Rational Electrolyte Structure Engineering for Highly Reversible Zinc Metal Anode in Aqueous Batteries
Corresponding Author: Junwu Zhu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 102
Abstract
Aqueous zinc-ion batteries (AZIBs) have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety, cost-effectiveness, and competitive gravimetric energy density. However, their practical commercialization is hindered by critical challenges on the anode side, including dendrite growth and parasitic reactions at the anode/electrolyte interface. Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode. In this review, we systematically summarize state-of-the-art strategies for electrolyte optimization, with a particular focus on the zinc salts regulation, electrolyte additives, and the construction of novel electrolytes, while elucidating the underlying design principles. We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes. Finally, future perspectives on advanced electrolyte design are proposed. This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.
Highlights:
1 This review systematically summarizes the electrochemical principles governing Zn2+ nucleation and deposition, elucidating their intrinsic correlations.
2 The review discusses zinc salt optimization, electrolyte additives, and novel electrolyte designs, providing mechanistic insights into anodic Zn2+ electrodeposition.
3 The review proposes future directions for aqueous zinc metal anode, including dynamic reconstruction, AI-guided additive screening, etc.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.T. Boyle, W. Huang, H. Wang, Y. Li, H. Chen et al., Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6(5), 487–494 (2021). https://doi.org/10.1038/s41560-021-00787-9
- Y. Zhang, E.H. Ang, K.N. Dinh, K. Rui, H. Lin et al., Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Mater. Chem. Front. 5(2), 744–762 (2021). https://doi.org/10.1039/D0QM00577K
- S.-J. Yang, L.-L. Zhao, Z.-X. Li, P. Wang, Z.-L. Liu et al., Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coord. Chem. Rev. 517, 216044 (2024). https://doi.org/10.1016/j.ccr.2024.216044
- C.J.M. Melief, Smart delivery of vaccines. Nat. Mater. 17(6), 482–483 (2018). https://doi.org/10.1038/s41563-018-0085-6
- Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- Y. Ai, C. Yang, Z. Yin, T. Wang, T. Gai et al., Biomimetic superstructured interphase for aqueous zinc-ion batteries. J. Am. Chem. Soc. 146(22), 15496–15505 (2024). https://doi.org/10.1021/jacs.4c03943
- S. Li, D. Yu, L. Liu, S. Yao, X. Wang et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nanocomposite enabling long-lived aqueous zinc-ion batteries. Chem. Eng. J. 430, 132673 (2022). https://doi.org/10.1016/j.cej.2021.132673
- L. Huang, J. Pu, Y. Zhao, X. Fang, Y. Yu et al., Phosphorus-doped carbon as an effective protective layer for advanced aqueous zinc-ion batteries. Chin. Chem. Lett. 36(8), 110989 (2025). https://doi.org/10.1016/j.cclet.2025.110989
- J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
- G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), 2400370 (2024). https://doi.org/10.1002/adma.202400370
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
- Z. Hu, F. Zhang, F. Wu, H. Wang, A. Zhou et al., Screening metal cation additives driven by differential capacitance for Zn batteries. Energy Environ. Sci. 17(13), 4794–4802 (2024). https://doi.org/10.1039/d4ee01127a
- K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
- Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
- H. Saboorian-Jooybari, Z. Chen, Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions. Results Phys. 15, 102501 (2019). https://doi.org/10.1016/j.rinp.2019.102501
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
- C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- X. Zhou, Q. Zhang, Z. Hao, Y. Ma, O.A. Drozhzhin et al., Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy. ACS Appl. Mater. Interfaces 13(44), 53227–53234 (2021). https://doi.org/10.1021/acsami.1c16263
- Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
- F. Lionetto, N. Arianpouya, B. Bozzini, A. Maffezzoli, M. Nematollahi et al., Advances in zinc-ion structural batteries. J. Energy Storage 84, 110849 (2024). https://doi.org/10.1016/j.est.2024.110849
- D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
- Y. Ma, Q. Ma, Y. Liu, Y. Tan, Y. Zhang et al., Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes. Energy Storage Mater. 63, 103032 (2023). https://doi.org/10.1016/j.ensm.2023.103032
- Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
- H. Zhang, F. Ning, Y. Guo, S. Subhan, X. Liu et al., Unraveling the mechanisms of aqueous zinc ion batteries via first-principles calculations. ACS Energy Lett. 9(10), 4761–4784 (2024). https://doi.org/10.1021/acsenergylett.4c02014
- C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009
- G. Xu, C. Pang, B. Chen, J. Ma, X. Wang et al., Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy Mater. 8(9), 1701398 (2018). https://doi.org/10.1002/aenm.201701398
- B. Li, Y. Chao, M. Li, Y. Xiao, R. Li et al., A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev. 6(1), 7 (2023). https://doi.org/10.1007/s41918-022-00147-5
- S. Wang, Y. Ying, S. Chen, H. Wang, K.K.K. Cheung et al., Highly reversible zinc metal anode enabled by zinc fluoroborate salt-based hydrous organic electrolyte. Energy Storage Mater. 63, 102971 (2023). https://doi.org/10.1016/j.ensm.2023.102971
- H. Tian, J.-L. Yang, Y. Deng, W. Tang, R. Liu et al., Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 13(1), 2202603 (2023). https://doi.org/10.1002/aenm.202202603
- T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
- C. Li, G. Qu, X. Zhang, C. Wang, X. Xu, Electrode/electrolyte interfacial chemistry modulated by chelating effect for high-performance zinc anode. Energy Environ. Mater. 7(3), e12608 (2024). https://doi.org/10.1002/eem2.12608
- T. Wei, L.-E. Mo, Y. Ren, H. Zhang, M. Wang et al., Non-sacrificial anionic surfactant with high HOMO energy level as a general descriptor for zinc anode. Energy Storage Mater. 70, 103525 (2024). https://doi.org/10.1016/j.ensm.2024.103525
- P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/c8ee01286e
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- G. Kasiri, R. Trócoli, A. Bani Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
- N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: application in rechargeable zinc batteries. J. Colloid Interface Sci. 342(2), 505–512 (2010). https://doi.org/10.1016/j.jcis.2009.10.034
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
- Y. Wu, N. Wang, H. Liu, R. Cui, J. Gu et al., Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J. Colloid Interface Sci. 629, 916–925 (2023). https://doi.org/10.1016/j.jcis.2022.09.022
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- F. Sun, Q. Tang, D.-E. Jiang, Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 12(14), 8404–8433 (2022). https://doi.org/10.1021/acscatal.2c02081
- F. Zhang, T. Liao, Q. Zhou, J. Bai, X. Li et al., Advancements in ion regulation strategies for enhancing the performance of aqueous Zn-ion batteries. Mater. Sci. Eng. R. Rep. 165, 101012 (2025). https://doi.org/10.1016/j.mser.2025.101012
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang et al., Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
- Q. Meng, T. Yan, Y. Wang, X. Lu, H. Zhou et al., Critical design strategy of electrolyte engineering toward aqueous zinc-ion battery. Chem. Eng. J. 497, 154541 (2024). https://doi.org/10.1016/j.cej.2024.154541
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9(10), 6013–6028 (2021). https://doi.org/10.1039/D0TA09111A
- D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- N. Patil, C. de la Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11(26), 2100939 (2021). https://doi.org/10.1002/aenm.202100939
- Y. Gui, Y. Lei, B.A. Fan, Investigation on the effect of different mild acidic electrolyte on ZIBs electrode/electrolyte interface and the performance improvements with the optimized cathode. Front. Chem. 8, 827 (2020). https://doi.org/10.3389/fchem.2020.00827
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang et al., Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- Y. Wang, W. Yan, X. Zhu, J. Li, Z. Li et al., Boosting performance of quasi-solid-state zinc ion batteries via zincophilic solubilization. Angew. Chem. Int. Ed. 64(35), e202508556 (2025). https://doi.org/10.1002/anie.202508556
- C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2022). https://doi.org/10.1007/s12598-021-01778-1
- L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu et al., Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 18, 100509 (2020). https://doi.org/10.1016/j.mtener.2020.100509
- Y. Fan, X. Yao, G. Wang, Y. Xie, T. Wu et al., Interlayer spacing optimization combined with zinc-philic engineering fostering efficient Zn2+ storage of V2CTx MXenes for aqueous zinc-ion batteries. Small 21(10), 2408930 (2025). https://doi.org/10.1002/smll.202408930
- C. Ma, X. Wang, W. Lu, K. Yang, N. Chen et al., Dual-parasitic effect enables highly reversible Zn metal anode for ultralong 25,000 cycles aqueous zinc-ion batteries. Nano Lett. 24(13), 4020–4028 (2024). https://doi.org/10.1021/acs.nanolett.4c00873
- X. Shi, J. Zeng, A. Yi, F. Wang, X. Liu et al., Unveiling the failure mechanism of Zn anodes in zinc trifluorosulfonate electrolyte: the role of micelle-like structures. J. Am. Chem. Soc. 146(29), 20508–20517 (2024). https://doi.org/10.1021/jacs.4c07015
- X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8(2), 1192–1200 (2023). https://doi.org/10.1021/acsenergylett.2c02455
- L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
- D. Li, T. Sun, T. Ma, W. Zhang, Q. Sun et al., Regulating Zn2+ solvation shell through charge-concentrated anions for high Zn plating/stripping coulombic efficiency. Adv. Funct. Mater. 34(44), 2405145 (2024). https://doi.org/10.1002/adfm.202405145
- D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62(1), e202215060 (2023). https://doi.org/10.1002/anie.202215060
- P. He, J. Liu, X. Zhao, Z. Ding, P. Gao et al., A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J. Mater. Chem. A 8(20), 10370–10376 (2020). https://doi.org/10.1039/D0TA03165H
- Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
- C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
- J. Chen, Z. Yan, K. Li, A. Hu, B. Yang et al., Regulating the relationship between Zn2+ and water molecules in electrolytes for aqueous zinc-based batteries. Battery Energy 3(2), 20230063 (2024). https://doi.org/10.1002/bte2.20230063
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
- B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang et al., High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3(5), 4499–4508 (2020). https://doi.org/10.1021/acsaem.0c00183
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- L. Li, S. Liu, W. Liu, D. Ba, W. Liu et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K0.486V2O5 cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13(1), 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
- X. Zhong, F. Wang, Y. Ding, L. Duan, F. Shi et al., Water-in-salt electrolyte Zn/LiFePO4 batteries. J. Electroanal. Chem. 867, 114193 (2020). https://doi.org/10.1016/j.jelechem.2020.114193
- L. Liu, X. Jiang, X. Wang, X. Li, Y. Liu et al., Inhibiting the zinc anodes corrosion to achieve ultra-stable high temperature aqueous zinc-ion hybrid supercapacitors. J. Power Source 622, 235368 (2024). https://doi.org/10.1016/j.jpowsour.2024.235368
- H. Zhang, X. Liu, B. Qin, S. Passerini, Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. J. Power Source 449, 227594 (2020). https://doi.org/10.1016/j.jpowsour.2019.227594
- A. Clarisza, H.K. Bezabh, S.-K. Jiang, C.-J. Huang, B.W. Olbasa et al., Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 14(32), 36644–36655 (2022). https://doi.org/10.1021/acsami.2c09040
- J. Han, A. Mariani, A. Varzi, S. Passerini, Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J. Power Source 485, 229329 (2021). https://doi.org/10.1016/j.jpowsour.2020.229329
- J. Han, A. Mariani, M. Zarrabeitia, Z. Jusys, R.J. Behm et al., Zinc-ion hybrid supercapacitors employing acetate-based water-in-salt electrolytes. Small 18(31), 2201563 (2022). https://doi.org/10.1002/smll.202201563
- Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/D1TA10122F
- G. Yang, J. Huang, X. Wan, B. Liu, Y. Zhu et al., An aqueous zinc-ion battery working at −50℃ enabled by low-concentration perchlorate-based chaotropic salt electrolyte. EcoMat 4(2), e12165 (2022). https://doi.org/10.1002/eom2.12165
- W. Cheng, M. Zhao, Y. Lai, X. Wang, H. Liu et al., Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 4(1), 20230056 (2024). https://doi.org/10.1002/EXP.20230056
- X. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang et al., Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(46), e202312193 (2023). https://doi.org/10.1002/anie.202312193
- T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
- S. Yang, Y. Zhao, C. Zhi, Insights into the role of electrolyte additives for stable Zn anodes. Energy Mater. 5(2), 500021 (2025). https://doi.org/10.20517/energymater.2024.169
- F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
- S. Bertolini, A. Delcorte, P. Venezuela, Understanding the self-healing electrostatic shield mechanism at the lithium–metal anode surface. Chem. Mater. 36(17), 8477–8487 (2024). https://doi.org/10.1021/acs.chemmater.4c01601
- Y. Yuan, S.D. Pu, M.A. Pérez-Osorio, Z. Li, S. Zhang et al., Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 36(9), 2307708 (2024). https://doi.org/10.1002/adma.202307708
- Y. Xu, J. Zhu, J. Feng, Y. Wang, X. Wu et al., A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Mater. 38, 299–308 (2021). https://doi.org/10.1016/j.ensm.2021.03.019
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- P. Wang, X. Xie, Z. Xing, X. Chen, G. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11(30), 2101158 (2021). https://doi.org/10.1002/aenm.202101158
- J. Cao, Y. Jin, H. Wu, Y. Yue, D. Zhang et al., Enhancing zinc anode stability with gallium ion-induced electrostatic shielding and oriented plating. Adv. Energy Mater. 15(6), 2403175 (2025). https://doi.org/10.1002/aenm.202403175
- X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu et al., Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries. Small 19(52), 2303906 (2023). https://doi.org/10.1002/smll.202303906
- Z. Peng, H. Yan, Q. Zhang, S. Liu, S.C. Jun et al., Stabilizing zinc anode through ion selection sieving for aqueous Zn-ion batteries. Nano Lett. 24(30), 9137–9146 (2024). https://doi.org/10.1021/acs.nanolett.4c00693
- J. Yang, M. Qiu, M. Zhu, C. Weng, Y. Li et al., Biomacromolecule guiding construction of effective interface layer for ultra-stable zinc anode. Energy Storage Mater. 67, 103287 (2024). https://doi.org/10.1016/j.ensm.2024.103287
- J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224
- W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
- F. Jing, L. Xu, Y. Shang, G. Chen, C. Lv et al., Interface engineering enabled by sodium dodecyl sulfonate surfactant for stable Zn metal batteries. J. Colloid Interface Sci. 669, 984–991 (2024). https://doi.org/10.1016/j.jcis.2024.05.059
- L. Peng, X. Ren, Z. Liang, Y. Sun, Y. Zhao et al., Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Mater. 42, 34–41 (2021). https://doi.org/10.1016/j.ensm.2021.07.015
- K. Xie, K. Ren, C. Sun, S. Yang, M. Tong et al., Toward stable zinc-ion batteries: use of a chelate electrolyte additive for uniform zinc deposition. ACS Appl. Energy Mater. 5(4), 4170–4178 (2022). https://doi.org/10.1021/acsaem.1c03558
- S.-H. Huh, Y.J. Choi, S.H. Kim, J.-S. Bae, S.-H. Lee et al., Enabling uniform zinc deposition by zwitterion additives in aqueous zinc metal anodes. J. Mater. Chem. A 11(36), 19384–19395 (2023). https://doi.org/10.1039/D3TA01943H
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
- H. Du, R. Zhao, Y. Yang, Z. Liu, L. Qie et al., High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(10), e202114789 (2022). https://doi.org/10.1002/anie.202114789
- L. Ding, L. Wang, J. Gao, T. Yan, H. Li et al., Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries. Adv. Funct. Mater. 33(32), 2301648 (2023). https://doi.org/10.1002/adfm.202301648
- W. Ma, S. Wang, X. Wu, W. Liu, F. Yang et al., Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ. Sci. 17(14), 4819–4846 (2024). https://doi.org/10.1039/d4ee00313f
- Y. Xie, Q. Dou, G. Li, Y. Chen, X. Yan, Regulating the solvation environment of hybrid electrolytes towards high-temperature zinc-ion storage. Energy Mater 5(3), 500025 (2025). https://doi.org/10.20517/energymater.2024.183
- B. Song, Q. Lu, X. Wang, P. Xiong, Promoted de-solvation effect and dendrite-free Zn deposition enabled by in-situ formed interphase layer for high-performance zinc-ion batteries. Energy Mater. 5(3), 500031 (2025). https://doi.org/10.20517/energymater.2024.182
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), 2207344 (2022). https://doi.org/10.1002/adma.202207344
- M. Qiu, P. Sun, G. Cui, W. Mai, Chaotropic polymer additive with ion transport tunnel enable dendrite-free zinc battery. ACS Appl. Mater. Interfaces 14(36), 40951–40958 (2022). https://doi.org/10.1021/acsami.2c10517
- G. Guo, C. Ji, H. Mi, C. Yang, M. Li et al., Zincophilic anionic hydrogel electrolyte with interfacial specific adsorption of solvation structures for durable zinc ion hybrid supercapacitors. Adv. Funct. Mater. 34(2), 2308405 (2024). https://doi.org/10.1002/adfm.202308405
- B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang et al., Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ. Sci. 16(4), 1662–1675 (2023). https://doi.org/10.1039/D2EE04023A
- K. Ouyang, F. Li, D. Ma, Y. Wang, S. Shen et al., Trace-additive-mediated hydrophobic structure editing of aqueous zinc metal batteries for enabling all-climate long-term operation. ACS Energy Lett. 8(12), 5229–5239 (2023). https://doi.org/10.1021/acsenergylett.3c01872
- D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(7), e202216934 (2023). https://doi.org/10.1002/anie.202216934
- T. Zhao, H. Wu, X. Wen, J. Zhang, H. Tang et al., Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coord. Chem. Rev. 468, 214642 (2022). https://doi.org/10.1016/j.ccr.2022.214642
- W. Wu, Y. Deng, G. Chen, A self-repairing polymer-inorganic composite coating to enable high-performance Zn anodes for zinc-ion batteries. Chin. Chem. Lett. 34(12), 108424 (2023). https://doi.org/10.1016/j.cclet.2023.108424
- L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
- H. Cheng, S. Zhang, W. Guo, Q. Wu, Z. Shen et al., Hydrolysis of solid buffer enables high-performance aqueous zinc ion battery. Adv. Sci. 11(7), 2307052 (2024). https://doi.org/10.1002/advs.202307052
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn(2+)-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), e2007416 (2021). https://doi.org/10.1002/adma.202007416
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- D. Luo, X. Ma, P. Du, Z. Chen, Q. Lin et al., Reconstructing solvation structure by steric hindrance-coordination push-pull of dipolymer-H2O-Zn2+ toward long-life aqueous zinc-metal batteries. Angew. Chem. Int. Ed. 63(28), e202401163 (2024). https://doi.org/10.1002/anie.202401163
- H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
- H. Yin, H. Wu, Y. Yang, S. Yao, P. Han et al., Electrical double layer and in situ polymerization SEI enables high reversible zinc metal anode. Small 20(50), 2404367 (2024). https://doi.org/10.1002/smll.202404367
- H. Wu, H. Yin, H. Tian, J. Yang, R. Liu, Stable Zn-metal anode enabled by solvation structure modulation and in situ SEI layer construction. Energy Environ. Mater. 8(2), e12839 (2025). https://doi.org/10.1002/eem2.12839
- W. Shao, C. Li, C. Wang, G. Du, S. Zhao et al., Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chin. Chem. Lett. 36(3), 109531 (2025). https://doi.org/10.1016/j.cclet.2024.109531
- H. Wu, H.-T. Yin, J.-L. Yang, R. Liu, Chelation effect induced robust biomass protective layer for aqueous Zn metal anode. Adv. Energy Mater. 15(30), 2501359 (2025). https://doi.org/10.1002/aenm.202501359
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
- H. Wang, A. Zhou, X. Hu, Z. Hu, F. Zhang et al., Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023). https://doi.org/10.1021/acsnano.3c04155
- S. Zhang, J. Li, B. Jin, M. Shao, Oriented zinc metal anode based on directional recognition and assembly. Small 19(38), 2301874 (2023). https://doi.org/10.1002/smll.202301874
- L. Wang, Y. Shao, Z. Fu, X. Zhang, J. Kang et al., Synergistically enhancing the selective adsorption for crystal planes to regulate the (002)-texture preferred Zn deposition via supramolecular host–guest units. Energy Environ. Sci. 18(10), 4859–4871 (2025). https://doi.org/10.1039/d5ee00763a
- Y. Lu, T. Wang, Z. Li, H. Cheng, K. Peng et al., Epitaxial deposition of Zn (002) for stable zinc metal anodes. Chem. Eng. J. 458, 141509 (2023). https://doi.org/10.1016/j.cej.2023.141509
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
- X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
- Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
- M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17(9), 3168–3178 (2024). https://doi.org/10.1039/D3EE04360F
- Y. Yan, C. Shu, T. Zeng, X. Wen, S. Liu et al., Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano 16(6), 9150–9162 (2022). https://doi.org/10.1021/acsnano.2c01380
- H.B. Jeong, D.I. Kim, G. Yoo, D. Mohan, A. Roy et al., Selective control of sharp-edge zinc electrodes with (002) plane for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 12(25), 15265–15277 (2024). https://doi.org/10.1039/D4TA01013B
- K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
- R. Deng, Z. He, F. Chu, J. Lei, Y. Cheng et al., An aqueous electrolyte densified by perovskite SrTiO(3) enabling high-voltage zinc-ion batteries. Nat. Commun. 14(1), 4981 (2023). https://doi.org/10.1038/s41467-023-40462-z
- Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
- J. Yang, Z. Ji, M. Deng, C. Weng, X. Wang et al., Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries. Mater. Horiz. 12(16), 6383–6394 (2025). https://doi.org/10.1039/d5mh00668f
- D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long‐lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
- G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- D. Kumar, L.R. Franco, N. Abdou, R. Shu, A. Martinelli et al., Water-in-polymer salt electrolyte for long-life rechargeable aqueous zinc-lignin battery. Energy Environ. Mater. 8(1), e12752 (2025). https://doi.org/10.1002/eem2.12752
- Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35(36), 2300369 (2023). https://doi.org/10.1002/adma.202300369
- Z. Ali Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/D1TA10122F
- Y. Shen, B. Liu, X. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
- R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
- L. Jiang, L. Yao, G. Wang, C. Liu, X. Chi et al., Long-duration aqueous Zn-ion batteries achieved by dual-salt highly-concentrated electrolyte with low water activity. J. Energy Chem. 101, 778–785 (2025). https://doi.org/10.1016/j.jechem.2024.09.060
- J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36(17), e2306508 (2024). https://doi.org/10.1002/adma.202306508
- J. Li, H. Zhang, Z. Liu, H. Du, H. Wan et al., Boosting dendrite-free zinc anode with strongly polar functional group terminated hydrogel electrolyte for high-safe aqueous zinc-ion batteries. Adv. Funct. Mater. 35(2), 2412865 (2025). https://doi.org/10.1002/adfm.202412865
- R. Qi, W. Tang, Y. Shi, K. Teng, Y. Deng et al., Gel polymer electrolyte toward large-scale application of aqueous zinc batteries. Adv. Funct. Mater. 33(47), 2306052 (2023). https://doi.org/10.1002/adfm.202306052
- Z. Zeng, S. Liao, G. Ma et al., High-conductivity and ultrastretchable self-healing hydrogels for flexible zinc-ion batteries. ACS Appl. Mater. Interfaces 16(43), 58961–58972 (2024). https://doi.org/10.1021/acsami.4c13058
- Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), 2104832 (2022). https://doi.org/10.1002/advs.202104832
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- S. Li, X. Fan, X. Liu, Z. Zhao, W. Xu et al., Potassium polyacrylate-based gel polymer electrolyte for practical Zn–Ni batteries. ACS Appl. Mater. Interfaces 14(20), 22847–22857 (2022). https://doi.org/10.1021/acsami.1c20999
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
- Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
- Q. Deng, W. Zhou, H. Wang, Q. Ma, C. Li et al., Design of a polymer electrolyte membrane for enhanced zinc anode stability in reversible aqueous zinc-ion batteries. Energy Mater. 5(9), 500103 (2025). https://doi.org/10.20517/energymater.2024.299
- L. Sun, Y. Yao, L. Dai, M. Jiao, B. Ding et al., Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 47, 187–194 (2022). https://doi.org/10.1016/j.ensm.2022.02.012
- P. Samanta, S. Ghosh, H. Kolya, C.-W. Kang, N.C. Murmu et al., Molecular crowded ″water-in-salt″ polymer gel electrolyte for an ultra-stable Zn-ion battery. ACS Appl. Mater. Interfaces 14(1), 1138–1148 (2022). https://doi.org/10.1021/acsami.1c21189
- Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
- Z. Sun, Q. Ou, C. Dong, J. Zhou, H. Hu et al., Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 4(5), 20220167 (2024). https://doi.org/10.1002/EXP.20220167
- M. Xu, J. Liao, J. Li, Y. Shi, Z. Zhang et al., Elastic nanop-reinforced, conductive structural color hydrogel with super stretchability, self-adhesion, self-healing as electrical/optical dual-responsive visual electronic skins. Exploration 5(2), 270008 (2025). https://doi.org/10.1002/EXP.70008
- L. Sun, B. Zheng, W. Liu, Constructing high-throughput and highly adsorptive lithium–sulfur battery separator coatings based on three-dimensional hexagonal star-shaped MOF derivatives. J. Colloid Interface Sci. 679, 197–205 (2025). https://doi.org/10.1016/j.jcis.2024.09.208
- W. Liu, C. Li, D. Li, G. Qu, M. Kong et al., Constructing zinc-tin alloy interface for highly stable alkaline zinc anode. Chin. Chem. Lett. 36(7), 110152 (2025). https://doi.org/10.1016/j.cclet.2024.110152
- Y. Zhang, Z. Hu, Y. Bi et al., Cold-pressing strategy for constructing simple and high-performance dendrite-free zinc anodes for aqueous zinc-ion batteries. ACS Sustain. Chem. Eng. 13(14), 5381–5393 (2025). https://doi.org/10.1021/acssuschemeng.5c00832
- J. Chen, L. Ren, X. Chen, Q. Wang, C. Chen et al., Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 5(2), 20230036 (2025). https://doi.org/10.1002/EXP.20230036
- J. Wang, C.-F. Du, Y. Xue, X. Tan, J. Kang et al., MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 1(2), 20210024 (2021). https://doi.org/10.1002/EXP.20210024
- X. Chen, P. Gao, W. Li, N.A. Thieu, Z.M. Grady et al., Stabilizing Zn anodes by molecular interface engineering with amphiphilic triblock copolymer. ACS Energy Lett. 9(4), 1654–1665 (2024). https://doi.org/10.1021/acsenergylett.3c02824
- B. Ye, F. Wu, R. Zhao, H. Zhu, M. Lv et al., Electrolyte regulation toward cathodes with enhanced-performance in aqueous zinc ion batteries. Adv. Mater. 37(15), 2501538 (2025). https://doi.org/10.1002/adma.202501538
References
D.T. Boyle, W. Huang, H. Wang, Y. Li, H. Chen et al., Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6(5), 487–494 (2021). https://doi.org/10.1038/s41560-021-00787-9
Y. Zhang, E.H. Ang, K.N. Dinh, K. Rui, H. Lin et al., Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Mater. Chem. Front. 5(2), 744–762 (2021). https://doi.org/10.1039/D0QM00577K
S.-J. Yang, L.-L. Zhao, Z.-X. Li, P. Wang, Z.-L. Liu et al., Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coord. Chem. Rev. 517, 216044 (2024). https://doi.org/10.1016/j.ccr.2024.216044
C.J.M. Melief, Smart delivery of vaccines. Nat. Mater. 17(6), 482–483 (2018). https://doi.org/10.1038/s41563-018-0085-6
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021). https://doi.org/10.1016/j.mattod.2020.12.003
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
Y. Ai, C. Yang, Z. Yin, T. Wang, T. Gai et al., Biomimetic superstructured interphase for aqueous zinc-ion batteries. J. Am. Chem. Soc. 146(22), 15496–15505 (2024). https://doi.org/10.1021/jacs.4c03943
S. Li, D. Yu, L. Liu, S. Yao, X. Wang et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nanocomposite enabling long-lived aqueous zinc-ion batteries. Chem. Eng. J. 430, 132673 (2022). https://doi.org/10.1016/j.cej.2021.132673
L. Huang, J. Pu, Y. Zhao, X. Fang, Y. Yu et al., Phosphorus-doped carbon as an effective protective layer for advanced aqueous zinc-ion batteries. Chin. Chem. Lett. 36(8), 110989 (2025). https://doi.org/10.1016/j.cclet.2025.110989
J. Wei, P. Zhang, J. Sun, Y. Liu, F. Li et al., Advanced electrolytes for high-performance aqueous zinc-ion batteries. Chem. Soc. Rev. 53(20), 10335–10369 (2024). https://doi.org/10.1039/d4cs00584h
G. Qu, H. Wei, S. Zhao, Y. Yang, X. Zhang et al., A temperature self-adaptive electrolyte for wide-temperature aqueous zinc-ion batteries. Adv. Mater. 36(29), 2400370 (2024). https://doi.org/10.1002/adma.202400370
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
L. Jiang, D. Li, X. Xie, D. Ji, L. Li et al., Electric double layer design for Zn-based batteries. Energy Storage Mater. 62, 102932 (2023). https://doi.org/10.1016/j.ensm.2023.102932
Z. Hu, F. Zhang, F. Wu, H. Wang, A. Zhou et al., Screening metal cation additives driven by differential capacitance for Zn batteries. Energy Environ. Sci. 17(13), 4794–4802 (2024). https://doi.org/10.1039/d4ee01127a
K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12(9), 2103557 (2022). https://doi.org/10.1002/aenm.202103557
Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
H. Saboorian-Jooybari, Z. Chen, Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions. Results Phys. 15, 102501 (2019). https://doi.org/10.1016/j.rinp.2019.102501
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
X. Zhou, Q. Zhang, Z. Hao, Y. Ma, O.A. Drozhzhin et al., Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy. ACS Appl. Mater. Interfaces 13(44), 53227–53234 (2021). https://doi.org/10.1021/acsami.1c16263
Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023). https://doi.org/10.1007/s40820-023-01136-z
F. Lionetto, N. Arianpouya, B. Bozzini, A. Maffezzoli, M. Nematollahi et al., Advances in zinc-ion structural batteries. J. Energy Storage 84, 110849 (2024). https://doi.org/10.1016/j.est.2024.110849
D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo et al., Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv. Sci. 4(1), 1600168 (2017). https://doi.org/10.1002/advs.201600168
Y. Ma, Q. Ma, Y. Liu, Y. Tan, Y. Zhang et al., Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes. Energy Storage Mater. 63, 103032 (2023). https://doi.org/10.1016/j.ensm.2023.103032
Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
H. Zhang, F. Ning, Y. Guo, S. Subhan, X. Liu et al., Unraveling the mechanisms of aqueous zinc ion batteries via first-principles calculations. ACS Energy Lett. 9(10), 4761–4784 (2024). https://doi.org/10.1021/acsenergylett.4c02014
C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009
G. Xu, C. Pang, B. Chen, J. Ma, X. Wang et al., Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy Mater. 8(9), 1701398 (2018). https://doi.org/10.1002/aenm.201701398
B. Li, Y. Chao, M. Li, Y. Xiao, R. Li et al., A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy Rev. 6(1), 7 (2023). https://doi.org/10.1007/s41918-022-00147-5
S. Wang, Y. Ying, S. Chen, H. Wang, K.K.K. Cheung et al., Highly reversible zinc metal anode enabled by zinc fluoroborate salt-based hydrous organic electrolyte. Energy Storage Mater. 63, 102971 (2023). https://doi.org/10.1016/j.ensm.2023.102971
H. Tian, J.-L. Yang, Y. Deng, W. Tang, R. Liu et al., Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 13(1), 2202603 (2023). https://doi.org/10.1002/aenm.202202603
T. Li, S. Hu, C. Wang, D. Wang, M. Xu et al., Engineering fluorine-rich double protective layer on Zn anode for highly reversible aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(51), e202314883 (2023). https://doi.org/10.1002/anie.202314883
C. Li, G. Qu, X. Zhang, C. Wang, X. Xu, Electrode/electrolyte interfacial chemistry modulated by chelating effect for high-performance zinc anode. Energy Environ. Mater. 7(3), e12608 (2024). https://doi.org/10.1002/eem2.12608
T. Wei, L.-E. Mo, Y. Ren, H. Zhang, M. Wang et al., Non-sacrificial anionic surfactant with high HOMO energy level as a general descriptor for zinc anode. Energy Storage Mater. 70, 103525 (2024). https://doi.org/10.1016/j.ensm.2024.103525
P. Peljo, H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11(9), 2306–2309 (2018). https://doi.org/10.1039/c8ee01286e
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
G. Kasiri, R. Trócoli, A. Bani Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016). https://doi.org/10.1016/j.electacta.2016.10.155
N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: application in rechargeable zinc batteries. J. Colloid Interface Sci. 342(2), 505–512 (2010). https://doi.org/10.1016/j.jcis.2009.10.034
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60(43), 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021). https://doi.org/10.1039/d1ee01472b
Y. Wu, N. Wang, H. Liu, R. Cui, J. Gu et al., Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J. Colloid Interface Sci. 629, 916–925 (2023). https://doi.org/10.1016/j.jcis.2022.09.022
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
F. Sun, Q. Tang, D.-E. Jiang, Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 12(14), 8404–8433 (2022). https://doi.org/10.1021/acscatal.2c02081
F. Zhang, T. Liao, Q. Zhou, J. Bai, X. Li et al., Advancements in ion regulation strategies for enhancing the performance of aqueous Zn-ion batteries. Mater. Sci. Eng. R. Rep. 165, 101012 (2025). https://doi.org/10.1016/j.mser.2025.101012
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang et al., Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
Q. Meng, T. Yan, Y. Wang, X. Lu, H. Zhou et al., Critical design strategy of electrolyte engineering toward aqueous zinc-ion battery. Chem. Eng. J. 497, 154541 (2024). https://doi.org/10.1016/j.cej.2024.154541
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9(10), 6013–6028 (2021). https://doi.org/10.1039/D0TA09111A
D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021). https://doi.org/10.1002/anie.202015488
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
N. Patil, C. de la Cruz, D. Ciurduc, A. Mavrandonakis, J. Palma et al., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 11(26), 2100939 (2021). https://doi.org/10.1002/aenm.202100939
Y. Gui, Y. Lei, B.A. Fan, Investigation on the effect of different mild acidic electrolyte on ZIBs electrode/electrolyte interface and the performance improvements with the optimized cathode. Front. Chem. 8, 827 (2020). https://doi.org/10.3389/fchem.2020.00827
G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang et al., Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
Y. Wang, W. Yan, X. Zhu, J. Li, Z. Li et al., Boosting performance of quasi-solid-state zinc ion batteries via zincophilic solubilization. Angew. Chem. Int. Ed. 64(35), e202508556 (2025). https://doi.org/10.1002/anie.202508556
C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2022). https://doi.org/10.1007/s12598-021-01778-1
L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu et al., Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 18, 100509 (2020). https://doi.org/10.1016/j.mtener.2020.100509
Y. Fan, X. Yao, G. Wang, Y. Xie, T. Wu et al., Interlayer spacing optimization combined with zinc-philic engineering fostering efficient Zn2+ storage of V2CTx MXenes for aqueous zinc-ion batteries. Small 21(10), 2408930 (2025). https://doi.org/10.1002/smll.202408930
C. Ma, X. Wang, W. Lu, K. Yang, N. Chen et al., Dual-parasitic effect enables highly reversible Zn metal anode for ultralong 25,000 cycles aqueous zinc-ion batteries. Nano Lett. 24(13), 4020–4028 (2024). https://doi.org/10.1021/acs.nanolett.4c00873
X. Shi, J. Zeng, A. Yi, F. Wang, X. Liu et al., Unveiling the failure mechanism of Zn anodes in zinc trifluorosulfonate electrolyte: the role of micelle-like structures. J. Am. Chem. Soc. 146(29), 20508–20517 (2024). https://doi.org/10.1021/jacs.4c07015
X. Feng, P. Li, J. Yin, Z. Gan, Y. Gao et al., Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett. 8(2), 1192–1200 (2023). https://doi.org/10.1021/acsenergylett.2c02455
L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019). https://doi.org/10.1002/adfm.201902653
D. Li, T. Sun, T. Ma, W. Zhang, Q. Sun et al., Regulating Zn2+ solvation shell through charge-concentrated anions for high Zn plating/stripping coulombic efficiency. Adv. Funct. Mater. 34(44), 2405145 (2024). https://doi.org/10.1002/adfm.202405145
D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62(1), e202215060 (2023). https://doi.org/10.1002/anie.202215060
P. He, J. Liu, X. Zhao, Z. Ding, P. Gao et al., A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J. Mater. Chem. A 8(20), 10370–10376 (2020). https://doi.org/10.1039/D0TA03165H
Y. Shi, R. Wang, S. Bi, M. Yang, L. Liu et al., An anti-freezing hydrogel electrolyte for flexible zinc-ion batteries operating at −70 °C. Adv. Funct. Mater. 33(24), 2214546 (2023). https://doi.org/10.1002/adfm.202214546
C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021). https://doi.org/10.1002/cey2.70
J. Chen, Z. Yan, K. Li, A. Hu, B. Yang et al., Regulating the relationship between Zn2+ and water molecules in electrolytes for aqueous zinc-based batteries. Battery Energy 3(2), 20230063 (2024). https://doi.org/10.1002/bte2.20230063
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15(2), 499–528 (2022). https://doi.org/10.1039/D1EE03377H
B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang et al., High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3(5), 4499–4508 (2020). https://doi.org/10.1021/acsaem.0c00183
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
L. Li, S. Liu, W. Liu, D. Ba, W. Liu et al., Electrolyte concentration regulation boosting zinc storage stability of high-capacity K0.486V2O5 cathode for bendable quasi-solid-state zinc ion batteries. Nano-Micro Lett. 13(1), 34 (2021). https://doi.org/10.1007/s40820-020-00554-7
X. Zhong, F. Wang, Y. Ding, L. Duan, F. Shi et al., Water-in-salt electrolyte Zn/LiFePO4 batteries. J. Electroanal. Chem. 867, 114193 (2020). https://doi.org/10.1016/j.jelechem.2020.114193
L. Liu, X. Jiang, X. Wang, X. Li, Y. Liu et al., Inhibiting the zinc anodes corrosion to achieve ultra-stable high temperature aqueous zinc-ion hybrid supercapacitors. J. Power Source 622, 235368 (2024). https://doi.org/10.1016/j.jpowsour.2024.235368
H. Zhang, X. Liu, B. Qin, S. Passerini, Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. J. Power Source 449, 227594 (2020). https://doi.org/10.1016/j.jpowsour.2019.227594
A. Clarisza, H.K. Bezabh, S.-K. Jiang, C.-J. Huang, B.W. Olbasa et al., Highly concentrated salt electrolyte for a highly stable aqueous dual-ion zinc battery. ACS Appl. Mater. Interfaces 14(32), 36644–36655 (2022). https://doi.org/10.1021/acsami.2c09040
J. Han, A. Mariani, A. Varzi, S. Passerini, Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J. Power Source 485, 229329 (2021). https://doi.org/10.1016/j.jpowsour.2020.229329
J. Han, A. Mariani, M. Zarrabeitia, Z. Jusys, R.J. Behm et al., Zinc-ion hybrid supercapacitors employing acetate-based water-in-salt electrolytes. Small 18(31), 2201563 (2022). https://doi.org/10.1002/smll.202201563
Z.A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/D1TA10122F
G. Yang, J. Huang, X. Wan, B. Liu, Y. Zhu et al., An aqueous zinc-ion battery working at −50℃ enabled by low-concentration perchlorate-based chaotropic salt electrolyte. EcoMat 4(2), e12165 (2022). https://doi.org/10.1002/eom2.12165
W. Cheng, M. Zhao, Y. Lai, X. Wang, H. Liu et al., Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: from single scale to multiscale structure detection. Exploration 4(1), 20230056 (2024). https://doi.org/10.1002/EXP.20230056
X. Zhao, Y. Wang, C. Huang, Y. Gao, M. Huang et al., Tetraphenylporphyrin-based chelating ligand additive as a molecular sieving interfacial barrier toward durable aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62(46), e202312193 (2023). https://doi.org/10.1002/anie.202312193
T. Xue, Y. Mu, Z. Zhang, J. Guan, J. Qiu et al., Enhanced zinc deposition and dendrite suppression in aqueous zinc-ion batteries via citric acid-aspartame electrolyte additives. Adv. Energy Mater. 15(26), 2500674 (2025). https://doi.org/10.1002/aenm.202500674
S. Yang, Y. Zhao, C. Zhi, Insights into the role of electrolyte additives for stable Zn anodes. Energy Mater. 5(2), 500021 (2025). https://doi.org/10.20517/energymater.2024.169
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
S. Bertolini, A. Delcorte, P. Venezuela, Understanding the self-healing electrostatic shield mechanism at the lithium–metal anode surface. Chem. Mater. 36(17), 8477–8487 (2024). https://doi.org/10.1021/acs.chemmater.4c01601
Y. Yuan, S.D. Pu, M.A. Pérez-Osorio, Z. Li, S. Zhang et al., Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 36(9), 2307708 (2024). https://doi.org/10.1002/adma.202307708
Y. Xu, J. Zhu, J. Feng, Y. Wang, X. Wu et al., A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Mater. 38, 299–308 (2021). https://doi.org/10.1016/j.ensm.2021.03.019
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
P. Wang, X. Xie, Z. Xing, X. Chen, G. Fang et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 11(30), 2101158 (2021). https://doi.org/10.1002/aenm.202101158
J. Cao, Y. Jin, H. Wu, Y. Yue, D. Zhang et al., Enhancing zinc anode stability with gallium ion-induced electrostatic shielding and oriented plating. Adv. Energy Mater. 15(6), 2403175 (2025). https://doi.org/10.1002/aenm.202403175
X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu et al., Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries. Small 19(52), 2303906 (2023). https://doi.org/10.1002/smll.202303906
Z. Peng, H. Yan, Q. Zhang, S. Liu, S.C. Jun et al., Stabilizing zinc anode through ion selection sieving for aqueous Zn-ion batteries. Nano Lett. 24(30), 9137–9146 (2024). https://doi.org/10.1021/acs.nanolett.4c00693
J. Yang, M. Qiu, M. Zhu, C. Weng, Y. Li et al., Biomacromolecule guiding construction of effective interface layer for ultra-stable zinc anode. Energy Storage Mater. 67, 103287 (2024). https://doi.org/10.1016/j.ensm.2024.103287
J. Abdulla, J. Cao, D. Zhang, X. Zhang, C. Sriprachuabwong et al., Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries. ACS Appl. Energy Mater. 4(5), 4602–4609 (2021). https://doi.org/10.1021/acsaem.1c00224
W. Xie, K. Zhu, W. Jiang, H. Yang, M. Ma et al., Highly 002-oriented dendrite-free anode achieved by enhanced interfacial electrostatic adsorption for aqueous zinc-ion batteries. ACS Nano 18(32), 21184–21197 (2024). https://doi.org/10.1021/acsnano.4c04181
F. Jing, L. Xu, Y. Shang, G. Chen, C. Lv et al., Interface engineering enabled by sodium dodecyl sulfonate surfactant for stable Zn metal batteries. J. Colloid Interface Sci. 669, 984–991 (2024). https://doi.org/10.1016/j.jcis.2024.05.059
L. Peng, X. Ren, Z. Liang, Y. Sun, Y. Zhao et al., Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Mater. 42, 34–41 (2021). https://doi.org/10.1016/j.ensm.2021.07.015
K. Xie, K. Ren, C. Sun, S. Yang, M. Tong et al., Toward stable zinc-ion batteries: use of a chelate electrolyte additive for uniform zinc deposition. ACS Appl. Energy Mater. 5(4), 4170–4178 (2022). https://doi.org/10.1021/acsaem.1c03558
S.-H. Huh, Y.J. Choi, S.H. Kim, J.-S. Bae, S.-H. Lee et al., Enabling uniform zinc deposition by zwitterion additives in aqueous zinc metal anodes. J. Mater. Chem. A 11(36), 19384–19395 (2023). https://doi.org/10.1039/D3TA01943H
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/d0ee02620d
H. Du, R. Zhao, Y. Yang, Z. Liu, L. Qie et al., High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 61(10), e202114789 (2022). https://doi.org/10.1002/anie.202114789
L. Ding, L. Wang, J. Gao, T. Yan, H. Li et al., Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries. Adv. Funct. Mater. 33(32), 2301648 (2023). https://doi.org/10.1002/adfm.202301648
W. Ma, S. Wang, X. Wu, W. Liu, F. Yang et al., Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ. Sci. 17(14), 4819–4846 (2024). https://doi.org/10.1039/d4ee00313f
Y. Xie, Q. Dou, G. Li, Y. Chen, X. Yan, Regulating the solvation environment of hybrid electrolytes towards high-temperature zinc-ion storage. Energy Mater 5(3), 500025 (2025). https://doi.org/10.20517/energymater.2024.183
B. Song, Q. Lu, X. Wang, P. Xiong, Promoted de-solvation effect and dendrite-free Zn deposition enabled by in-situ formed interphase layer for high-performance zinc-ion batteries. Energy Mater. 5(3), 500031 (2025). https://doi.org/10.20517/energymater.2024.182
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34(49), 2207344 (2022). https://doi.org/10.1002/adma.202207344
M. Qiu, P. Sun, G. Cui, W. Mai, Chaotropic polymer additive with ion transport tunnel enable dendrite-free zinc battery. ACS Appl. Mater. Interfaces 14(36), 40951–40958 (2022). https://doi.org/10.1021/acsami.2c10517
G. Guo, C. Ji, H. Mi, C. Yang, M. Li et al., Zincophilic anionic hydrogel electrolyte with interfacial specific adsorption of solvation structures for durable zinc ion hybrid supercapacitors. Adv. Funct. Mater. 34(2), 2308405 (2024). https://doi.org/10.1002/adfm.202308405
B. Niu, Z. Li, D. Luo, X. Ma, Q. Yang et al., Nano-scaled hydrophobic confinement of aqueous electrolyte by a nonionic amphiphilic polymer for long-lasting and wide-temperature Zn-based energy storage. Energy Environ. Sci. 16(4), 1662–1675 (2023). https://doi.org/10.1039/D2EE04023A
K. Ouyang, F. Li, D. Ma, Y. Wang, S. Shen et al., Trace-additive-mediated hydrophobic structure editing of aqueous zinc metal batteries for enabling all-climate long-term operation. ACS Energy Lett. 8(12), 5229–5239 (2023). https://doi.org/10.1021/acsenergylett.3c01872
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(7), e202216934 (2023). https://doi.org/10.1002/anie.202216934
T. Zhao, H. Wu, X. Wen, J. Zhang, H. Tang et al., Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coord. Chem. Rev. 468, 214642 (2022). https://doi.org/10.1016/j.ccr.2022.214642
W. Wu, Y. Deng, G. Chen, A self-repairing polymer-inorganic composite coating to enable high-performance Zn anodes for zinc-ion batteries. Chin. Chem. Lett. 34(12), 108424 (2023). https://doi.org/10.1016/j.cclet.2023.108424
L. Yuan, J. Hao, B. Johannessen, C. Ye, F. Yang et al., Hybrid working mechanism enables highly reversible Zn electrodes. eScience 3(2), 100096 (2023). https://doi.org/10.1016/j.esci.2023.100096
H. Cheng, S. Zhang, W. Guo, Q. Wu, Z. Shen et al., Hydrolysis of solid buffer enables high-performance aqueous zinc ion battery. Adv. Sci. 11(7), 2307052 (2024). https://doi.org/10.1002/advs.202307052
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn(2+)-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), e2007416 (2021). https://doi.org/10.1002/adma.202007416
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16(8), 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
D. Luo, X. Ma, P. Du, Z. Chen, Q. Lin et al., Reconstructing solvation structure by steric hindrance-coordination push-pull of dipolymer-H2O-Zn2+ toward long-life aqueous zinc-metal batteries. Angew. Chem. Int. Ed. 63(28), e202401163 (2024). https://doi.org/10.1002/anie.202401163
H. Dou, X. Wu, M. Xu, R. Feng, Q. Ma et al., Steric-hindrance effect tuned ion solvation enabling high performance aqueous zinc ion batteries. Angew. Chem. Int. Ed. 63(21), e202401974 (2024). https://doi.org/10.1002/anie.202401974
H. Yin, H. Wu, Y. Yang, S. Yao, P. Han et al., Electrical double layer and in situ polymerization SEI enables high reversible zinc metal anode. Small 20(50), 2404367 (2024). https://doi.org/10.1002/smll.202404367
H. Wu, H. Yin, H. Tian, J. Yang, R. Liu, Stable Zn-metal anode enabled by solvation structure modulation and in situ SEI layer construction. Energy Environ. Mater. 8(2), e12839 (2025). https://doi.org/10.1002/eem2.12839
W. Shao, C. Li, C. Wang, G. Du, S. Zhao et al., Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chin. Chem. Lett. 36(3), 109531 (2025). https://doi.org/10.1016/j.cclet.2024.109531
H. Wu, H.-T. Yin, J.-L. Yang, R. Liu, Chelation effect induced robust biomass protective layer for aqueous Zn metal anode. Adv. Energy Mater. 15(30), 2501359 (2025). https://doi.org/10.1002/aenm.202501359
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33(38), 2100445 (2021). https://doi.org/10.1002/adma.202100445
H. Wang, A. Zhou, X. Hu, Z. Hu, F. Zhang et al., Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS Nano 17(12), 11946–11956 (2023). https://doi.org/10.1021/acsnano.3c04155
S. Zhang, J. Li, B. Jin, M. Shao, Oriented zinc metal anode based on directional recognition and assembly. Small 19(38), 2301874 (2023). https://doi.org/10.1002/smll.202301874
L. Wang, Y. Shao, Z. Fu, X. Zhang, J. Kang et al., Synergistically enhancing the selective adsorption for crystal planes to regulate the (002)-texture preferred Zn deposition via supramolecular host–guest units. Energy Environ. Sci. 18(10), 4859–4871 (2025). https://doi.org/10.1039/d5ee00763a
Y. Lu, T. Wang, Z. Li, H. Cheng, K. Peng et al., Epitaxial deposition of Zn (002) for stable zinc metal anodes. Chem. Eng. J. 458, 141509 (2023). https://doi.org/10.1016/j.cej.2023.141509
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022). https://doi.org/10.1016/j.ccr.2021.214299
M. Xi, Z. Liu, W. Wang, Z. Qi, R. Sheng et al., Shear-flow induced alignment of graphene enables the closest packing crystallography of the (002) textured zinc metal anode with high reversibility. Energy Environ. Sci. 17(9), 3168–3178 (2024). https://doi.org/10.1039/D3EE04360F
Y. Yan, C. Shu, T. Zeng, X. Wen, S. Liu et al., Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode. ACS Nano 16(6), 9150–9162 (2022). https://doi.org/10.1021/acsnano.2c01380
H.B. Jeong, D.I. Kim, G. Yoo, D. Mohan, A. Roy et al., Selective control of sharp-edge zinc electrodes with (002) plane for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 12(25), 15265–15277 (2024). https://doi.org/10.1039/D4TA01013B
K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018). https://doi.org/10.1002/chem.201704440
R. Deng, Z. He, F. Chu, J. Lei, Y. Cheng et al., An aqueous electrolyte densified by perovskite SrTiO(3) enabling high-voltage zinc-ion batteries. Nat. Commun. 14(1), 4981 (2023). https://doi.org/10.1038/s41467-023-40462-z
Y. Wu, Z. Zhu, D. Shen, L. Chen, T. Song et al., Electrolyte engineering enables stable Zn-ion deposition for long-cycling life aqueous Zn-ion batteries. Energy Storage Mater. 45, 1084–1091 (2022). https://doi.org/10.1016/j.ensm.2021.11.003
J. Yang, Z. Ji, M. Deng, C. Weng, X. Wang et al., Chain-length engineered interfacial architecture enables dendrite-free aqueous zinc-ion batteries. Mater. Horiz. 12(16), 6383–6394 (2025). https://doi.org/10.1039/d5mh00668f
D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long‐lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
G. Ma, W. Yuan, X. Li, T. Bi, L. Niu et al., Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 36(35), 2408287 (2024). https://doi.org/10.1002/adma.202408287
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3(2), 146–159 (2020). https://doi.org/10.1002/eem2.12067
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
D. Kumar, L.R. Franco, N. Abdou, R. Shu, A. Martinelli et al., Water-in-polymer salt electrolyte for long-life rechargeable aqueous zinc-lignin battery. Energy Environ. Mater. 8(1), e12752 (2025). https://doi.org/10.1002/eem2.12752
Z. Khan, D. Kumar, X. Crispin, Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 35(36), 2300369 (2023). https://doi.org/10.1002/adma.202300369
Z. Ali Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar et al., Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage Zn–graphite dual-ion battery. J. Mater. Chem. A 10(4), 2064–2074 (2022). https://doi.org/10.1039/D1TA10122F
Y. Shen, B. Liu, X. Liu, J. Liu, J. Ding et al., Water-in-salt electrolyte for safe and high-energy aqueous battery. Energy Storage Mater. 34, 461–474 (2021). https://doi.org/10.1016/j.ensm.2020.10.011
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16(6), 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
L. Jiang, L. Yao, G. Wang, C. Liu, X. Chi et al., Long-duration aqueous Zn-ion batteries achieved by dual-salt highly-concentrated electrolyte with low water activity. J. Energy Chem. 101, 778–785 (2025). https://doi.org/10.1016/j.jechem.2024.09.060
J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36(17), e2306508 (2024). https://doi.org/10.1002/adma.202306508
J. Li, H. Zhang, Z. Liu, H. Du, H. Wan et al., Boosting dendrite-free zinc anode with strongly polar functional group terminated hydrogel electrolyte for high-safe aqueous zinc-ion batteries. Adv. Funct. Mater. 35(2), 2412865 (2025). https://doi.org/10.1002/adfm.202412865
R. Qi, W. Tang, Y. Shi, K. Teng, Y. Deng et al., Gel polymer electrolyte toward large-scale application of aqueous zinc batteries. Adv. Funct. Mater. 33(47), 2306052 (2023). https://doi.org/10.1002/adfm.202306052
Z. Zeng, S. Liao, G. Ma et al., High-conductivity and ultrastretchable self-healing hydrogels for flexible zinc-ion batteries. ACS Appl. Mater. Interfaces 16(43), 58961–58972 (2024). https://doi.org/10.1021/acsami.4c13058
Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), 2104832 (2022). https://doi.org/10.1002/advs.202104832
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
S. Li, X. Fan, X. Liu, Z. Zhao, W. Xu et al., Potassium polyacrylate-based gel polymer electrolyte for practical Zn–Ni batteries. ACS Appl. Mater. Interfaces 14(20), 22847–22857 (2022). https://doi.org/10.1021/acsami.1c20999
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
Q. Deng, W. Zhou, H. Wang, Q. Ma, C. Li et al., Design of a polymer electrolyte membrane for enhanced zinc anode stability in reversible aqueous zinc-ion batteries. Energy Mater. 5(9), 500103 (2025). https://doi.org/10.20517/energymater.2024.299
L. Sun, Y. Yao, L. Dai, M. Jiao, B. Ding et al., Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 47, 187–194 (2022). https://doi.org/10.1016/j.ensm.2022.02.012
P. Samanta, S. Ghosh, H. Kolya, C.-W. Kang, N.C. Murmu et al., Molecular crowded ″water-in-salt″ polymer gel electrolyte for an ultra-stable Zn-ion battery. ACS Appl. Mater. Interfaces 14(1), 1138–1148 (2022). https://doi.org/10.1021/acsami.1c21189
Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang et al., Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023). https://doi.org/10.1038/s41467-023-39634-8
Z. Sun, Q. Ou, C. Dong, J. Zhou, H. Hu et al., Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 4(5), 20220167 (2024). https://doi.org/10.1002/EXP.20220167
M. Xu, J. Liao, J. Li, Y. Shi, Z. Zhang et al., Elastic nanop-reinforced, conductive structural color hydrogel with super stretchability, self-adhesion, self-healing as electrical/optical dual-responsive visual electronic skins. Exploration 5(2), 270008 (2025). https://doi.org/10.1002/EXP.70008
L. Sun, B. Zheng, W. Liu, Constructing high-throughput and highly adsorptive lithium–sulfur battery separator coatings based on three-dimensional hexagonal star-shaped MOF derivatives. J. Colloid Interface Sci. 679, 197–205 (2025). https://doi.org/10.1016/j.jcis.2024.09.208
W. Liu, C. Li, D. Li, G. Qu, M. Kong et al., Constructing zinc-tin alloy interface for highly stable alkaline zinc anode. Chin. Chem. Lett. 36(7), 110152 (2025). https://doi.org/10.1016/j.cclet.2024.110152
Y. Zhang, Z. Hu, Y. Bi et al., Cold-pressing strategy for constructing simple and high-performance dendrite-free zinc anodes for aqueous zinc-ion batteries. ACS Sustain. Chem. Eng. 13(14), 5381–5393 (2025). https://doi.org/10.1021/acssuschemeng.5c00832
J. Chen, L. Ren, X. Chen, Q. Wang, C. Chen et al., Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 5(2), 20230036 (2025). https://doi.org/10.1002/EXP.20230036
J. Wang, C.-F. Du, Y. Xue, X. Tan, J. Kang et al., MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 1(2), 20210024 (2021). https://doi.org/10.1002/EXP.20210024
X. Chen, P. Gao, W. Li, N.A. Thieu, Z.M. Grady et al., Stabilizing Zn anodes by molecular interface engineering with amphiphilic triblock copolymer. ACS Energy Lett. 9(4), 1654–1665 (2024). https://doi.org/10.1021/acsenergylett.3c02824
B. Ye, F. Wu, R. Zhao, H. Zhu, M. Lv et al., Electrolyte regulation toward cathodes with enhanced-performance in aqueous zinc ion batteries. Adv. Mater. 37(15), 2501538 (2025). https://doi.org/10.1002/adma.202501538