Blade-Coated Porous 3D Carbon Composite Electrodes Coupled with Multiscale Interfaces for Highly Sensitive All-Paper Pressure Sensors
Corresponding Author: Xuqing Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 267
Abstract
Flexible and wearable pressure sensors hold immense promise for health monitoring, covering disease detection and postoperative rehabilitation. Developing pressure sensors with high sensitivity, wide detection range, and cost-effectiveness is paramount. By leveraging paper for its sustainability, biocompatibility, and inherent porous structure, herein, a solution-processed all-paper resistive pressure sensor is designed with outstanding performance. A ternary composite paste, comprising a compressible 3D carbon skeleton, conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), and cohesive carbon nanotubes, is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro- and nano-structured surface. Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper, this creates a multiscale hierarchical contact interface between electrodes, significantly enhancing sensitivity (1014 kPa−1) and expanding the detection range (up to 300 kPa) of as-resulted all-paper pressure sensor with low detection limit and power consumption. Its versatility ranges from subtle wrist pulses, robust finger taps, to large-area spatial force detection, highlighting its intricate submillimeter-micrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode. Ultimately, this all-paper resistive pressure sensor, with its superior sensing capabilities, large-scale fabrication potential, and cost-effectiveness, paves the way for next-generation wearable electronics, ushering in an era of advanced, sustainable technological solutions.
Highlights:
1 A blade-coated composite paste, composed of a compressible 3D carbon skeleton, PEDOT:PSS, and CNTs, can naturally dry to form a porous electrode on paper with a micro- and nano-structured surface.
2 The all-paper pressure sensor demonstrated an ultrahigh sensitivity of 1014 kPa−1, a wide responsive range up to 300 kPa, and an ultralow operating voltage of 0.01 V.
3 The sensor showcased superior detection capability, ranging from subtle wrist pulses and robust finger taps to large-area spatial force.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q.-J. Sun, X.-H. Zhao, Y. Zhou, C.-C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829
- L. Chen, M. Lu, H. Yang, J.R. Salas Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14, 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
- L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
- S. Baek, Y. Lee, J. Baek, J. Kwon, S. Kim et al., Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano 16, 368–377 (2022). https://doi.org/10.1021/acsnano.1c06695
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- R. Kaveti, J.H. Lee, J.K. Youn, T.-M. Jang, W.B. Han et al., Soft, long-lived, bioresorbable electronic surgical mesh with wireless pressure monitor and on-demand drug delivery. Adv. Mater. 36, 2307391 (2024). https://doi.org/10.1002/adma.202307391
- R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14, 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
- H. Wang, X. Dou, Z. Wang, Z. Liu, Q. Ye et al., Boosting sensitivity and durability of pressure sensors based on compressible Cu sponges by strengthening adhesion of “rigid-soft” interfaces. Small 19, 2303234 (2023). https://doi.org/10.1002/smll.202303234
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6, 4045 (2020). https://doi.org/10.1126/sciadv.abd4045
- B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
- S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30, 1907091 (2020). https://doi.org/10.1002/adfm.201907091
- Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- M. Ha, S. Lim, J. Park, D.-S. Um, Y. Lee et al., Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 25, 2841–2849 (2015). https://doi.org/10.1002/adfm.201500453
- Y. Zhang, T.-H. Chang, L. Jing, K. Li, H. Yang et al., Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Appl. Mater. Interfaces 12, 8392–8402 (2020). https://doi.org/10.1021/acsami.9b18879
- W. Lin, C. Wei, S. Yu, Z. Chen, C. Zhang et al., Programmable and ultrasensitive haptic interfaces enabling closed-loop human–machine interactions. Adv. Funct. Mater. 33, 2305919 (2023). https://doi.org/10.1002/adfm.202305919
- Y. Xu, Q. Fei, M. Page, G. Zhao, Y. Ling et al., Paper-based wearable electronics. iScience 24, 102736 (2021). https://doi.org/10.1016/j.isci.2021.102736
- Y. Zhang, T. Zhang, Z. Huang, J. Yang, A new class of electronic devices based on flexible porous substrates. Adv. Sci. 9, e2105084 (2022). https://doi.org/10.1002/advs.202105084
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- L. Yang, H. Wang, W. Yuan, Y. Li, P. Gao et al., Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 13, 60531–60543 (2021). https://doi.org/10.1021/acsami.1c22001
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible Poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- Z. Wang, J. Ding, R. Guo, Printable all-paper pressure sensors with high sensitivity and wide sensing range. ACS Appl. Mater. Interfaces 15, 4789–4798 (2023). https://doi.org/10.1021/acsami.2c19100
- S.Y. An, B.T. McAllister, E. Grignon, S. Evariste, D.S. Seferos, Increasing ionic conductivity in polymer electrodes using oxanorbornene. EcoMat 4, e12178 (2022). https://doi.org/10.1002/eom2.12178
- L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11, 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
- Z. Ren, H. Zhang, N. Liu, D. Lei, Q. Zhang et al., Self-powered 2D nanofluidic graphene pressure sensor with Serosa-Mimetic structure. EcoMat 5, e12299 (2023). https://doi.org/10.1002/eom2.12299
- S. Chen, Y. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12, 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
- R. Matsukawa, D. Kobayashi, H. Mitsui, T. Ikuno, Environment-friendly paper-based flexible pressure sensors with carbon nanotubes and liquid metal. Appl. Phys. Express 13, 027001 (2020). https://doi.org/10.7567/1882-0786/ab658b
- X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11, 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
- B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu et al., All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11, 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, 1801072 (2019). https://doi.org/10.1002/adma.201801072
- Z. Li, F. Chen, N. Zhu, L. Zhang, Z. Xie, Tip-enhanced sub-femtomolar steroid immunosensing via micropyramidal flexible conducting polymer electrodes for at-home monitoring of salivary sex hormones. ACS Nano 17, 21935–21946 (2023). https://doi.org/10.1021/acsnano.3c08315
- I. Muguet, A. Maziz, F. Mathieu, L. Mazenq, G. Larrieu, Combining PEDOT: PSS polymer coating with metallic 3D nanowires electrodes to achieve high electrochemical performances for neuronal interfacing applications. Adv. Mater. 35, e2302472 (2023). https://doi.org/10.1002/adma.202302472
- Z. Wang, M. Tian, J. Yu, J. Jiao, C. Yang et al., Recent advances of 3D compressible carbon assemblies: a review of synthesis, properties and applications in energy and environment. J. Environ. Chem. Eng. 9, 106269 (2021). https://doi.org/10.1016/j.jece.2021.106269
- A.G. El-Shamy, Review on the recent advance in PEDOT: PSS/Carbonic fillers based nanocomposite for flexible thermoelectric devices and sensors. Mater. Today Phys. 35, 101101 (2023). https://doi.org/10.1016/j.mtphys.2023.101101
- X. Xie, R. Guo, B. Yang, H. Li, F. Yang et al., Stencil-printed electrodes without current collectors and inactive additives on textiles for in-plane microsupercapacitors. J. Mater. Chem. A 9, 25042–25050 (2021). https://doi.org/10.1039/d1ta07302h
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
- R. Guo, Y. Yu, Z. Xie, X. Liu, X. Zhou et al., Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv. Mater. 25, 3343–3350 (2013). https://doi.org/10.1002/adma.201301184
- J. Li, J. Cao, B. Lu, G. Gu, 3D-printed PEDOT: PSS for soft robotics. Nat. Rev. Mater. 8, 604–622 (2023). https://doi.org/10.1038/s41578-023-00587-5
- W. Cheng, Y. Liu, Z. Tong, Y. Zhu, K. Cao et al., Micro-interfacial polymerization of porous PEDOT for printable electronic devices. EcoMat 5, e12288 (2023). https://doi.org/10.1002/eom2.12288
- T. Su, N. Liu, D. Lei, L. Wang, Z. Ren et al., Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16, 8461–8471 (2022). https://doi.org/10.1021/acsnano.2c03155
- Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
- M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
- S. Wang, X. Du, Y. Luo, S. Lin, M. Zhou et al., Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chem. Eng. J. 408, 127363 (2021). https://doi.org/10.1016/j.cej.2020.127363
- G. Tian, K. Xu, Y. Huang, X. You, W. Yu et al., An organic/inorganic coating strategy that greatly enhanced sensing performances and reliability of all-fabric piezoresistive sensors. J. Mater. Chem. A 11, 21333–21344 (2023). https://doi.org/10.1039/d3ta03415a
- J.V. Vaghasiya, C.C. Mayorga-Martinez, J. Vyskočil, M. Pumera, Black phosphorous-based human-machine communication interface. Nat. Commun. 14, 2 (2023). https://doi.org/10.1038/s41467-022-34482-4
- Z. Yang, H. Li, S. Zhang, X. Lai, X. Zeng, Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 425, 130462 (2021). https://doi.org/10.1016/j.cej.2021.130462
- M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9, 2200507 (2022). https://doi.org/10.1002/advs.202200507
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020). https://doi.org/10.1126/science.abc9735
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
- C. Ozsancak, P. Auzou, K. Dujardin, N. Quinn, A. Destée, Orofacial apraxia in corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy and Parkinson’s disease. J. Neurol. 251, 1317–1323 (2004). https://doi.org/10.1007/s00415-004-0530-0
- G. Khodabandelou, P.-G. Jung, Y. Amirat, S. Mohammed, Attention-based gated recurrent unit for gesture recognition. IEEE Trans. Autom. Sci. Eng. 18, 495–507 (2021). https://doi.org/10.1109/TASE.2020.3030852
- G. Tang, Q. Shi, Z. Zhang, T. He, Z. Sun et al., Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface. Nano Energy 81, 105582 (2021). https://doi.org/10.1016/j.nanoen.2020.105582
- S.-D. Wu, S.-H. Hsu, B. Ketelsen, S.C. Bittinger, H. Schlicke et al., Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications. Small Meth. 7, 2300170 (2023). https://doi.org/10.1002/smtd.202300170
References
Q.-J. Sun, X.-H. Zhao, Y. Zhou, C.-C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829
L. Chen, M. Lu, H. Yang, J.R. Salas Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14, 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
S. Baek, Y. Lee, J. Baek, J. Kwon, S. Kim et al., Spatiotemporal measurement of arterial pulse waves enabled by wearable active-matrix pressure sensor arrays. ACS Nano 16, 368–377 (2022). https://doi.org/10.1021/acsnano.1c06695
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
R. Kaveti, J.H. Lee, J.K. Youn, T.-M. Jang, W.B. Han et al., Soft, long-lived, bioresorbable electronic surgical mesh with wireless pressure monitor and on-demand drug delivery. Adv. Mater. 36, 2307391 (2024). https://doi.org/10.1002/adma.202307391
R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14, 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
H. Wang, X. Dou, Z. Wang, Z. Liu, Q. Ye et al., Boosting sensitivity and durability of pressure sensors based on compressible Cu sponges by strengthening adhesion of “rigid-soft” interfaces. Small 19, 2303234 (2023). https://doi.org/10.1002/smll.202303234
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci. Adv. 6, 4045 (2020). https://doi.org/10.1126/sciadv.abd4045
B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30, 1907091 (2020). https://doi.org/10.1002/adfm.201907091
Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
M. Ha, S. Lim, J. Park, D.-S. Um, Y. Lee et al., Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 25, 2841–2849 (2015). https://doi.org/10.1002/adfm.201500453
Y. Zhang, T.-H. Chang, L. Jing, K. Li, H. Yang et al., Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Appl. Mater. Interfaces 12, 8392–8402 (2020). https://doi.org/10.1021/acsami.9b18879
W. Lin, C. Wei, S. Yu, Z. Chen, C. Zhang et al., Programmable and ultrasensitive haptic interfaces enabling closed-loop human–machine interactions. Adv. Funct. Mater. 33, 2305919 (2023). https://doi.org/10.1002/adfm.202305919
Y. Xu, Q. Fei, M. Page, G. Zhao, Y. Ling et al., Paper-based wearable electronics. iScience 24, 102736 (2021). https://doi.org/10.1016/j.isci.2021.102736
Y. Zhang, T. Zhang, Z. Huang, J. Yang, A new class of electronic devices based on flexible porous substrates. Adv. Sci. 9, e2105084 (2022). https://doi.org/10.1002/advs.202105084
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14, 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
L. Yang, H. Wang, W. Yuan, Y. Li, P. Gao et al., Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 13, 60531–60543 (2021). https://doi.org/10.1021/acsami.1c22001
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible Poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13, 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
Z. Wang, J. Ding, R. Guo, Printable all-paper pressure sensors with high sensitivity and wide sensing range. ACS Appl. Mater. Interfaces 15, 4789–4798 (2023). https://doi.org/10.1021/acsami.2c19100
S.Y. An, B.T. McAllister, E. Grignon, S. Evariste, D.S. Seferos, Increasing ionic conductivity in polymer electrodes using oxanorbornene. EcoMat 4, e12178 (2022). https://doi.org/10.1002/eom2.12178
L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11, 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
Z. Ren, H. Zhang, N. Liu, D. Lei, Q. Zhang et al., Self-powered 2D nanofluidic graphene pressure sensor with Serosa-Mimetic structure. EcoMat 5, e12299 (2023). https://doi.org/10.1002/eom2.12299
S. Chen, Y. Wang, L. Yang, F. Karouta, K. Sun, Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 12, 136 (2020). https://doi.org/10.1007/s40820-020-00480-8
R. Matsukawa, D. Kobayashi, H. Mitsui, T. Ikuno, Environment-friendly paper-based flexible pressure sensors with carbon nanotubes and liquid metal. Appl. Phys. Express 13, 027001 (2020). https://doi.org/10.7567/1882-0786/ab658b
X. Sun, J. Sun, T. Li, S. Zheng, C. Wang et al., Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites. Nano-Micro Lett. 11, 57 (2019). https://doi.org/10.1007/s40820-019-0288-7
B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu et al., All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11, 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, 1801072 (2019). https://doi.org/10.1002/adma.201801072
Z. Li, F. Chen, N. Zhu, L. Zhang, Z. Xie, Tip-enhanced sub-femtomolar steroid immunosensing via micropyramidal flexible conducting polymer electrodes for at-home monitoring of salivary sex hormones. ACS Nano 17, 21935–21946 (2023). https://doi.org/10.1021/acsnano.3c08315
I. Muguet, A. Maziz, F. Mathieu, L. Mazenq, G. Larrieu, Combining PEDOT: PSS polymer coating with metallic 3D nanowires electrodes to achieve high electrochemical performances for neuronal interfacing applications. Adv. Mater. 35, e2302472 (2023). https://doi.org/10.1002/adma.202302472
Z. Wang, M. Tian, J. Yu, J. Jiao, C. Yang et al., Recent advances of 3D compressible carbon assemblies: a review of synthesis, properties and applications in energy and environment. J. Environ. Chem. Eng. 9, 106269 (2021). https://doi.org/10.1016/j.jece.2021.106269
A.G. El-Shamy, Review on the recent advance in PEDOT: PSS/Carbonic fillers based nanocomposite for flexible thermoelectric devices and sensors. Mater. Today Phys. 35, 101101 (2023). https://doi.org/10.1016/j.mtphys.2023.101101
X. Xie, R. Guo, B. Yang, H. Li, F. Yang et al., Stencil-printed electrodes without current collectors and inactive additives on textiles for in-plane microsupercapacitors. J. Mater. Chem. A 9, 25042–25050 (2021). https://doi.org/10.1039/d1ta07302h
B. Yang, J. Chen, S. Lei, R. Guo, H. Li et al., Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv. Energy Mater. 8, 1702409 (2018). https://doi.org/10.1002/aenm.201702409
R. Guo, Y. Yu, Z. Xie, X. Liu, X. Zhou et al., Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv. Mater. 25, 3343–3350 (2013). https://doi.org/10.1002/adma.201301184
J. Li, J. Cao, B. Lu, G. Gu, 3D-printed PEDOT: PSS for soft robotics. Nat. Rev. Mater. 8, 604–622 (2023). https://doi.org/10.1038/s41578-023-00587-5
W. Cheng, Y. Liu, Z. Tong, Y. Zhu, K. Cao et al., Micro-interfacial polymerization of porous PEDOT for printable electronic devices. EcoMat 5, e12288 (2023). https://doi.org/10.1002/eom2.12288
T. Su, N. Liu, D. Lei, L. Wang, Z. Ren et al., Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16, 8461–8471 (2022). https://doi.org/10.1021/acsnano.2c03155
Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang et al., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017). https://doi.org/10.1002/adma.201703700
S. Wang, X. Du, Y. Luo, S. Lin, M. Zhou et al., Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics. Chem. Eng. J. 408, 127363 (2021). https://doi.org/10.1016/j.cej.2020.127363
G. Tian, K. Xu, Y. Huang, X. You, W. Yu et al., An organic/inorganic coating strategy that greatly enhanced sensing performances and reliability of all-fabric piezoresistive sensors. J. Mater. Chem. A 11, 21333–21344 (2023). https://doi.org/10.1039/d3ta03415a
J.V. Vaghasiya, C.C. Mayorga-Martinez, J. Vyskočil, M. Pumera, Black phosphorous-based human-machine communication interface. Nat. Commun. 14, 2 (2023). https://doi.org/10.1038/s41467-022-34482-4
Z. Yang, H. Li, S. Zhang, X. Lai, X. Zeng, Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 425, 130462 (2021). https://doi.org/10.1016/j.cej.2021.130462
M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9, 2200507 (2022). https://doi.org/10.1002/advs.202200507
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020). https://doi.org/10.1126/science.abc9735
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
C. Ozsancak, P. Auzou, K. Dujardin, N. Quinn, A. Destée, Orofacial apraxia in corticobasal degeneration, progressive supranuclear palsy, multiple system atrophy and Parkinson’s disease. J. Neurol. 251, 1317–1323 (2004). https://doi.org/10.1007/s00415-004-0530-0
G. Khodabandelou, P.-G. Jung, Y. Amirat, S. Mohammed, Attention-based gated recurrent unit for gesture recognition. IEEE Trans. Autom. Sci. Eng. 18, 495–507 (2021). https://doi.org/10.1109/TASE.2020.3030852
G. Tang, Q. Shi, Z. Zhang, T. He, Z. Sun et al., Hybridized wearable patch as a multi-parameter and multi-functional human-machine interface. Nano Energy 81, 105582 (2021). https://doi.org/10.1016/j.nanoen.2020.105582
S.-D. Wu, S.-H. Hsu, B. Ketelsen, S.C. Bittinger, H. Schlicke et al., Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications. Small Meth. 7, 2300170 (2023). https://doi.org/10.1002/smtd.202300170