Machine Learning-Based Detection of Graphene Defects with Atomic Precision
Corresponding Author: Grace X. Gu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 181
Abstract
Defects in graphene can profoundly impact its extraordinary properties, ultimately influencing the performances of graphene-based nanodevices. Methods to detect defects with atomic resolution in graphene can be technically demanding and involve complex sample preparations. An alternative approach is to observe the thermal vibration properties of the graphene sheet, which reflects defect information but in an implicit fashion. Machine learning, an emerging data-driven approach that offers solutions to learning hidden patterns from complex data, has been extensively applied in material design and discovery problems. In this paper, we propose a machine learning-based approach to detect graphene defects by discovering the hidden correlation between defect locations and thermal vibration features. Two prediction strategies are developed: an atom-based method which constructs data by atom indices, and a domain-based method which constructs data by domain discretization. Results show that while the atom-based method is capable of detecting a single-atom vacancy, the domain-based method can detect an unknown number of multiple vacancies up to atomic precision. Both methods can achieve approximately a 90% prediction accuracy on the reserved data for testing, indicating a promising extrapolation into unseen future graphene configurations. The proposed strategy offers promising solutions for the non-destructive evaluation of nanomaterials and accelerates new material discoveries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). https://doi.org/10.1021/jp040650f
- F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403 (2010). https://doi.org/10.1103/PhysRevB.82.073403
- M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf et al., A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). https://doi.org/10.1038/nature10067
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
- A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
- K.M. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- C.-T. Chen, F.J. Martin-Martinez, S. Ling, Z. Qin, M.J. Buehler, Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. Nano Futures 1, 011003 (2017). https://doi.org/10.1088/2399-1984/aa6aed
- P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng et al., Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014). https://doi.org/10.1038/ncomms4782
- C.T. Chen, G.X. Gu, Effect of constituent materials on composite performance: exploring design strategies via machine learning. Adv. Theor. Simul. 2, 1900056 (2019). https://doi.org/10.1002/adts.201900056
- A. Reserbat-Plantey, K.G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger et al., Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016). https://doi.org/10.1038/ncomms10218
- J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum et al., Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). https://doi.org/10.1126/science.1136836
- H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
- S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Sci. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
- Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f
- C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q
- Y. Wei, R. Yang, Nanomechanics of graphene. Nat. Sci. Rev. 6, 324–348 (2018). https://doi.org/10.1093/nsr/nwy067
- B. Zheng, G.X. Gu, Tuning the graphene mechanical anisotropy via defect engineering. Carbon 155, 697–705 (2019). https://doi.org/10.1016/j.carbon.2019.09.008
- P.T. Araujo, M. Terrones, M.S. Dresselhaus, Defects and impurities in graphene-like materials. Mater. Today 15, 98–109 (2012). https://doi.org/10.1016/S1369-7021(12)70045-7
- T. Zhang, X. Li, H. Gao, Fracture of graphene: a review. Int. J. Fract. 196, 1–31 (2015). https://doi.org/10.1007/s10704-015-0039-9
- B. Zheng, G.X. Gu, Recovery from mechanical degradation of graphene by defect enlargement. Nanotechnology 31, 085707 (2019). https://doi.org/10.1088/1361-6528/ab5401
- B. Zheng, G.X. Gu, Stress field characteristics and collective mechanical properties of defective graphene. J. Phys. Chem. C 124, 7421–7431 (2020). https://doi.org/10.1021/acs.jpcc.9b11027
- A. Hamed Mashhadzadeh, M. Ghorbanzadeh Ahangari, A. Dadrasi, M. Fathalian, Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud. Appl. Surf. Sci. 476, 36–48 (2019). https://doi.org/10.1016/j.apsusc.2019.01.083
- M. Zarghami Dehaghani, A. Hamed Mashhadzadeh, A. Salmankhani, Z. Karami, S. Habibzadeh, M.R. Ganjali, M.R. Saeb, Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis. Eng. Fract. Mech. 235, 107194 (2020). https://doi.org/10.1016/j.engfracmech.2020.107194
- R.K. Zahedi, A.H.N. Shirazi, P. Alimouri, N. Alajlan, T. Rabczuk, Mechanical properties of graphene-like BC3; a molecular dynamics study. Comput. Mater. Sci. 168, 1–10 (2019). https://doi.org/10.1016/j.commatsci.2019.05.053
- M.G. Ahangari, A.H. Mashhadzadeh, M. Fathalian, A. Dadrasi, Y. Rostamiyan, A. Mallahi, Effect of various defects on mechanical and electronic properties of zinc-oxide graphene-like structure: a DFT study. Vacuum 165, 26–34 (2019). https://doi.org/10.1016/j.vacuum.2019.04.003
- S. Sadeghzadeh, Effects of vacancies and divacancies on the failure of C3N nanosheets. Diam. Relat. Mater. 89, 257–265 (2018). https://doi.org/10.1016/j.diamond.2018.09.018
- P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). https://doi.org/10.1038/nature09718
- C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010). https://doi.org/10.1021/nl9031617
- J. Ping, M.S. Fuhrer, Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635–4641 (2012). https://doi.org/10.1021/nl301932v
- K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
- C.-T. Chen, G.X. Gu, Machine learning for composite materials. MRS Commun. 9, 556–566 (2019). https://doi.org/10.1557/mrc.2019.32
- B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018). https://doi.org/10.1126/science.aat2663
- C.T. Chen, G.X. Gu, Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. (2020). https://doi.org/10.1002/advs.201902607
- P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny et al., Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). https://doi.org/10.1038/nature17439
- C. Yang, Y. Kim, S. Ryu, G.X. Gu, Prediction of composite microstructure stress–strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020). https://doi.org/10.1016/j.matdes.2020.108509
- Z. Zhang, G.X. Gu, Finite element based deep learning model for deformation behavior of digital materials. Adv. Theor. Simul. (2020). https://doi.org/10.1002/adts.202000031
- Y. Mohammadi, M.R. Saeb, A. Penlidis, E. Jabbari, F.J. Stadler, P. Zinck, K. Matyjaszewski, Intelligent machine learning: tailor-making macromolecules. Polymers 11, 579 (2019). https://doi.org/10.3390/polym11040579
- Y. Mohammadi, M.R. Saeb, A. Penlidis, E. Jabbari, P. Zinck, F.J. Stadler, K. Matyjaszewski, Intelligent Monte Carlo: a new paradigm for inverse polymerization engineering. Macromol. Theor. Simul. 27, 1700106 (2018). https://doi.org/10.1002/mats.201700106
- M.R. Saeb, Y. Mohammadi, T.S. Kermaniyan, P. Zinck, F.J. Stadler, Unspoken aspects of chain shuttling reactions: patterning the molecular landscape of olefin multi-block copolymers. Polymer 116, 55–75 (2017). https://doi.org/10.1016/j.polymer.2017.03.033
- M. Mirakhory, M.M. Khatibi, S. Sadeghzadeh, Vibration analysis of defected and pristine triangular single-layer graphene nanosheets. Curr. Appl. Phys. 18, 1327–1337 (2018). https://doi.org/10.1016/j.cap.2018.07.014
- V. Tahouneh, M.H. Naei, M.M. Mashhadi, Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: molecular and continuum approaches. Steel Compos. Struct. 34, 261–277 (2020). https://doi.org/10.12989/scs.2020.34.2.261
- V. Tahouneh, M.H. Naei, M.M. Mashhadi, The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic. Steel Compos. Struct. 29, 647–657 (2018). https://doi.org/10.12989/scs.2018.29.5.647
- S.F.A. Namin, R. Pilafkan, Vibration analysis of defective graphene sheets using nonlocal elasticity theory. Physica E 93, 257–264 (2017). https://doi.org/10.1016/j.physe.2017.06.014
- V. Tahouneh, M.H. Naei, M.M. Mashhadi, Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory. Steel Compos. Struct. 33, 717–727 (2019). https://doi.org/10.12989/scs.2019.33.5.717
- L. Chu, J. Shi, E. Souza de Cursi, Vibration analysis of vacancy defected graphene sheets by Monte Carlo based finite element method. Nanomaterials 8, 489 (2018). https://doi.org/10.3390/nano8070489
- D. Garcia-Sanchez, A.M. van der Zande, A.S. Paulo, B. Lassagne, P.L. McEuen, A. Bachtold, Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008). https://doi.org/10.1021/nl080201h
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
- S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000). https://doi.org/10.1063/1.481208
- Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, M. Dresselhaus, The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012). https://doi.org/10.1038/nmat3370
- R. Grantab, V.B. Shenoy, R.S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010). https://doi.org/10.1126/science.1196893
- C. Wang, Y. Liu, L. Lan, H. Tan, Graphene wrinkling: formation, evolution and collapse. Nanoscale 5, 4454–4461 (2013). https://doi.org/10.1039/c3nr00462g
- T. Zhang, X. Li, S. Kadkhodaei, H. Gao, Flaw Insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012). https://doi.org/10.1021/nl301908b
- W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695
- W. Gao, R. Huang, Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 66, 42–58 (2014). https://doi.org/10.1016/j.jmps.2014.01.011
- MathSciNet
- Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009). https://doi.org/10.1021/nl8033637
References
C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004). https://doi.org/10.1021/jp040650f
F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403 (2010). https://doi.org/10.1103/PhysRevB.82.073403
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf et al., A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). https://doi.org/10.1038/nature10067
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872
A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011). https://doi.org/10.1038/nmat3064
K.M. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
C.-T. Chen, F.J. Martin-Martinez, S. Ling, Z. Qin, M.J. Buehler, Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. Nano Futures 1, 011003 (2017). https://doi.org/10.1088/2399-1984/aa6aed
P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng et al., Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014). https://doi.org/10.1038/ncomms4782
C.T. Chen, G.X. Gu, Effect of constituent materials on composite performance: exploring design strategies via machine learning. Adv. Theor. Simul. 2, 1900056 (2019). https://doi.org/10.1002/adts.201900056
A. Reserbat-Plantey, K.G. Schädler, L. Gaudreau, G. Navickaite, J. Güttinger et al., Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016). https://doi.org/10.1038/ncomms10218
J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum et al., Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). https://doi.org/10.1126/science.1136836
H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Sci. 45, 63–84 (2015). https://doi.org/10.1146/annurev-matsci-070214-020901
Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f
C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q
Y. Wei, R. Yang, Nanomechanics of graphene. Nat. Sci. Rev. 6, 324–348 (2018). https://doi.org/10.1093/nsr/nwy067
B. Zheng, G.X. Gu, Tuning the graphene mechanical anisotropy via defect engineering. Carbon 155, 697–705 (2019). https://doi.org/10.1016/j.carbon.2019.09.008
P.T. Araujo, M. Terrones, M.S. Dresselhaus, Defects and impurities in graphene-like materials. Mater. Today 15, 98–109 (2012). https://doi.org/10.1016/S1369-7021(12)70045-7
T. Zhang, X. Li, H. Gao, Fracture of graphene: a review. Int. J. Fract. 196, 1–31 (2015). https://doi.org/10.1007/s10704-015-0039-9
B. Zheng, G.X. Gu, Recovery from mechanical degradation of graphene by defect enlargement. Nanotechnology 31, 085707 (2019). https://doi.org/10.1088/1361-6528/ab5401
B. Zheng, G.X. Gu, Stress field characteristics and collective mechanical properties of defective graphene. J. Phys. Chem. C 124, 7421–7431 (2020). https://doi.org/10.1021/acs.jpcc.9b11027
A. Hamed Mashhadzadeh, M. Ghorbanzadeh Ahangari, A. Dadrasi, M. Fathalian, Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud. Appl. Surf. Sci. 476, 36–48 (2019). https://doi.org/10.1016/j.apsusc.2019.01.083
M. Zarghami Dehaghani, A. Hamed Mashhadzadeh, A. Salmankhani, Z. Karami, S. Habibzadeh, M.R. Ganjali, M.R. Saeb, Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis. Eng. Fract. Mech. 235, 107194 (2020). https://doi.org/10.1016/j.engfracmech.2020.107194
R.K. Zahedi, A.H.N. Shirazi, P. Alimouri, N. Alajlan, T. Rabczuk, Mechanical properties of graphene-like BC3; a molecular dynamics study. Comput. Mater. Sci. 168, 1–10 (2019). https://doi.org/10.1016/j.commatsci.2019.05.053
M.G. Ahangari, A.H. Mashhadzadeh, M. Fathalian, A. Dadrasi, Y. Rostamiyan, A. Mallahi, Effect of various defects on mechanical and electronic properties of zinc-oxide graphene-like structure: a DFT study. Vacuum 165, 26–34 (2019). https://doi.org/10.1016/j.vacuum.2019.04.003
S. Sadeghzadeh, Effects of vacancies and divacancies on the failure of C3N nanosheets. Diam. Relat. Mater. 89, 257–265 (2018). https://doi.org/10.1016/j.diamond.2018.09.018
P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf et al., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). https://doi.org/10.1038/nature09718
C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010). https://doi.org/10.1021/nl9031617
J. Ping, M.S. Fuhrer, Layer number and stacking sequence imaging of few-layer graphene by transmission electron microscopy. Nano Lett. 12, 4635–4641 (2012). https://doi.org/10.1021/nl301932v
K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature 559, 547–555 (2018). https://doi.org/10.1038/s41586-018-0337-2
C.-T. Chen, G.X. Gu, Machine learning for composite materials. MRS Commun. 9, 556–566 (2019). https://doi.org/10.1557/mrc.2019.32
B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018). https://doi.org/10.1126/science.aat2663
C.T. Chen, G.X. Gu, Generative deep neural networks for inverse materials design using backpropagation and active learning. Adv. Sci. (2020). https://doi.org/10.1002/advs.201902607
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny et al., Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016). https://doi.org/10.1038/nature17439
C. Yang, Y. Kim, S. Ryu, G.X. Gu, Prediction of composite microstructure stress–strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020). https://doi.org/10.1016/j.matdes.2020.108509
Z. Zhang, G.X. Gu, Finite element based deep learning model for deformation behavior of digital materials. Adv. Theor. Simul. (2020). https://doi.org/10.1002/adts.202000031
Y. Mohammadi, M.R. Saeb, A. Penlidis, E. Jabbari, F.J. Stadler, P. Zinck, K. Matyjaszewski, Intelligent machine learning: tailor-making macromolecules. Polymers 11, 579 (2019). https://doi.org/10.3390/polym11040579
Y. Mohammadi, M.R. Saeb, A. Penlidis, E. Jabbari, P. Zinck, F.J. Stadler, K. Matyjaszewski, Intelligent Monte Carlo: a new paradigm for inverse polymerization engineering. Macromol. Theor. Simul. 27, 1700106 (2018). https://doi.org/10.1002/mats.201700106
M.R. Saeb, Y. Mohammadi, T.S. Kermaniyan, P. Zinck, F.J. Stadler, Unspoken aspects of chain shuttling reactions: patterning the molecular landscape of olefin multi-block copolymers. Polymer 116, 55–75 (2017). https://doi.org/10.1016/j.polymer.2017.03.033
M. Mirakhory, M.M. Khatibi, S. Sadeghzadeh, Vibration analysis of defected and pristine triangular single-layer graphene nanosheets. Curr. Appl. Phys. 18, 1327–1337 (2018). https://doi.org/10.1016/j.cap.2018.07.014
V. Tahouneh, M.H. Naei, M.M. Mashhadi, Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: molecular and continuum approaches. Steel Compos. Struct. 34, 261–277 (2020). https://doi.org/10.12989/scs.2020.34.2.261
V. Tahouneh, M.H. Naei, M.M. Mashhadi, The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic. Steel Compos. Struct. 29, 647–657 (2018). https://doi.org/10.12989/scs.2018.29.5.647
S.F.A. Namin, R. Pilafkan, Vibration analysis of defective graphene sheets using nonlocal elasticity theory. Physica E 93, 257–264 (2017). https://doi.org/10.1016/j.physe.2017.06.014
V. Tahouneh, M.H. Naei, M.M. Mashhadi, Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory. Steel Compos. Struct. 33, 717–727 (2019). https://doi.org/10.12989/scs.2019.33.5.717
L. Chu, J. Shi, E. Souza de Cursi, Vibration analysis of vacancy defected graphene sheets by Monte Carlo based finite element method. Nanomaterials 8, 489 (2018). https://doi.org/10.3390/nano8070489
D. Garcia-Sanchez, A.M. van der Zande, A.S. Paulo, B. Lassagne, P.L. McEuen, A. Bachtold, Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008). https://doi.org/10.1021/nl080201h
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000). https://doi.org/10.1063/1.481208
Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, M. Dresselhaus, The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012). https://doi.org/10.1038/nmat3370
R. Grantab, V.B. Shenoy, R.S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010). https://doi.org/10.1126/science.1196893
C. Wang, Y. Liu, L. Lan, H. Tan, Graphene wrinkling: formation, evolution and collapse. Nanoscale 5, 4454–4461 (2013). https://doi.org/10.1039/c3nr00462g
T. Zhang, X. Li, S. Kadkhodaei, H. Gao, Flaw Insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012). https://doi.org/10.1021/nl301908b
W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). https://doi.org/10.1103/PhysRevA.31.1695
W. Gao, R. Huang, Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 66, 42–58 (2014). https://doi.org/10.1016/j.jmps.2014.01.011
MathSciNet
Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009). https://doi.org/10.1021/nl8033637