.D. Boruah, B. Wen, M. De Volder, Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 21(8), 3527–3532 (2021). https://doi.org/10.1021/acs.nanolett.1c00298
B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13(8), 2414–2421 (2020). https://doi.org/10.1039/d0ee01392g
L. Li, F. Ma, C. Jia, Q. Li, X. He et al., Size-controlled boron-based bifunctional photocathodes for high-efficiency photo-assisted Li-O2 batteries. Adv. Sci. 10(22), 2301682 (2023). https://doi.org/10.1002/advs.202301682
D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li-CO(2) battery working at an ultra-wide operation temperature. ACS Nano 16(8), 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
N. Li, Y. Wang, D. Tang, H. Zhou, Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54(32), 9271–9274 (2015). https://doi.org/10.1002/anie.201503425
Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
T. Yang, H. Mao, Q. Zhang, C. Xu, Q. Gao et al., Complementary weaknesses: a win-win approach for rGO/CdS to improve the energy conversion performance of integrated photorechargeable Li−S batteries. Angew. Chem. Int. Ed. 63(22), e202403022 (2024). https://doi.org/10.1002/anie.202403022
J. Li, C. Ren, L. Zhang, W. Jiang, H. Liu et al., Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery. J. Energy Chem. 65, 205–209 (2022). https://doi.org/10.1016/j.jechem.2021.05.044
Y. Qu, X. He, J. Hu, L. Duan, J. Wang et al., Three-electrode in mono-electrolyte for integrated photo-assisted lithium sulfur battery. J. Power. Sources 555, 232374 (2023). https://doi.org/10.1016/j.jpowsour.2022.232374
T.-T. Li, Y.-B. Yang, B.-S. Zhao, Y. Wu, X.-W. Wu et al., Photo-rechargeable all-solid-state lithium − sulfur batteries based on perovskite indoor photovoltaic modules. Chem. Eng. J. 455, 140684 (2023). https://doi.org/10.1016/j.cej.2022.140684
P. Chen, G.-R. Li, T.-T. Li, X.-P. Gao, Solar-driven rechargeable lithium–sulfur battery. Adv. Sci. 6(15), 1900620 (2019). https://doi.org/10.1002/advs.201900620
Y. Liu, F. Wu, Z. Hu, F. Zhang, K. Wang et al., Regulating sulfur redox kinetics by coupling photocatalysis for high-performance photo-assisted lithium-sulfur batteries. Angew. Chem. Int. Ed. 63(25), e202402624 (2024). https://doi.org/10.1002/anie.202402624
J.-Y. Wu, Y. Wang, L.-N. Song, Y.-F. Wang, X.-X. Wang et al., Coordination defect-induced lewis pairs in metal−organic frameworks boosted sulfur kinetics for bifunctional photo-assisted Li−S batteries. Adv. Funct. Mater. 34(41), 2404211 (2024). https://doi.org/10.1002/adfm.202404211
S. Yi, Z. Su, H. Chen, Z. Zhao, X. Wang et al., Bi/Bi2O3/TiO2 heterojunction photocathode for high-efficiency visible-light-driven lithium-sulfur batteries: advancing light harvesting and polysulfide conversion. Appl. Catal. B Environ. Energy 348, 123853 (2024). https://doi.org/10.1016/j.apcatb.2024.123853
Y.-H. Liu, C.-Y. Yang, C.-Y. Yu, J.-C. Yu, M.-C. Han et al., Synergistic coupling of optical field and built-in electric field for lithium-sulfur batteries with high cyclabilities and energy densities. Next Energy 4, 100134 (2024). https://doi.org/10.1016/j.nxener.2024.100134
F. Zhao, K. Yang, Y. Liu, J. Li, C. Li et al., Developing a multifunctional cathode for photoassisted lithium-sulfur battery. Adv. Sci. 11(35), 2402978 (2024). https://doi.org/10.1002/advs.202402978
R. Ghosh, A. Baut, G. Belleri, M. Kappl, H.-J. Butt et al., Photocatalytically reactive surfaces for simultaneous water harvesting and treatment. Nat. Sustain. 6(12), 1663–1672 (2023). https://doi.org/10.1038/s41893-023-01159-9
M. Duflot, C. Marchal, V. Artero, K.C. Christoforidis, V. Keller, Modulation of NH2-UiO-66 based MOFs for gas phase CO2 photocatalytic reduction. Adv. Energy Mater. 15(24), 2500104 (2025). https://doi.org/10.1002/aenm.202500104
A. Shu, C. Qin, M. Li, L. Zhao, Z. Shangguan et al., Electric effects reinforce charge carrier behaviour for photocatalysis. Energy Environ. Sci. 17(14), 4907–4928 (2024). https://doi.org/10.1039/d4ee01379d
G. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu et al., A layered Bi2Te3@PPy cathode for aqueous zinc-ion batteries: mechanism and application in printed flexible batteries. Adv. Mater. 36(1), 2305128 (2024). https://doi.org/10.1002/adma.202305128
T. Liu, L. Chen, X. Wang, Y. Huang, M. Wang et al., Polypyrrole-coated V2O5 nanobelts arrays on carbon cloth for high performance zinc energy storage. Electrochim. Acta 441, 141806 (2023). https://doi.org/10.1016/j.electacta.2022.141806
Y. Wu, W. Yuan, P. Wang, X. Wu, J. Chen et al., Conformal engineering of both electrodes toward high-performance flexible quasi-solid-state Zn-ion micro-supercapacitors. Adv. Sci. 11(24), 2308021 (2024). https://doi.org/10.1002/advs.202308021
X. Sun, X. Lv, M. Zhang, K. Shi, Z. Li et al., Construction of selective ion transport polymer at anode–electrolyte interface for stable aqueous zinc-ion batteries. ACS Nano 18(11), 8452–8462 (2024). https://doi.org/10.1021/acsnano.3c13127
A.L. Mohamed, M.E. El-Naggar, A.G. Hassabo, Preparation of hybrid nanops to enhance the electrical conductivity and performance properties of cotton fabrics. J. Mater. Res. Technol. 12, 542–554 (2021). https://doi.org/10.1016/j.jmrt.2021.02.035
N. Luhakhra, S.K. Tiwari, Evidence of charge transfer across the organic-inorganic hetero-junction based visible light driven photo-catalyst. Colloids Surf. A, Physicochem. Eng. Aspects 677, 132332 (2023). https://doi.org/10.1016/j.colsurfa.2023.132332
X. Yuan, H. Remita, Conjugated polymer polypyrrole nanostructures: synthesis and photocatalytic applications. Top. Curr. Chem. 380(5), 32 (2022). https://doi.org/10.1007/s41061-022-00388-4
X. Zhang, M. Gao, L. Tong, K. Cai, Polypyrrole/nylon membrane composite film for ultra-flexible all-solid supercapacitor. J. Materiomics 6(2), 339–347 (2020). https://doi.org/10.1016/j.jmat.2019.11.004
M.B. González, O.V. Quinzani, M.E. Vela, A.A. Rubert, G. Benítez et al., Study of the electrosynthesis of hollow rectangular microtubes of polypyrrole. Synth. Met. 162(13–14), 1133–1139 (2012). https://doi.org/10.1016/j.synthmet.2012.05.013
T. Wu, G. Sun, W. Lu, L. Zhao, A. Mauger et al., A polypyrrole/black-TiO2/S double-shelled composite fixing polysulfides for lithium-sulfur batteries. Electrochim. Acta 353, 136529 (2020). https://doi.org/10.1016/j.electacta.2020.136529
Y. Liu, S. Ding, J. Xu, H. Zhang, S. Yang et al., Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation. Chin. J. Catal. 38(6), 1052–1062 (2017). https://doi.org/10.1016/S1872-2067(17)62845-6
M. Rakshit, S. Ghosal, D. Jana, D. Banerjee, Polypyrrole/tin sulfide hybrid nanocomposites as promising thermoelectric materials: a combined experimental and DFT study. ACS Appl. Energy Mater. 7(9), 3983–3995 (2024). https://doi.org/10.1021/acsaem.4c00271
Q. Wang, S. Zheng, W. Ma, J. Qian, L. Huang et al., Facile synthesis of direct Z-scheme PPy/NH2-UiO-66 heterojunction for enhanced photocatalytic Cr(VI) reduction, industrial electroplating wastewater treatment, and tetracycline degradation. Appl. Catal. B Environ. Energy 344, 123669 (2024). https://doi.org/10.1016/j.apcatb.2023.123669
R. Soni, J. Hu, J.B. Robinson, A.J.E. Rettie, T.S. Miller, Predicting cell failure and performance decline in lithium-sulfur batteries using distribution of relaxation times analysis. Cell Rep. Phys. Sci. 5(2), 101833 (2024). https://doi.org/10.1016/j.xcrp.2024.101833
R. Soni, J.B. Robinson, P.R. Shearing, D.J.L. Brett, A.J.E. Rettie et al., Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage Mater. 51, 97–107 (2022). https://doi.org/10.1016/j.ensm.2022.06.016
Z. Guan, X. Chen, F. Chu, R. Deng, S. Wang et al., Low concentration electrolyte enabling anti-clustering of lithium polysulfides and 3D-growth of Li2S for low temperature Li–S conversion chemistry. Adv. Energy Mater. 13(45), 2302850 (2023). https://doi.org/10.1002/aenm.202302850
Y. Xiao, S. Guo, Y. Xiang, D. Li, C. Zheng et al., Engineering configuration compatibility and electronic structure in axially assembled metal–organic framework nanowires for high-performance lithium sulfur batteries. ACS Energy Lett. 8(12), 5107–5115 (2023). https://doi.org/10.1021/acsenergylett.3c01698
R. Chu, T.T. Nguyen, H. Song, Y. Bai, D.T. Tran et al., Enriched vacancies of ruthenium doped niobium oxide on hollow graphene sphere as sulfur reduction reaction promoter in lithium sulfur batteries. Appl. Catal. B Environ. Energy 352, 124030 (2024). https://doi.org/10.1016/j.apcatb.2024.124030
S. Lang, S.-H. Yu, X. Feng, M.R. Krumov, H.D. Abruña, Understanding the lithium-sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13(1), 4811 (2022). https://doi.org/10.1038/s41467-022-32139-w