Aramid Nanofiber/MXene-Reinforced Polyelectrolyte Hydrogels for Absorption-Dominated Electromagnetic Interference Shielding and Wearable Sensing
Corresponding Author: Xuqing Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 271
Abstract
Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics. Despite considerable advancements, current methodologies struggle to reconcile the fundamental trade-off between high conductivity and effective absorption-dominated electromagnetic interference (EMI) shielding, as dictated by classical impedance matching theory. This study addresses these limitations by introducing a novel synthesis of aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels. Leveraging the unique properties of polyelectrolytes, this innovative approach enhances ionic conductivity and exploits the hydration effect of hydrophilic polar groups to induce the formation of intermediate water. This critical innovation facilitates polarization relaxation and rearrangement in response to electromagnetic fields, thereby significantly enhancing the EMI shielding effectiveness of hydrogels. The electromagnetic wave attenuation capacity of these hydrogels was thoroughly evaluated across both X-band and terahertz band frequencies, with further investigation into the impact of varying water content states—hydrated, dried, and frozen—on their electromagnetic properties. Moreover, the hydrogels exhibited promising capabilities beyond mere EMI shielding; they also served effectively as strain sensors for monitoring human motions, indicating their potential applicability in wearable electronics. This work provides a new approach to designing multifunctional hydrogels, advancing the integration of flexible, multifunctional materials in modern electronics, with potential applications in both EMI shielding and wearable technology.
Highlights:
1 Aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels were designed to achieve absorption-dominated electromagnetic interference shielding under the premise of relatively high conductivity.
2 The multifunctional composite hydrogels exhibited outstanding mechanical performance, exceptional adhesion strength, excellent electromagnetic interference shielding and reliable capability for monitoring human motion signals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Chen, F. Manshaii, K. Tioran, S. Wang, Y. Zhou et al., Wearable biosensors for cardiovascular monitoring leveraging nanomaterials. Adv. Compos. Hybrid Mater. 7, 97 (2024). https://doi.org/10.1007/s42114-024-00906-6
- K.R.S. Dinuwan Gunawardhana, R.B.V.B. Simorangkir, G.B. McGuinness, M.S. Rasel, L.A. Magre Colorado et al., The potential of electrospinning to enable the realization of energy-autonomous wearable sensing systems. ACS Nano 18, 2649–2684 (2024). https://doi.org/10.1021/acsnano.3c09077
- Y. Lu, X. Wang, S. Mao, D. Wang, D. Sun et al., Smart batteries enabled by implanted flexible sensors. Energy Environ. Sci. 16(6), 2448–2463 (2023). https://doi.org/10.1039/D3EE00695F
- L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6(1), 10–17 (2022). https://doi.org/10.1038/s41928-022-00898-5
- Y. Yang, X. Guo, M. Zhu, Z. Sun, Z. Zhang et al., Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable Internet of Things integrated green earth. Adv. Energy Mater. 13(1), 2203040 (2023). https://doi.org/10.1002/aenm.202203040
- Z. Zhao, K. Liu, Y. Liu, Y. Guo, Y. Liu, Intrinsically flexible displays: key materials and devices. Natl. Sci. Rev. 9(6), nwac090 (2022). https://doi.org/10.1093/nsr/nwac090
- G. Gao, G. Li, Y. Zhao, L. Ma, W. Huang, The structure design of flexible batteries. Matter 6(11), 3732–3746 (2023). https://doi.org/10.1016/j.matt.2023.08.021
- X. Xia, J. Yang, Y. Liu, J. Zhang, J. Shang et al., Material choice and structure design of flexible battery electrode. Adv. Sci. 10(3), 2204875 (2023). https://doi.org/10.1002/advs.202204875
- W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
- B. Wu, T. Jiang, Z. Yu, Q. Zhou, J. Jiao et al., Proximity sensing electronic skin: principles, characteristics, and applications. Adv. Sci. 11(13), e2308560 (2024). https://doi.org/10.1002/advs.202308560
- P. Zhang, B. Deng, K. Zhu, Q. Zhou, S. Zhang et al., Wide-temperature range thermoregulating e-skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink. EcoMat 4(6), e12253 (2022). https://doi.org/10.1002/eom2.12253
- Y. Chi, Y. Li, Y. Zhao, Y. Hong, Y. Tang et al., Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv. Mater. 34(19), 2110384 (2022). https://doi.org/10.1002/adma.202110384
- J. Kim, M. de Mathelin, K. Ikuta, D.-S. Kwon, Advancement of flexible robot technologies for endoluminal surgeries. Proc. IEEE 110(7), 909–931 (2022). https://doi.org/10.1109/JPROC.2022.3170109
- Z. Li, J. Xu, Z. Wu, B. Guo, Q. He, Liquid metal swimming nanorobots. Acc. Mater. Res. 3(1), 122–132 (2022). https://doi.org/10.1021/accountsmr.1c00233
- W. Heng, S. Solomon, W. Gao, Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 34(16), e2107902 (2022). https://doi.org/10.1002/adma.202107902
- A.T. Hoang, L. Hu, B.J. Kim, T.T.N. Van, K.D. Park et al., Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18(12), 1439–1447 (2023). https://doi.org/10.1038/s41565-023-01460-w
- X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain–computer interfaces. Nat. Electron. 6(2), 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
- Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, Hydrogels for flexible electronics. ACS Nano 17(11), 9681–9693 (2023). https://doi.org/10.1021/acsnano.3c02897
- T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
- W. Li, F. Guan, J. Wei, J. Yang, P. Wei et al., Recent progress in the all-gel-state supercapacitors. Chem. Eng. J. 477, 146969 (2023). https://doi.org/10.1016/j.cej.2023.146969
- J. Chen, F. Liu, T. Abdiryim, X. Liu, An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 7(2), 35 (2024). https://doi.org/10.1007/s42114-024-00841-6
- Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
- Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- H. Zou, P. Yi, W. Xu, H. Cai, J. He et al., Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness. Chem. Eng. J. 461, 141856 (2023). https://doi.org/10.1016/j.cej.2023.141856
- H. Guo, Y. Shi, F. Pan, S. Zheng, X. Chai et al., Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application. Nano Energy 114, 108678 (2023). https://doi.org/10.1016/j.nanoen.2023.108678
- L. Mei, W. Ouyang, L. Xu, Y. Huang, Q. Liu et al., Super tough multifunctional MXene/PAA-CS double network hydrogels with high mechanical sensing properties and excellent EMI shielding performance. Small 21(6), 2410687 (2025). https://doi.org/10.1002/smll.202410687
- P. Li, H. Wang, Z. Ju, Z. Jin, J. Ma et al., Ti3C2Tx MXene- and sulfuric acid-treated double-network hydrogel with ultralow conductive filler content for stretchable electromagnetic interference shielding. ACS Nano 18(4), 2906–2916 (2024). https://doi.org/10.1021/acsnano.3c07233
- H. Wang, T. Zhuang, J. Wang, X. Sun, Y. Wang et al., Multifunctional filler-free PEDOT: PSS hydrogels with ultrahigh electrical conductivity induced by lewis-acid-promoted ion exchange. Adv. Mater. 35(33), 2302919 (2023). https://doi.org/10.1002/adma.202302919
- Y. He, J. Chen, Y. Qian, Y. Wei, C. Wang et al., Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydr. Polym. 298, 120132 (2022). https://doi.org/10.1016/j.carbpol.2022.120132
- B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
- Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 34(43), e2205376 (2022). https://doi.org/10.1002/adma.202205376
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
- C. Li, B. Zhu, Z. Liu, J. Zhao, R. Meng et al., Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 431, 134224 (2022). https://doi.org/10.1016/j.cej.2021.134224
- X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52(11), 3244–3253 (2019). https://doi.org/10.1021/acs.accounts.9b00455
- Y. Chen, J. Yang, L. Zhu, X. Jia, S. Wang et al., An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. J. Mater. Chem. A 9(27), 15482–15492 (2021). https://doi.org/10.1039/D1TA04325K
- S. Mao, A. Feng, S. Zhang, C. Onggowarsito, Q. Chen et al., Investigation of structure–property–application relationships of a hydrogel-based solar vapor generator. J. Mater. Chem. A 11(42), 23062–23070 (2023). https://doi.org/10.1039/d3ta05278h
- G. Chen, O. Hu, J. Lu, J. Gu, K. Chen et al., Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 425, 131505 (2021). https://doi.org/10.1016/j.cej.2021.131505
- F. Wang, K. Yao, C. Chen, K. Wang, H. Bai et al., Lanthanide-coordinated multifunctional hydrogel for detecting human motion and encrypting information. Adv. Funct. Mater. 2418373 (2025). https://doi.org/10.1002/adfm.202418373
- M. Sun, H. Li, Y. Hou, N. Huang, X. Xia et al., Multifunctional tendon-mimetic hydrogels. Sci. Adv. 9(7), eade6973 (2023). https://doi.org/10.1126/sciadv.ade6973
- Z. Liu, Y. Chu, Y. Wu, H. Wu, Y. Wang et al., Spider silk inspired strong yet tough composite hydrogels. Compos. Sci. Technol. 252, 110613 (2024). https://doi.org/10.1016/j.compscitech.2024.110613
- H. Xing, X. He, Y. Wang, X. Zhang, L. Li et al., Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers. Mater. Today 68, 84–95 (2023). https://doi.org/10.1016/j.mattod.2023.07.020
References
X. Chen, F. Manshaii, K. Tioran, S. Wang, Y. Zhou et al., Wearable biosensors for cardiovascular monitoring leveraging nanomaterials. Adv. Compos. Hybrid Mater. 7, 97 (2024). https://doi.org/10.1007/s42114-024-00906-6
K.R.S. Dinuwan Gunawardhana, R.B.V.B. Simorangkir, G.B. McGuinness, M.S. Rasel, L.A. Magre Colorado et al., The potential of electrospinning to enable the realization of energy-autonomous wearable sensing systems. ACS Nano 18, 2649–2684 (2024). https://doi.org/10.1021/acsnano.3c09077
Y. Lu, X. Wang, S. Mao, D. Wang, D. Sun et al., Smart batteries enabled by implanted flexible sensors. Energy Environ. Sci. 16(6), 2448–2463 (2023). https://doi.org/10.1039/D3EE00695F
L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6(1), 10–17 (2022). https://doi.org/10.1038/s41928-022-00898-5
Y. Yang, X. Guo, M. Zhu, Z. Sun, Z. Zhang et al., Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable Internet of Things integrated green earth. Adv. Energy Mater. 13(1), 2203040 (2023). https://doi.org/10.1002/aenm.202203040
Z. Zhao, K. Liu, Y. Liu, Y. Guo, Y. Liu, Intrinsically flexible displays: key materials and devices. Natl. Sci. Rev. 9(6), nwac090 (2022). https://doi.org/10.1093/nsr/nwac090
G. Gao, G. Li, Y. Zhao, L. Ma, W. Huang, The structure design of flexible batteries. Matter 6(11), 3732–3746 (2023). https://doi.org/10.1016/j.matt.2023.08.021
X. Xia, J. Yang, Y. Liu, J. Zhang, J. Shang et al., Material choice and structure design of flexible battery electrode. Adv. Sci. 10(3), 2204875 (2023). https://doi.org/10.1002/advs.202204875
W. Wang, Y. Jiang, D. Zhong, Z. Zhang, S. Choudhury et al., Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380(6646), 735–742 (2023). https://doi.org/10.1126/science.ade0086
B. Wu, T. Jiang, Z. Yu, Q. Zhou, J. Jiao et al., Proximity sensing electronic skin: principles, characteristics, and applications. Adv. Sci. 11(13), e2308560 (2024). https://doi.org/10.1002/advs.202308560
P. Zhang, B. Deng, K. Zhu, Q. Zhou, S. Zhang et al., Wide-temperature range thermoregulating e-skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink. EcoMat 4(6), e12253 (2022). https://doi.org/10.1002/eom2.12253
Y. Chi, Y. Li, Y. Zhao, Y. Hong, Y. Tang et al., Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv. Mater. 34(19), 2110384 (2022). https://doi.org/10.1002/adma.202110384
J. Kim, M. de Mathelin, K. Ikuta, D.-S. Kwon, Advancement of flexible robot technologies for endoluminal surgeries. Proc. IEEE 110(7), 909–931 (2022). https://doi.org/10.1109/JPROC.2022.3170109
Z. Li, J. Xu, Z. Wu, B. Guo, Q. He, Liquid metal swimming nanorobots. Acc. Mater. Res. 3(1), 122–132 (2022). https://doi.org/10.1021/accountsmr.1c00233
W. Heng, S. Solomon, W. Gao, Flexible electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 34(16), e2107902 (2022). https://doi.org/10.1002/adma.202107902
A.T. Hoang, L. Hu, B.J. Kim, T.T.N. Van, K.D. Park et al., Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18(12), 1439–1447 (2023). https://doi.org/10.1038/s41565-023-01460-w
X. Tang, H. Shen, S. Zhao, N. Li, J. Liu, Flexible brain–computer interfaces. Nat. Electron. 6(2), 109–118 (2023). https://doi.org/10.1038/s41928-022-00913-9
Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, Hydrogels for flexible electronics. ACS Nano 17(11), 9681–9693 (2023). https://doi.org/10.1021/acsnano.3c02897
T. Zhu, Y. Ni, G.M. Biesold, Y. Cheng, M. Ge et al., Recent advances in conductive hydrogels: classifications, properties, and applications. Chem. Soc. Rev. 52(2), 473–509 (2023). https://doi.org/10.1039/D2CS00173J
W. Li, F. Guan, J. Wei, J. Yang, P. Wei et al., Recent progress in the all-gel-state supercapacitors. Chem. Eng. J. 477, 146969 (2023). https://doi.org/10.1016/j.cej.2023.146969
J. Chen, F. Liu, T. Abdiryim, X. Liu, An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 7(2), 35 (2024). https://doi.org/10.1007/s42114-024-00841-6
Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15(1), 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042–15052 (2022). https://doi.org/10.1021/acsnano.2c06164
H. Zou, P. Yi, W. Xu, H. Cai, J. He et al., Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness. Chem. Eng. J. 461, 141856 (2023). https://doi.org/10.1016/j.cej.2023.141856
H. Guo, Y. Shi, F. Pan, S. Zheng, X. Chai et al., Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application. Nano Energy 114, 108678 (2023). https://doi.org/10.1016/j.nanoen.2023.108678
L. Mei, W. Ouyang, L. Xu, Y. Huang, Q. Liu et al., Super tough multifunctional MXene/PAA-CS double network hydrogels with high mechanical sensing properties and excellent EMI shielding performance. Small 21(6), 2410687 (2025). https://doi.org/10.1002/smll.202410687
P. Li, H. Wang, Z. Ju, Z. Jin, J. Ma et al., Ti3C2Tx MXene- and sulfuric acid-treated double-network hydrogel with ultralow conductive filler content for stretchable electromagnetic interference shielding. ACS Nano 18(4), 2906–2916 (2024). https://doi.org/10.1021/acsnano.3c07233
H. Wang, T. Zhuang, J. Wang, X. Sun, Y. Wang et al., Multifunctional filler-free PEDOT: PSS hydrogels with ultrahigh electrical conductivity induced by lewis-acid-promoted ion exchange. Adv. Mater. 35(33), 2302919 (2023). https://doi.org/10.1002/adma.202302919
Y. He, J. Chen, Y. Qian, Y. Wei, C. Wang et al., Organohydrogel based on cellulose-stabilized emulsion for electromagnetic shielding, flame retardant, and strain sensing. Carbohydr. Polym. 298, 120132 (2022). https://doi.org/10.1016/j.carbpol.2022.120132
B. Zhao, Z. Bai, H. Lv, Z. Yan, Y. Du et al., Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 15(1), 79 (2023). https://doi.org/10.1007/s40820-023-01043-3
Z. Zhao, L. Zhang, H. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv. Mater. 34(43), e2205376 (2022). https://doi.org/10.1002/adma.202205376
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Topology-controlled hydration of polymer network in hydrogels for solar-driven wastewater treatment. Adv. Mater. 32(52), 2007012 (2020). https://doi.org/10.1002/adma.202007012
C. Li, B. Zhu, Z. Liu, J. Zhao, R. Meng et al., Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 431, 134224 (2022). https://doi.org/10.1016/j.cej.2021.134224
X. Zhou, Y. Guo, F. Zhao, G. Yu, Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52(11), 3244–3253 (2019). https://doi.org/10.1021/acs.accounts.9b00455
Y. Chen, J. Yang, L. Zhu, X. Jia, S. Wang et al., An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. J. Mater. Chem. A 9(27), 15482–15492 (2021). https://doi.org/10.1039/D1TA04325K
S. Mao, A. Feng, S. Zhang, C. Onggowarsito, Q. Chen et al., Investigation of structure–property–application relationships of a hydrogel-based solar vapor generator. J. Mater. Chem. A 11(42), 23062–23070 (2023). https://doi.org/10.1039/d3ta05278h
G. Chen, O. Hu, J. Lu, J. Gu, K. Chen et al., Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 425, 131505 (2021). https://doi.org/10.1016/j.cej.2021.131505
F. Wang, K. Yao, C. Chen, K. Wang, H. Bai et al., Lanthanide-coordinated multifunctional hydrogel for detecting human motion and encrypting information. Adv. Funct. Mater. 2418373 (2025). https://doi.org/10.1002/adfm.202418373
M. Sun, H. Li, Y. Hou, N. Huang, X. Xia et al., Multifunctional tendon-mimetic hydrogels. Sci. Adv. 9(7), eade6973 (2023). https://doi.org/10.1126/sciadv.ade6973
Z. Liu, Y. Chu, Y. Wu, H. Wu, Y. Wang et al., Spider silk inspired strong yet tough composite hydrogels. Compos. Sci. Technol. 252, 110613 (2024). https://doi.org/10.1016/j.compscitech.2024.110613
H. Xing, X. He, Y. Wang, X. Zhang, L. Li et al., Strong, tough, fatigue-resistant and 3D-printable hydrogel composites reinforced by aramid nanofibers. Mater. Today 68, 84–95 (2023). https://doi.org/10.1016/j.mattod.2023.07.020