Nature Inspired MXene-Decorated 3D Honeycomb-Fabric Architectures Toward Efficient Water Desalination and Salt Harvesting
Corresponding Author: Xiansheng Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 10
Abstract
Solar steam generation technology has emerged as a promising approach for seawater desalination, wastewater purification, etc. However, simultaneously achieving superior light absorption, thermal management, and salt harvesting in an evaporator remains challenging. Here, inspired by nature, a 3D honeycomb-like fabric decorated with hydrophilic Ti3C2Tx (MXene) is innovatively designed and successfully woven as solar evaporator. The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption, synergistically cooperating with light absorbance of MXene. The minimum thermal loss is available by constructing the localized photothermal generation, contributed by a thermal-insulating barrier connected with 1D water path, and the concave structure of efficiently recycling convective and radiative heat loss. The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m−2 h−1 under one sun irradiation. Moreover, assisted by a 1D water path in the center, the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine, enabling the complete separation of water/solute and efficient salt harvesting. This research provides a large-scale manufacturing route of high-performance solar steam generator.
Highlights:
1 The 3D honeycomb-like fabric decorated with MXene is woven as solar evaporator.
2 The honeycomb structure enables light-trapping and recycling of convective and radiative heat.
3 The 3D honeycomb-fabric evaporator possesses high solar efficiency up to 93.5% under 1 sun irradiation and excellent salt harvesting ability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
- S. Hoffman, Planet Water: Investing in the World’s Most Valuable Resource (John Wiley and Sons, Hoboken, NJ, USA, 2009)
- M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011). https://doi.org/10.1126/science.1200488
- P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
- Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019). https://doi.org/10.1039/c9ee00692c
- Y. Zhang, L. Wu, X. Wang, J. Yu, B. Ding, Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 11, 3302 (2020). https://doi.org/10.1038/s41467-020-17118-3
- L. Wang, X. Zhang, Y. Xia, X. Zhao, Z. Xue et al., Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions. Adv. Mater. 31, 1902381 (2019). https://doi.org/10.1002/adma.201902381
- C.J. Chen, Y.D. Kuang, L.B. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8, 2002501 (2021). https://doi.org/10.1002/advs.202002501
- B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan et al., Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Lett. 11, 51 (2019). https://doi.org/10.1007/s40820-019-0281-1
- X. Zhao, X. Zha, J. Pu, L. Bai, R. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 7, 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
- M.M. Gao, L.L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019). https://doi.org/10.1039/c8ee01146j
- X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31, 2102618 (2021). https://doi.org/10.1002/adfm.202102618
- M. Gao, C.K. Peh, L. Zhu, G. Yilmaz, G.W. Ho, Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv. Energy Mater. 10, 2000925 (2020). https://doi.org/10.1002/aenm.202000925
- J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
- L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang et al., Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017). https://doi.org/10.1016/j.nanoen.2016.12.031
- Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki et al., Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015). https://doi.org/10.1002/adma.201501832
- B. Shao, X. Wu, Y. Wang, T. Gao, Z.-Q. Liu et al., A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J. Mater. Chem. A 8, 24703–24709 (2020). https://doi.org/10.1039/d0ta08539a
- L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
- Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
- Y.X. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7, 1903478 (2020). https://doi.org/10.1002/advs.201903478
- S. Hong, Y. Shi, R. Li, C. Zhang, Y. Jin et al., Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018). https://doi.org/10.1021/acsami.8b07150
- Y. Wang, C. Wang, X. Song, M. Huang, S.K. Megarajan et al., Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 6, 9874–9881 (2018). https://doi.org/10.1039/c8ta01469h
- S. Chen, Z. Sun, W. Xiang, C. Shen, Z. Wang et al., Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 76, 104998 (2020). https://doi.org/10.1016/j.nanoen.2020.104998
- W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019). https://doi.org/10.1002/adma.201900720
- X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32, 1908269 (2020). https://doi.org/10.1002/adma.201908269
- X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017). https://doi.org/10.1002/adma.201604031
- H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
- X. Zhang, Z. Wang, L. Song, Y. Feng, J. Yao, Chinese ink enabled wood evaporator for continuous water desalination. Desalination 496, 114727 (2020). https://doi.org/10.1016/j.desal.2020.114727
- X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15, 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
- S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019). https://doi.org/10.1039/c9ee00945k
- C. Liu, K. Hong, X. Sun, A. Natan, P. Luan et al., An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. J. Mater. Chem. A 8, 12323–12333 (2020). https://doi.org/10.1039/d0ta03872e
- X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Natl. Acad. Sci. USA 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
- B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia et al., Flexible and washable CNT-embedded pan nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl. Mater. Interfaces 11, 35005–35014 (2019). https://doi.org/10.1021/acsami.9b12806
- Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, 1900498 (2019). https://doi.org/10.1002/adma.201900498
- W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018). https://doi.org/10.1002/aenm.201702884
- Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao et al., Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3, 1165–1171 (2018). https://doi.org/10.1021/acsenergylett.8b00433
- Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned janus mxene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
- H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion. Nano Lett. 17, 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
- I. Ihsanullah, Potential of mxenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
- R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
- X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1607017 (2017). https://doi.org/10.1002/adma.201607017
- X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li et al., A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 30, 2007110 (2020). https://doi.org/10.1002/adfm.202007110
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
- J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
- G. Cai, J.H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). https://doi.org/10.1126/sciadv.aaw7956
- Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
- M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017). https://doi.org/10.1038/natrevmats.2017.36
- J. Lekner, M.C. Dorf, Why some things are darker when wet. Appl. Opt. 27, 1278–1280 (1988). https://doi.org/10.1364/ao.27.001278
- J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
- J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). https://doi.org/10.1021/ja2010175
- L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi et al., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886–1893 (2014). https://doi.org/10.1002/adma.201304497
- Z. Sun, H. Xie, S. Tang, X.F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
- Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29, 1905485 (2019). https://doi.org/10.1002/adfm.201905485
- H. Kou, Z. Liu, B. Zhu, D.K. Macharia, S. Ahmed et al., Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 462, 29–38 (2019). https://doi.org/10.1016/j.desal.2019.04.005
- L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
- L. Song, P. Mu, L. Geng, Q. Wang, J. Li, A novel salt-rejecting linen fabric-based solar evaporator for stable and efficient water desalination under highly saline water. ACS Sustain. Chem. Eng. 8, 11845–11852 (2020). https://doi.org/10.1021/acssuschemeng.0c04407
- Y. Li, X. Jin, Y. Zheng, W. Li, F. Zheng et al., Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation. ACS Appl. Mater. Interfaces 11, 4612266–4646946 (2019). https://doi.org/10.1021/acsami.9b17360
- Q. Qi, Y. Wang, W. Wang, X. Ding, D. Yu, High-efficiency solar evaporator prepared by one-step carbon nanotubes loading on cotton fabric toward water purification. Sci. Total Environ. 698, 134136 (2020). https://doi.org/10.1016/j.scitotenv.2019.134136
- J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han et al., A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 6, 16196–16204 (2018). https://doi.org/10.1039/c8ta05569f
- Q. Zhang, Z. Fu, H. Yu, S. Chen, Nanoplating of a SnO2 thin-film on MXene-based sponge for stable and efficient solar energy conversion. J. Mater. Chem. A 8, 8065–8074 (2020). https://doi.org/10.1039/d0ta01258k
- X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11, 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- Y. Zhou, T. Ding, M. Gao, K.H. Chan, Y. Cheng et al., Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 77, 105102 (2020). https://doi.org/10.1016/j.nanoen.2020.105102
- T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021). https://doi.org/10.1016/j.mattod.2020.10.022
- Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020). https://doi.org/10.1039/d0ee00399a
- S.C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi et al., Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020). https://doi.org/10.1038/s41893-020-0566-x
- M. Morciano, M. Fasano, S.V. Boriskina, E. Chiavazzo, P. Asinari, Solar passive distiller with high productivity and marangoni effect-driven salt rejection. Energy Environ. Sci. 13, 3646–3655 (2020). https://doi.org/10.1039/d0ee01440k
- Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578
References
M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323
S. Hoffman, Planet Water: Investing in the World’s Most Valuable Resource (John Wiley and Sons, Hoboken, NJ, USA, 2009)
M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011). https://doi.org/10.1126/science.1200488
P. Tao, G. Ni, C. Song, W. Shang, J. Wu et al., Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018). https://doi.org/10.1038/s41560-018-0260-7
Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019). https://doi.org/10.1039/c9ee00692c
Y. Zhang, L. Wu, X. Wang, J. Yu, B. Ding, Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 11, 3302 (2020). https://doi.org/10.1038/s41467-020-17118-3
L. Wang, X. Zhang, Y. Xia, X. Zhao, Z. Xue et al., Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions. Adv. Mater. 31, 1902381 (2019). https://doi.org/10.1002/adma.201902381
C.J. Chen, Y.D. Kuang, L.B. Hu, Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8, 2002501 (2021). https://doi.org/10.1002/advs.202002501
B. Gong, H. Yang, S. Wu, G. Xiong, J. Yan et al., Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Lett. 11, 51 (2019). https://doi.org/10.1007/s40820-019-0281-1
X. Zhao, X. Zha, J. Pu, L. Bai, R. Bao et al., Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 7, 10446–10455 (2019). https://doi.org/10.1039/c9ta00176j
M.M. Gao, L.L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019). https://doi.org/10.1039/c8ee01146j
X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31, 2102618 (2021). https://doi.org/10.1002/adfm.202102618
M. Gao, C.K. Peh, L. Zhu, G. Yilmaz, G.W. Ho, Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Adv. Energy Mater. 10, 2000925 (2020). https://doi.org/10.1002/aenm.202000925
J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng et al., High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017). https://doi.org/10.1002/adma.201603730
L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang et al., Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017). https://doi.org/10.1016/j.nanoen.2016.12.031
Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki et al., Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015). https://doi.org/10.1002/adma.201501832
B. Shao, X. Wu, Y. Wang, T. Gao, Z.-Q. Liu et al., A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J. Mater. Chem. A 8, 24703–24709 (2020). https://doi.org/10.1039/d0ta08539a
L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015). https://doi.org/10.1002/adma.201502362
Y. Shi, R. Li, Y. Jin, S. Zhuo, L. Shi et al., A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018). https://doi.org/10.1016/j.joule.2018.03.013
Y.X. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7, 1903478 (2020). https://doi.org/10.1002/advs.201903478
S. Hong, Y. Shi, R. Li, C. Zhang, Y. Jin et al., Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517–28524 (2018). https://doi.org/10.1021/acsami.8b07150
Y. Wang, C. Wang, X. Song, M. Huang, S.K. Megarajan et al., Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 6, 9874–9881 (2018). https://doi.org/10.1039/c8ta01469h
S. Chen, Z. Sun, W. Xiang, C. Shen, Z. Wang et al., Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy 76, 104998 (2020). https://doi.org/10.1016/j.nanoen.2020.104998
W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31, 1900720 (2019). https://doi.org/10.1002/adma.201900720
X. Dong, L. Cao, Y. Si, B. Ding, H. Deng, Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 32, 1908269 (2020). https://doi.org/10.1002/adma.201908269
X. Hu, W. Xu, L. Zhou, Y. Tan, Y. Wang et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017). https://doi.org/10.1002/adma.201604031
H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao et al., High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616
X. Zhang, Z. Wang, L. Song, Y. Feng, J. Yao, Chinese ink enabled wood evaporator for continuous water desalination. Desalination 496, 114727 (2020). https://doi.org/10.1016/j.desal.2020.114727
X. Dong, Y. Si, C. Chen, B. Ding, H. Deng, Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 15, 12256–12266 (2021). https://doi.org/10.1021/acsnano.1c04035
S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019). https://doi.org/10.1039/c9ee00945k
C. Liu, K. Hong, X. Sun, A. Natan, P. Luan et al., An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. J. Mater. Chem. A 8, 12323–12333 (2020). https://doi.org/10.1039/d0ta03872e
X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Natl. Acad. Sci. USA 113, 13953–13958 (2016). https://doi.org/10.1073/pnas.1613031113
B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia et al., Flexible and washable CNT-embedded pan nonwoven fabrics for solar-enabled evaporation and desalination of seawater. ACS Appl. Mater. Interfaces 11, 35005–35014 (2019). https://doi.org/10.1021/acsami.9b12806
Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, 1900498 (2019). https://doi.org/10.1002/adma.201900498
W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li et al., Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018). https://doi.org/10.1002/aenm.201702884
Y. Yang, X. Yang, L. Fu, M. Zou, A. Cao et al., Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. ACS Energy Lett. 3, 1165–1171 (2018). https://doi.org/10.1021/acsenergylett.8b00433
Q. Zhang, G. Yi, Z. Fu, H. Yu, S. Chen et al., Vertically aligned janus mxene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 13, 13196–13207 (2019). https://doi.org/10.1021/acsnano.9b06180
H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion. Nano Lett. 17, 384–391 (2017). https://doi.org/10.1021/acs.nanolett.6b04339
I. Ihsanullah, Potential of mxenes in water desalination: current status and perspectives. Nano-Micro Lett. 12, 72 (2020). https://doi.org/10.1007/s40820-020-0411-9
R. Li, L. Zhang, L. Shi, P. Wang, MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). https://doi.org/10.1021/acsnano.6b08415
X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29, 1607017 (2017). https://doi.org/10.1002/adma.201607017
X. Fan, Y. Yang, X. Shi, Y. Liu, H. Li et al., A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 30, 2007110 (2020). https://doi.org/10.1002/adfm.202007110
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori et al., Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1701264 (2017). https://doi.org/10.1002/adfm.201701264
G. Cai, J.H. Ciou, Y. Liu, Y. Jiang, P.S. Lee, Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. Sci. Adv. 5, eaaw7956 (2019). https://doi.org/10.1126/sciadv.aaw7956
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco et al., Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111
M. Liu, S. Wang, L. Jiang, Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017). https://doi.org/10.1038/natrevmats.2017.36
J. Lekner, M.C. Dorf, Why some things are darker when wet. Appl. Opt. 27, 1278–1280 (1988). https://doi.org/10.1364/ao.27.001278
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016). https://doi.org/10.1002/anie.201606643
J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011). https://doi.org/10.1021/ja2010175
L. Cheng, J. Liu, X. Gu, H. Gong, X. Shi et al., PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26, 1886–1893 (2014). https://doi.org/10.1002/adma.201304497
Z. Sun, H. Xie, S. Tang, X.F. Yu, Z. Guo et al., Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54, 11526–11530 (2015). https://doi.org/10.1002/anie.201506154
Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29, 1905485 (2019). https://doi.org/10.1002/adfm.201905485
H. Kou, Z. Liu, B. Zhu, D.K. Macharia, S. Ahmed et al., Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 462, 29–38 (2019). https://doi.org/10.1016/j.desal.2019.04.005
L. Wu, Z. Dong, Z. Cai, T. Ganapathy, N.X. Fang et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020). https://doi.org/10.1038/s41467-020-14366-1
L. Song, P. Mu, L. Geng, Q. Wang, J. Li, A novel salt-rejecting linen fabric-based solar evaporator for stable and efficient water desalination under highly saline water. ACS Sustain. Chem. Eng. 8, 11845–11852 (2020). https://doi.org/10.1021/acssuschemeng.0c04407
Y. Li, X. Jin, Y. Zheng, W. Li, F. Zheng et al., Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation. ACS Appl. Mater. Interfaces 11, 4612266–4646946 (2019). https://doi.org/10.1021/acsami.9b17360
Q. Qi, Y. Wang, W. Wang, X. Ding, D. Yu, High-efficiency solar evaporator prepared by one-step carbon nanotubes loading on cotton fabric toward water purification. Sci. Total Environ. 698, 134136 (2020). https://doi.org/10.1016/j.scitotenv.2019.134136
J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han et al., A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 6, 16196–16204 (2018). https://doi.org/10.1039/c8ta05569f
Q. Zhang, Z. Fu, H. Yu, S. Chen, Nanoplating of a SnO2 thin-film on MXene-based sponge for stable and efficient solar energy conversion. J. Mater. Chem. A 8, 8065–8074 (2020). https://doi.org/10.1039/d0ta01258k
X.J. Zha, X. Zhao, J.H. Pu, L.S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11, 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
Y. Zhou, T. Ding, M. Gao, K.H. Chan, Y. Cheng et al., Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 77, 105102 (2020). https://doi.org/10.1016/j.nanoen.2020.105102
T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021). https://doi.org/10.1016/j.mattod.2020.10.022
Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou et al., Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy Environ. Sci. 13, 2087–2095 (2020). https://doi.org/10.1039/d0ee00399a
S.C. Singh, M. ElKabbash, Z. Li, X. Li, B. Regmi et al., Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. 3, 938–946 (2020). https://doi.org/10.1038/s41893-020-0566-x
M. Morciano, M. Fasano, S.V. Boriskina, E. Chiavazzo, P. Asinari, Solar passive distiller with high productivity and marangoni effect-driven salt rejection. Energy Environ. Sci. 13, 3646–3655 (2020). https://doi.org/10.1039/d0ee01440k
Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu et al., Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation. ACS Nano 15, 10366–10376 (2021). https://doi.org/10.1021/acsnano.1c02578