Novel Cellulosic Fiber Composites with Integrated Multi-Band Electromagnetic Interference Shielding and Energy Storage Functionalities
Corresponding Author: Junwen Pu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 122
Abstract
In an era where technological advancement and sustainability converge, developing renewable materials with multifunctional integration is increasingly in demand. This study filled a crucial gap by integrating energy storage, multi-band electromagnetic interference (EMI) shielding, and structural design into bio-based materials. Specifically, conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO)-oxidized cellulose fiber skeleton, where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites (specific surface area of 105.6 m2 g−1). Benefiting from the special hierarchical porous structure of the material, the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm−2 at 5 mA cm−2 and areal energy density of 3.99 mWh cm−2 (2005 mW cm−2) with an excellent stability of maintaining 90.23% after 10,000 cycles at 50 mA cm−2. Meanwhile, the composites showed a high electrical conductivity of 877.19 S m−1 and excellent EMI efficiency (> 99.99%) in multiple wavelength bands. The composite material’s EMI values exceed 100 dB across the L, S, C, and X bands, effectively shielding electromagnetic waves in daily life. The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding, contributing to a more sustainable future.
Highlights:
1 A mild 2,2,6,6-tetramethylpiperidine-1-oxide mediated modification system was applied to improve the reactivity and introduce porous structure of cellulose fiber skeleton.
2 Composite exhibited highly efficient electromagnetic shielding interference performance (> 99.99%) over multi-band.
3 Integrating energy storage, electromagnetic interference shielding, and structural design into bio-based materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Lin, R. Gao, D. Li, Y. Lu, S. Liu et al., Bamboo-inspired cell-scale assembly for energy device applications. npj Flex. Electron. 6, 13 (2022). https://doi.org/10.1038/s41528-022-00148-w
- L.-L. Lu, Y.-Y. Lu, Z.-J. Xiao, T.-W. Zhang, F. Zhou et al., Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30, e1706745 (2018). https://doi.org/10.1002/adma.201706745
- Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16, 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
- W. Yang, S. Lin, W. Gong, R. Lin, C. Jiang et al., Single body-coupled fiber enables chipless textile electronics. Science 384, 74–81 (2024). https://doi.org/10.1126/science.adk3755
- M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/C3EE43526A
- N.R. Tanguy, H. Wu, S.S. Nair, K. Lian, N. Yan, Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057–1067 (2021). https://doi.org/10.1002/cssc.202002558
- T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8, 2485–2491 (2007). https://doi.org/10.1021/bm0703970
- W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30, 1801934 (2018). https://doi.org/10.1002/adma.201801934
- Z.-X. Wang, X.-S. Han, Z.-J. Zhou, W.-Y. Meng, X.-W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
- T. Li, S.X. Li, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
- A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e
- T. Isogai, T. Saito, A. Isogai, TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromol 11, 1593–1599 (2010). https://doi.org/10.1021/bm1002575
- S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
- A. Svensson, P.T. Larsson, G. Salazar-Alvarez, L. Wågberg, Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr. Polym. 92, 775–783 (2013). https://doi.org/10.1016/j.carbpol.2012.09.090
- A.J. Benítez, A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J. Mater. Chem. A 5, 16003–16024 (2017). https://doi.org/10.1039/c7ta02006f
- T. Yang, H. Qi, P. Liu, K. Zhang, Selective isolation methods for cellulose and chitin nanocrystals. ChemPlusChem 85, 1081–1088 (2020). https://doi.org/10.1002/cplu.202000250
- K. Li, S. Wang, H. Chen, X. Yang, L.A. Berglund et al., Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653 (2020). https://doi.org/10.1002/adma.202003653
- Z. Gao, N. Song, Y. Zhang, X. Li, Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Adv. 5, 15438–15447 (2015). https://doi.org/10.1039/c5ra00028a
- C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
- G. Nyström, A. Mihranyan, A. Razaq, T. Lindström, L. Nyholm et al., A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114, 4178–4182 (2010). https://doi.org/10.1021/jp911272m
- S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang et al., Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004
- Y. Wang, L. Chen, H. Cheng, B. Wang, X. Feng et al., Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem. Eng. J. 402, 126222 (2020). https://doi.org/10.1016/j.cej.2020.126222
- S. Wang, W. Meng, H. Lv, Z. Wang, J. Pu, Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr. Polym. 270, 118414 (2021). https://doi.org/10.1016/j.carbpol.2021.118414
- L. Wang, S. Li, F. Huang, X. Yu, M. Liu et al., Interface modification of hierarchical Co9S8@NiCo layered dihydroxide nanotube arrays using polypyrrole as charge transfer layer in flexible all-solid asymmetric supercapacitors. J. Power Sources 439, 227103 (2019). https://doi.org/10.1016/j.jpowsour.2019.227103
- L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu et al., Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 13, 190 (2021). https://doi.org/10.1007/s40820-021-00709-0
- J. Dong, Y. Lin, H. Zong, H. Yang, Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors. Appl. Surf. Sci. 470, 1043–1052 (2019). https://doi.org/10.1016/j.apsusc.2018.11.204
- Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
- T. Mai, L. Chen, P.-L. Wang, Q. Liu, M.-G. Ma, Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion. Nano-Micro Lett. 16, 169 (2024). https://doi.org/10.1007/s40820-024-01386-5
- P. ur, S. Raman, Electromagnetic interference (EMI): measurement and reduction techniques. J. Electron. Mater. 49, 2975–2998 (2020). https://doi.org/10.1007/s11664-020-07979-1
- J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2020). https://doi.org/10.1039/d0na00760a
- S.A. Schelkunoff, Electromagnetic Waves (Van Nostrand; New York, 1945).
- H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 306, 2100032 (2021). https://doi.org/10.1002/mame.202100032
- M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20, e2304914 (2024). https://doi.org/10.1002/smll.202304914
- X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
- S.B. Kondawar, P.R. Modak. in Chapter 2 - Theory of EMI Shielding. ed. by Joseph K, Wilson R, George G (Elsevier; 2020), pp. 9–25.
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- X. Han, X. Han, Z. Wang, S. Wang, W. Meng et al., High mechanical properties and excellent anisotropy of dually synergistic network wood fiber gel for human–computer interactive sensors. Cellulose 29, 4495–4508 (2022). https://doi.org/10.1007/s10570-022-04554-1
- J. Hochstrasser, A. Svidrytski, A. Höltzel, T. Priamushko, F. Kleitz et al., Morphology-transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Phys. Chem. Chem. Phys. 22, 11314–11326 (2020). https://doi.org/10.1039/d0cp01861a
- J. Lehto, J. Louhelainen, T. Kłosińska, M. Drożdżek, R. Alén, Characterization of alkali-extracted wood by FTIR-ATR spectroscopy. Biomass Convers. Biorefin. 8, 847–855 (2018). https://doi.org/10.1007/s13399-018-0327-5
- M.E. Bakkari, V. Bindiganavile, J. Goncalves, Y. Boluk, Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydr. Polym. 203, 238–245 (2019). https://doi.org/10.1016/j.carbpol.2018.09.036
- X. Yang, F. Berthold, L.A. Berglund, Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency. Biomacromol 19, 3020–3029 (2018). https://doi.org/10.1021/acs.biomac.8b00585
- A.D. French, M. Santiago Cintrón, Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20, 583–588 (2013). https://doi.org/10.1007/s10570-012-9833-y
- A.D. French, Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896 (2014). https://doi.org/10.1007/s10570-013-0030-4
- L. Segal, J.J. Creely, A.E. Martin Jr., C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003
- T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
- Z. Lin, P.-L. Taberna, P. Simon, Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. 9, 18–25 (2018). https://doi.org/10.1016/j.coelec.2018.03.004
- W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
- C. Wan, Y. Jiao, X. Li, W. Tian, J. Li et al., A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale 12, 3308–3316 (2020). https://doi.org/10.1039/C9NR09087H
- M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021). https://doi.org/10.1063/5.0075019
- Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, M.I. Szynkowska, In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 202, 49–62 (2015). https://doi.org/10.1016/j.synthmet.2015.01.027
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
- Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005). https://doi.org/10.1021/nl051375r
- M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
- F. Jiang, Y.-L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2, 6337–6342 (2014). https://doi.org/10.1039/C4TA00743C
- H. Guan, D.D.L. Chung, Radio-wave electrical conductivity and absorption-dominant interaction with radio wave of exfoliated-graphite-based flexible graphite, with relevance to electromagnetic shielding and antennas. Carbon 157, 549–562 (2020). https://doi.org/10.1016/j.carbon.2019.10.071
- R.S. Yadav, I. Kuřitka, J. Vilcakova, D. Skoda, P. Urbánek et al., Lightweight NiFe2O4-reduced graphene oxide-elastomer nanocomposite flexible sheet for electromagnetic interference shielding application. Compos. Part B Eng. 166, 95–111 (2019). https://doi.org/10.1016/j.compositesb.2018.11.069
- B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- H. Guo, Y. Li, Y. Ji, Y. Chen, K. Liu et al., Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 27, 100879 (2021). https://doi.org/10.1016/j.coco.2021.100879
- F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
- D. Chen, M. Liu, L. Yin, T. Li, Z. Yang et al., Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332–9342 (2011). https://doi.org/10.1039/C1JM11447F
References
Q. Lin, R. Gao, D. Li, Y. Lu, S. Liu et al., Bamboo-inspired cell-scale assembly for energy device applications. npj Flex. Electron. 6, 13 (2022). https://doi.org/10.1038/s41528-022-00148-w
L.-L. Lu, Y.-Y. Lu, Z.-J. Xiao, T.-W. Zhang, F. Zhou et al., Wood-inspired high-performance ultrathick bulk battery electrodes. Adv. Mater. 30, e1706745 (2018). https://doi.org/10.1002/adma.201706745
Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu et al., All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors. Energy Environ. Sci. 16, 1291–1311 (2023). https://doi.org/10.1039/D2EE03793A
W. Yang, S. Lin, W. Gong, R. Lin, C. Jiang et al., Single body-coupled fiber enables chipless textile electronics. Science 384, 74–81 (2024). https://doi.org/10.1126/science.adk3755
M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7, 867–884 (2014). https://doi.org/10.1039/C3EE43526A
N.R. Tanguy, H. Wu, S.S. Nair, K. Lian, N. Yan, Lignin cellulose nanofibrils as an electrochemically functional component for high-performance and flexible supercapacitor electrodes. ChemSusChem 14, 1057–1067 (2021). https://doi.org/10.1002/cssc.202002558
T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8, 2485–2491 (2007). https://doi.org/10.1021/bm0703970
W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel et al., Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30, 1801934 (2018). https://doi.org/10.1002/adma.201801934
Z.-X. Wang, X.-S. Han, Z.-J. Zhou, W.-Y. Meng, X.-W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
T. Li, S.X. Li, W. Kong, C. Chen, E. Hitz et al., A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019). https://doi.org/10.1126/sciadv.aau4238
A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e
T. Isogai, T. Saito, A. Isogai, TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber. Biomacromol 11, 1593–1599 (2010). https://doi.org/10.1021/bm1002575
S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
A. Svensson, P.T. Larsson, G. Salazar-Alvarez, L. Wågberg, Preparation of dry ultra-porous cellulosic fibres: characterization and possible initial uses. Carbohydr. Polym. 92, 775–783 (2013). https://doi.org/10.1016/j.carbpol.2012.09.090
A.J. Benítez, A. Walther, Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J. Mater. Chem. A 5, 16003–16024 (2017). https://doi.org/10.1039/c7ta02006f
T. Yang, H. Qi, P. Liu, K. Zhang, Selective isolation methods for cellulose and chitin nanocrystals. ChemPlusChem 85, 1081–1088 (2020). https://doi.org/10.1002/cplu.202000250
K. Li, S. Wang, H. Chen, X. Yang, L.A. Berglund et al., Self-densification of highly mesoporous wood structure into a strong and transparent film. Adv. Mater. 32, e2003653 (2020). https://doi.org/10.1002/adma.202003653
Z. Gao, N. Song, Y. Zhang, X. Li, Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Adv. 5, 15438–15447 (2015). https://doi.org/10.1039/c5ra00028a
C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/c6ee03716j
G. Nyström, A. Mihranyan, A. Razaq, T. Lindström, L. Nyholm et al., A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114, 4178–4182 (2010). https://doi.org/10.1021/jp911272m
S. Li, D. Huang, J. Yang, B. Zhang, X. Zhang et al., Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9, 309–317 (2014). https://doi.org/10.1016/j.nanoen.2014.08.004
Y. Wang, L. Chen, H. Cheng, B. Wang, X. Feng et al., Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem. Eng. J. 402, 126222 (2020). https://doi.org/10.1016/j.cej.2020.126222
S. Wang, W. Meng, H. Lv, Z. Wang, J. Pu, Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr. Polym. 270, 118414 (2021). https://doi.org/10.1016/j.carbpol.2021.118414
L. Wang, S. Li, F. Huang, X. Yu, M. Liu et al., Interface modification of hierarchical Co9S8@NiCo layered dihydroxide nanotube arrays using polypyrrole as charge transfer layer in flexible all-solid asymmetric supercapacitors. J. Power Sources 439, 227103 (2019). https://doi.org/10.1016/j.jpowsour.2019.227103
L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu et al., Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 13, 190 (2021). https://doi.org/10.1007/s40820-021-00709-0
J. Dong, Y. Lin, H. Zong, H. Yang, Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors. Appl. Surf. Sci. 470, 1043–1052 (2019). https://doi.org/10.1016/j.apsusc.2018.11.204
Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
T. Mai, L. Chen, P.-L. Wang, Q. Liu, M.-G. Ma, Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion. Nano-Micro Lett. 16, 169 (2024). https://doi.org/10.1007/s40820-024-01386-5
P. ur, S. Raman, Electromagnetic interference (EMI): measurement and reduction techniques. J. Electron. Mater. 49, 2975–2998 (2020). https://doi.org/10.1007/s11664-020-07979-1
J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2020). https://doi.org/10.1039/d0na00760a
S.A. Schelkunoff, Electromagnetic Waves (Van Nostrand; New York, 1945).
H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 306, 2100032 (2021). https://doi.org/10.1002/mame.202100032
M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20, e2304914 (2024). https://doi.org/10.1002/smll.202304914
X. Ma, S. Liu, H. Luo, H. Guo, S. Jiang et al., MOF@wood derived ultrathin carbon composite film for electromagnetic interference shielding with effective absorption and electrothermal management. Adv. Funct. Mater. 34, 2310126 (2024). https://doi.org/10.1002/adfm.202310126
S.B. Kondawar, P.R. Modak. in Chapter 2 - Theory of EMI Shielding. ed. by Joseph K, Wilson R, George G (Elsevier; 2020), pp. 9–25.
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
X. Han, X. Han, Z. Wang, S. Wang, W. Meng et al., High mechanical properties and excellent anisotropy of dually synergistic network wood fiber gel for human–computer interactive sensors. Cellulose 29, 4495–4508 (2022). https://doi.org/10.1007/s10570-022-04554-1
J. Hochstrasser, A. Svidrytski, A. Höltzel, T. Priamushko, F. Kleitz et al., Morphology-transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Phys. Chem. Chem. Phys. 22, 11314–11326 (2020). https://doi.org/10.1039/d0cp01861a
J. Lehto, J. Louhelainen, T. Kłosińska, M. Drożdżek, R. Alén, Characterization of alkali-extracted wood by FTIR-ATR spectroscopy. Biomass Convers. Biorefin. 8, 847–855 (2018). https://doi.org/10.1007/s13399-018-0327-5
M.E. Bakkari, V. Bindiganavile, J. Goncalves, Y. Boluk, Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydr. Polym. 203, 238–245 (2019). https://doi.org/10.1016/j.carbpol.2018.09.036
X. Yang, F. Berthold, L.A. Berglund, Preserving cellulose structure: delignified wood fibers for paper structures of high strength and transparency. Biomacromol 19, 3020–3029 (2018). https://doi.org/10.1021/acs.biomac.8b00585
A.D. French, M. Santiago Cintrón, Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20, 583–588 (2013). https://doi.org/10.1007/s10570-012-9833-y
A.D. French, Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21, 885–896 (2014). https://doi.org/10.1007/s10570-013-0030-4
L. Segal, J.J. Creely, A.E. Martin Jr., C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003
T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
Z. Lin, P.-L. Taberna, P. Simon, Advanced analytical techniques to characterize materials for electrochemical capacitors. Curr. Opin. Electrochem. 9, 18–25 (2018). https://doi.org/10.1016/j.coelec.2018.03.004
W. Cao, C. Ma, S. Tan, M. Ma, P. Wan et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 11, 72 (2019). https://doi.org/10.1007/s40820-019-0304-y
C. Wan, Y. Jiao, X. Li, W. Tian, J. Li et al., A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale 12, 3308–3316 (2020). https://doi.org/10.1039/C9NR09087H
M. Peng, F. Qin, Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 130, 225108 (2021). https://doi.org/10.1063/5.0075019
Z. Stempien, T. Rybicki, E. Rybicki, M. Kozanecki, M.I. Szynkowska, In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 202, 49–62 (2015). https://doi.org/10.1016/j.synthmet.2015.01.027
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015). https://doi.org/10.1002/adfm.201403809
K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005). https://doi.org/10.1021/nl051375r
M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
F. Jiang, Y.-L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2, 6337–6342 (2014). https://doi.org/10.1039/C4TA00743C
H. Guan, D.D.L. Chung, Radio-wave electrical conductivity and absorption-dominant interaction with radio wave of exfoliated-graphite-based flexible graphite, with relevance to electromagnetic shielding and antennas. Carbon 157, 549–562 (2020). https://doi.org/10.1016/j.carbon.2019.10.071
R.S. Yadav, I. Kuřitka, J. Vilcakova, D. Skoda, P. Urbánek et al., Lightweight NiFe2O4-reduced graphene oxide-elastomer nanocomposite flexible sheet for electromagnetic interference shielding application. Compos. Part B Eng. 166, 95–111 (2019). https://doi.org/10.1016/j.compositesb.2018.11.069
B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16, 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
H. Guo, Y. Li, Y. Ji, Y. Chen, K. Liu et al., Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 27, 100879 (2021). https://doi.org/10.1016/j.coco.2021.100879
F. Li, N. Wu, H. Kimura, Y. Wang, B.B. Xu et al., Initiating binary metal oxides microcubes electrsomagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nano-Micro Lett. 15, 220 (2023). https://doi.org/10.1007/s40820-023-01197-0
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15, 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
L. Ma, M. Hamidinejad, L. Wei, B. Zhao, C.B. Park, Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 30, 100940 (2023). https://doi.org/10.1016/j.mtphys.2022.100940
D. Chen, M. Liu, L. Yin, T. Li, Z. Yang et al., Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21, 9332–9342 (2011). https://doi.org/10.1039/C1JM11447F