Coplanar Floating-Gate Antiferroelectric Transistor with Multifunctionality for All-in-One Analog Reservoir Computing
Corresponding Author: Kah‑Wee Ang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 202
Abstract
Analog reservoir computing (ARC) systems offer an energy-efficient platform for temporal information processing. However, their physical implementation typically requires disparate materials and device architectures for different system components, leading to complicated fabrication processes and increased system complexity. In this work, we present a coplanar floating-gate antiferroelectric field-effect transistor (FG AFeFET) that unifies multiple neural functionalities within a single device, enabling the physical implementation of a complete ARC system. By combining a coplanar layout design with an area ratio engineering strategy, we achieve tunable device behaviors, including volatile responses for artificial neuron emulation, nonvolatile states for synaptic functions, and fading memory dynamics for reservoir operations. The mechanisms underlying these functionalities and their operating mechanism are systematically elucidated using load line analysis and energy band diagrams. Leveraging these insights, we demonstrate an all-in-one ARC system based on the unified coplanar FG AFeFET architecture, which achieves recognition accuracies of 95.6% and 83.4% on the MNIST and Fashion-MNIST datasets, respectively. These findings highlight the potential of coplanar FG AFeFETs to deliver area-efficient, design-flexible neuromorphic hardware for next-generation computing systems.
Highlights:
1 A novel coplanar structure design is proposed for floating-gate antiferroelectric field-effect transistor (FG AFeFET) demonstration with enhanced design flexibility and vertical scalability.
2 Multifunctionality is achieved within a single coplanar FG AFeFET via area ratio engineering, including volatile neuronal behavior, fading memory dynamics, and nonvolatile synaptic function. Systematic investigations into its detailed operating principles are conducted.
3 Seamless integration of a full analog reservoir computing system is demonstrated based on a unified coplanar FG AFeFET architecture, realizing satisfactory accuracies for pattern recognition tasks.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
- W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
- K.D. Stenning, J.C. Gartside, L. Manneschi, C.T.S. Cheung, T. Chen et al., Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks. Nat. Commun. 15(1), 7377 (2024). https://doi.org/10.1038/s41467-024-50633-1
- K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019). https://doi.org/10.1038/s41586-019-1677-2
- J. Hasler, B. Marr, Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7, 118 (2013). https://doi.org/10.3389/fnins.2013.00118
- A. Mehonic, D. Ielmini, K. Roy, O. Mutlu, S. Kvatinsky et al., Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12(10), 109201 (2024). https://doi.org/10.1063/5.0179424
- J. Kim, E.C. Park, W. Shin, R.-H. Koo, C.-H. Han et al., Analog reservoir computing via ferroelectric mixed phase boundary transistors. Nat. Commun. 15(1), 9147 (2024). https://doi.org/10.1038/s41467-024-53321-2
- X. Wu, V. Saxena, K. Zhu, S. Balagopal, A CMOS spiking neuron for brain-inspired neural networks with resistive synapses and in situ learning. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1088–1092 (2015). https://doi.org/10.1109/TCSII.2015.2456372
- G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073
- G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
- Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
- K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier et al., Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014). https://doi.org/10.1038/ncomms4541
- M.-H. Wu, M.-C. Hong, C.-C. Chang, P. Sahu, J.-H. Wei et al., Extremely compact integrate-and-fire STT-MRAM neuron: a pathway toward all-spin artificial deep neural network, in 2019 Symposium on VLSI Technology IEEE, pp. T34–T35 (2019). https://doi.org/10.23919/VLSIT.2019.8776569
- H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
- Z. Xia, X. Sun, Z. Wang, J. Meng, B. Jin et al., Low-power memristor for neuromorphic computing: from materials to applications. Nano-Micro Lett. 17(1), 217 (2025). https://doi.org/10.1007/s40820-025-01705-4
- Y. Zhong, J. Tang, X. Li, X. Liang, Z. Liu et al., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5(10), 672–681 (2022). https://doi.org/10.1038/s41928-022-00838-3
- J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus et al., Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012). https://doi.org/10.1021/nl302049k
- X. Lyu, M. Si, X. Sun, M.A. Capano, H. Wang et al., Ferroelectric and anti-ferroelectric hafnium zirconium oxide: scaling limit, switching speed and record high polarization density, in 2019 Symposium on VLSI Technology IEEE, pp. T44–T45 (2019). https://doi.org/10.23919/vlsit.2019.8776548
- S. Dutta, S.A., P. Panda, W. Chakraborty, J. Gomez et al., Biologically plausible ferroelectric quasi-leaky integrate and fire neuron, in 2019 Symposium on VLSI Technology IEEE, pp. T140–T141 (2019). https://doi.org/10.23919/vlsit.2019.8776487
- Z. Wang, B. Crafton, J. Gomez, R. Xu, A. Luo et al., Experimental demonstration of ferroelectric spiking neurons for unsupervised clustering, in 2018 IEEE International Electron Devices Meeting (IEDM) (IEDM) IEEE, pp. 13.3.1–13.3.4 (2019). https://doi.org/10.1109/iedm.2018.8614586
- R. Cao, X. Zhang, S. Liu, J. Lu, Y. Wang et al., Compact artificial neuron based on anti-ferroelectric transistor. Nat. Commun. 13(1), 7018 (2022). https://doi.org/10.1038/s41467-022-34774-9
- Y. Shi, N.T. Duong, Y.-C. Chien, S. Li, H. Xiang et al., Switching dynamics in anti-ferroelectric transistor for multimodal reservoir computing. Adv. Funct. Mater. 34(34), 2400879 (2024). https://doi.org/10.1002/adfm.202400879
- C. Sun, X. Wang, H. Xu, J. Zhang, Z. Zheng et al., Novel a-IGZO anti-ferroelectric FET LIF neuron with co-integrated ferroelectric FET synapse for spiking neural networks, in 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022 (IEEE, San Francisco, 2022), pp. 2.1.1–2.1.4. https://doi.org/10.1109/iedm45625.2022.10019526
- Z. Zheng, C. Sun, L. Jiao, D. Zhang, Z. Zhou et al., Boosting the memory window of the BEOL-compatible MFMIS ferroelectric/anti-ferroelectric FETs by charge injection, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) IEEE, pp. 389–390 (2022). https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830466
- H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18(5), 493–500 (2023). https://doi.org/10.1038/s41565-023-01343-0
- Y. Cai, J. Yang, Y. Hou, F. Wang, L. Yin et al., 8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks. Nat. Commun. 16(1), 2649 (2025). https://doi.org/10.1038/s41467-025-58005-z
- J. Chen, M.-Y. Sun, Z.-H. Wang, Z. Zhang, K. Zhang et al., Performance limits and advancements in single 2D transition metal dichalcogenide transistor. Nano-Micro Lett. 16(1), 264 (2024). https://doi.org/10.1007/s40820-024-01461-x
- L. Hun, K. Young, H.-J. Lee, S.-J. Choi, L. Jung et al., Beyond the silicon plateau: a convergence of novel materials for transistor evolution. Nano-Micro Lett. 18(1), 69 (2025). https://doi.org/10.1007/s40820-025-01898-8
- W. Zhang, F. Qiu, Y. Li, R. Zhang, H. Liu et al., Lattice defect engineering enables performance-enhanced MoS2 photodetection through a paraelectric BaTiO3 dielectric. ACS Nano 15(8), 13370–13379 (2021). https://doi.org/10.1021/acsnano.1c03402
- T. Huang, J. Ding, Z. Liu, R. Zhang, B. Zhang et al., Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor. eScience 2(3), 319–328 (2022). https://doi.org/10.1016/j.esci.2022.03.005
- H. Xiang, Y.-C. Chien, L. Li, H. Zheng, S. Li et al., Enhancing memory window efficiency of ferroelectric transistor for neuromorphic computing via two-dimensional materials integration. Adv. Funct. Mater. 33(42), 2304657 (2023). https://doi.org/10.1002/adfm.202304657
- T. Lu, J. Xue, P. Shen, H. Liu, X. Gao et al., Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Sci. Adv. 10(36), eadp0174 (2024). https://doi.org/10.1126/sciadv.adp0174
- J. Huo, L. Li, H. Zheng, J. Gao, T.T.T. Tun et al., Compact physical implementation of spiking neural network using ambipolar WSe2 n-type/p-type ferroelectric field-effect transistor. ACS Nano 18(41), 28394–28405 (2024). https://doi.org/10.1021/acsnano.4c11081
- L. Chen, L. Wang, Y. Peng, X. Feng, S. Sarkar et al., A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide. Adv. Electron. Mater. 6(6), 2000057 (2020). https://doi.org/10.1002/aelm.202000057
- J. Xian, W.H. Chang, T. Saraya, T. Hiramoto, T. Irisawa et al., Experimental demonstration of HfO2-based ferroelectric FET with MoS2 channel for high-density and low-power memory application, in 2021 Silicon Nanoelectronics Workshop (SNW) (IEEE, 2021), pp. 1–2
- S.-H. Tsai, Z. Fang, X. Wang, U. Chand, C.-K. Chen et al., Stress-memorized HZO for high-performance ferroelectric field-effect memtransistor. ACS Appl. Electron. Mater. 4(4), 1642–1650 (2022). https://doi.org/10.1021/acsaelm.1c01321
- Z.-D. Luo, S. Zhang, Y. Liu, D. Zhang, X. Gan et al., Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional in-memory computing. ACS Nano 16(2), 3362–3372 (2022). https://doi.org/10.1021/acsnano.2c00079
- X.-W. Zhang, D. Xie, J.-L. Xu, Y.-L. Sun, X. Li et al., MoS2 field-effect transistors with lead zirconate-titanate ferroelectric gating. IEEE Electron Device Lett. 36(8), 784–786 (2015). https://doi.org/10.1109/LED.2015.2440249
- X. Wang, C. Zhu, Y. Deng, R. Duan, J. Chen et al., Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021). https://doi.org/10.1038/s41467-021-21320-2
- Y. Jeong, H.-J. Jin, J.H. Park, Y. Cho, M. Kim et al., Low voltage and ferroelectric 2D electron devices using lead-free BaxSr1-xTiO3 and MoS2 channel. Adv. Funct. Mater. 30(7), 1908210 (2020). https://doi.org/10.1002/adfm.201908210
- X. Liu, D. Wang, K.-H. Kim, K. Katti, J. Zheng et al., Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21(9), 3753–3761 (2021). https://doi.org/10.1021/acs.nanolett.0c05051
- Z. Zheng, D. Zhang, L. Jiao, C. Sun, Z. Zhou et al., BEOL-compatible MFMIS ferroelectric/anti-ferroelectric FETs: part II: mechanism with load line analysis and scaling strategy. IEEE Trans. Electron Devices 71(9), 5325–5331 (2024). https://doi.org/10.1109/TED.2024.3421184
- X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014). https://doi.org/10.1016/j.pmatsci.2014.01.002
- L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar et al., Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476
- J. Moon, W. Ma, J.H. Shin, F. Cai, C. Du et al., Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2(10), 480–487 (2019). https://doi.org/10.1038/s41928-019-0313-3
- N.T. Duong, Y.-C. Chien, H. Xiang, S. Li, H. Zheng et al., Dynamic ferroelectric transistor-based reservoir computing for spatiotemporal information processing. Adv. Intell. Syst. 5(6), 2300009 (2023). https://doi.org/10.1002/aisy.202300009
- C. Du, F. Cai, M.A. Zidan, W. Ma, S.H. Lee et al., Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017). https://doi.org/10.1038/s41467-017-02337-y
- R. Chen, H. Yang, R. Li, G. Yu, Y. Zhang et al., Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture. Sci. Adv. 10(7), eadl1299 (2024). https://doi.org/10.1126/sciadv.adl1299
- R. Liu, Y. He, X. Zhu, J. Duan, C. Liu et al., Hardware-feasible and efficient N-type organic neuromorphic signal recognition via reservoir computing. Adv. Mater. 37(3), e2409258 (2025). https://doi.org/10.1002/adma.202409258
- Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian et al., Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 12(1), 408 (2021). https://doi.org/10.1038/s41467-020-20692-1
- K. Liu, B. Dang, T. Zhang, Z. Yang, L. Bao et al., Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing. Adv. Mater. 34(48), e2108826 (2022). https://doi.org/10.1002/adma.202108826
- H. Cho, D. Lee, K. Ko, D.-Y. Lin, H. Lee et al., Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 17(8), 7384–7393 (2023). https://doi.org/10.1021/acsnano.2c11538
References
L. Mennel, J. Symonowicz, S. Wachter, D.K. Polyushkin, A.J. Molina-Mendoza et al., Ultrafast machine vision with 2D material neural network image sensors. Nature 579(7797), 62–66 (2020). https://doi.org/10.1038/s41586-020-2038-x
W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3(7), 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
K.D. Stenning, J.C. Gartside, L. Manneschi, C.T.S. Cheung, T. Chen et al., Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks. Nat. Commun. 15(1), 7377 (2024). https://doi.org/10.1038/s41467-024-50633-1
K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019). https://doi.org/10.1038/s41586-019-1677-2
J. Hasler, B. Marr, Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7, 118 (2013). https://doi.org/10.3389/fnins.2013.00118
A. Mehonic, D. Ielmini, K. Roy, O. Mutlu, S. Kvatinsky et al., Roadmap to neuromorphic computing with emerging technologies. APL Mater. 12(10), 109201 (2024). https://doi.org/10.1063/5.0179424
J. Kim, E.C. Park, W. Shin, R.-H. Koo, C.-H. Han et al., Analog reservoir computing via ferroelectric mixed phase boundary transistors. Nat. Commun. 15(1), 9147 (2024). https://doi.org/10.1038/s41467-024-53321-2
X. Wu, V. Saxena, K. Zhu, S. Balagopal, A CMOS spiking neuron for brain-inspired neural networks with resistive synapses and in situ learning. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1088–1092 (2015). https://doi.org/10.1109/TCSII.2015.2456372
G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011). https://doi.org/10.3389/fnins.2011.00073
G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006). https://doi.org/10.1109/TNN.2005.860850
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya et al., Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1(2), 137–145 (2018). https://doi.org/10.1038/s41928-018-0023-2
K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier et al., Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014). https://doi.org/10.1038/ncomms4541
M.-H. Wu, M.-C. Hong, C.-C. Chang, P. Sahu, J.-H. Wei et al., Extremely compact integrate-and-fire STT-MRAM neuron: a pathway toward all-spin artificial deep neural network, in 2019 Symposium on VLSI Technology IEEE, pp. T34–T35 (2019). https://doi.org/10.23919/VLSIT.2019.8776569
H. Zhou, S. Li, K.-W. Ang, Y.-W. Zhang, Recent advances in in-memory computing: exploring memristor and memtransistor arrays with 2D materials. Nano-Micro Lett. 16(1), 121 (2024). https://doi.org/10.1007/s40820-024-01335-2
Z. Xia, X. Sun, Z. Wang, J. Meng, B. Jin et al., Low-power memristor for neuromorphic computing: from materials to applications. Nano-Micro Lett. 17(1), 217 (2025). https://doi.org/10.1007/s40820-025-01705-4
Y. Zhong, J. Tang, X. Li, X. Liang, Z. Liu et al., A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5(10), 672–681 (2022). https://doi.org/10.1038/s41928-022-00838-3
J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus et al., Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012). https://doi.org/10.1021/nl302049k
X. Lyu, M. Si, X. Sun, M.A. Capano, H. Wang et al., Ferroelectric and anti-ferroelectric hafnium zirconium oxide: scaling limit, switching speed and record high polarization density, in 2019 Symposium on VLSI Technology IEEE, pp. T44–T45 (2019). https://doi.org/10.23919/vlsit.2019.8776548
S. Dutta, S.A., P. Panda, W. Chakraborty, J. Gomez et al., Biologically plausible ferroelectric quasi-leaky integrate and fire neuron, in 2019 Symposium on VLSI Technology IEEE, pp. T140–T141 (2019). https://doi.org/10.23919/vlsit.2019.8776487
Z. Wang, B. Crafton, J. Gomez, R. Xu, A. Luo et al., Experimental demonstration of ferroelectric spiking neurons for unsupervised clustering, in 2018 IEEE International Electron Devices Meeting (IEDM) (IEDM) IEEE, pp. 13.3.1–13.3.4 (2019). https://doi.org/10.1109/iedm.2018.8614586
R. Cao, X. Zhang, S. Liu, J. Lu, Y. Wang et al., Compact artificial neuron based on anti-ferroelectric transistor. Nat. Commun. 13(1), 7018 (2022). https://doi.org/10.1038/s41467-022-34774-9
Y. Shi, N.T. Duong, Y.-C. Chien, S. Li, H. Xiang et al., Switching dynamics in anti-ferroelectric transistor for multimodal reservoir computing. Adv. Funct. Mater. 34(34), 2400879 (2024). https://doi.org/10.1002/adfm.202400879
C. Sun, X. Wang, H. Xu, J. Zhang, Z. Zheng et al., Novel a-IGZO anti-ferroelectric FET LIF neuron with co-integrated ferroelectric FET synapse for spiking neural networks, in 2022 International Electron Devices Meeting (IEDM). December 3–7, 2022 (IEEE, San Francisco, 2022), pp. 2.1.1–2.1.4. https://doi.org/10.1109/iedm45625.2022.10019526
Z. Zheng, C. Sun, L. Jiao, D. Zhang, Z. Zhou et al., Boosting the memory window of the BEOL-compatible MFMIS ferroelectric/anti-ferroelectric FETs by charge injection, in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) IEEE, pp. 389–390 (2022). https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830466
H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18(5), 493–500 (2023). https://doi.org/10.1038/s41565-023-01343-0
Y. Cai, J. Yang, Y. Hou, F. Wang, L. Yin et al., 8-bit states in 2D floating-gate memories using gate-injection mode for large-scale convolutional neural networks. Nat. Commun. 16(1), 2649 (2025). https://doi.org/10.1038/s41467-025-58005-z
J. Chen, M.-Y. Sun, Z.-H. Wang, Z. Zhang, K. Zhang et al., Performance limits and advancements in single 2D transition metal dichalcogenide transistor. Nano-Micro Lett. 16(1), 264 (2024). https://doi.org/10.1007/s40820-024-01461-x
L. Hun, K. Young, H.-J. Lee, S.-J. Choi, L. Jung et al., Beyond the silicon plateau: a convergence of novel materials for transistor evolution. Nano-Micro Lett. 18(1), 69 (2025). https://doi.org/10.1007/s40820-025-01898-8
W. Zhang, F. Qiu, Y. Li, R. Zhang, H. Liu et al., Lattice defect engineering enables performance-enhanced MoS2 photodetection through a paraelectric BaTiO3 dielectric. ACS Nano 15(8), 13370–13379 (2021). https://doi.org/10.1021/acsnano.1c03402
T. Huang, J. Ding, Z. Liu, R. Zhang, B. Zhang et al., Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor. eScience 2(3), 319–328 (2022). https://doi.org/10.1016/j.esci.2022.03.005
H. Xiang, Y.-C. Chien, L. Li, H. Zheng, S. Li et al., Enhancing memory window efficiency of ferroelectric transistor for neuromorphic computing via two-dimensional materials integration. Adv. Funct. Mater. 33(42), 2304657 (2023). https://doi.org/10.1002/adfm.202304657
T. Lu, J. Xue, P. Shen, H. Liu, X. Gao et al., Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Sci. Adv. 10(36), eadp0174 (2024). https://doi.org/10.1126/sciadv.adp0174
J. Huo, L. Li, H. Zheng, J. Gao, T.T.T. Tun et al., Compact physical implementation of spiking neural network using ambipolar WSe2 n-type/p-type ferroelectric field-effect transistor. ACS Nano 18(41), 28394–28405 (2024). https://doi.org/10.1021/acsnano.4c11081
L. Chen, L. Wang, Y. Peng, X. Feng, S. Sarkar et al., A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide. Adv. Electron. Mater. 6(6), 2000057 (2020). https://doi.org/10.1002/aelm.202000057
J. Xian, W.H. Chang, T. Saraya, T. Hiramoto, T. Irisawa et al., Experimental demonstration of HfO2-based ferroelectric FET with MoS2 channel for high-density and low-power memory application, in 2021 Silicon Nanoelectronics Workshop (SNW) (IEEE, 2021), pp. 1–2
S.-H. Tsai, Z. Fang, X. Wang, U. Chand, C.-K. Chen et al., Stress-memorized HZO for high-performance ferroelectric field-effect memtransistor. ACS Appl. Electron. Mater. 4(4), 1642–1650 (2022). https://doi.org/10.1021/acsaelm.1c01321
Z.-D. Luo, S. Zhang, Y. Liu, D. Zhang, X. Gan et al., Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional in-memory computing. ACS Nano 16(2), 3362–3372 (2022). https://doi.org/10.1021/acsnano.2c00079
X.-W. Zhang, D. Xie, J.-L. Xu, Y.-L. Sun, X. Li et al., MoS2 field-effect transistors with lead zirconate-titanate ferroelectric gating. IEEE Electron Device Lett. 36(8), 784–786 (2015). https://doi.org/10.1109/LED.2015.2440249
X. Wang, C. Zhu, Y. Deng, R. Duan, J. Chen et al., Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 12, 1109 (2021). https://doi.org/10.1038/s41467-021-21320-2
Y. Jeong, H.-J. Jin, J.H. Park, Y. Cho, M. Kim et al., Low voltage and ferroelectric 2D electron devices using lead-free BaxSr1-xTiO3 and MoS2 channel. Adv. Funct. Mater. 30(7), 1908210 (2020). https://doi.org/10.1002/adfm.201908210
X. Liu, D. Wang, K.-H. Kim, K. Katti, J. Zheng et al., Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21(9), 3753–3761 (2021). https://doi.org/10.1021/acs.nanolett.0c05051
Z. Zheng, D. Zhang, L. Jiao, C. Sun, Z. Zhou et al., BEOL-compatible MFMIS ferroelectric/anti-ferroelectric FETs: part II: mechanism with load line analysis and scaling strategy. IEEE Trans. Electron Devices 71(9), 5325–5331 (2024). https://doi.org/10.1109/TED.2024.3421184
X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014). https://doi.org/10.1016/j.pmatsci.2014.01.002
L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar et al., Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476
J. Moon, W. Ma, J.H. Shin, F. Cai, C. Du et al., Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2(10), 480–487 (2019). https://doi.org/10.1038/s41928-019-0313-3
N.T. Duong, Y.-C. Chien, H. Xiang, S. Li, H. Zheng et al., Dynamic ferroelectric transistor-based reservoir computing for spatiotemporal information processing. Adv. Intell. Syst. 5(6), 2300009 (2023). https://doi.org/10.1002/aisy.202300009
C. Du, F. Cai, M.A. Zidan, W. Ma, S.H. Lee et al., Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017). https://doi.org/10.1038/s41467-017-02337-y
R. Chen, H. Yang, R. Li, G. Yu, Y. Zhang et al., Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture. Sci. Adv. 10(7), eadl1299 (2024). https://doi.org/10.1126/sciadv.adl1299
R. Liu, Y. He, X. Zhu, J. Duan, C. Liu et al., Hardware-feasible and efficient N-type organic neuromorphic signal recognition via reservoir computing. Adv. Mater. 37(3), e2409258 (2025). https://doi.org/10.1002/adma.202409258
Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian et al., Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 12(1), 408 (2021). https://doi.org/10.1038/s41467-020-20692-1
K. Liu, B. Dang, T. Zhang, Z. Yang, L. Bao et al., Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing. Adv. Mater. 34(48), e2108826 (2022). https://doi.org/10.1002/adma.202108826
H. Cho, D. Lee, K. Ko, D.-Y. Lin, H. Lee et al., Double-floating-gate van der Waals transistor for high-precision synaptic operations. ACS Nano 17(8), 7384–7393 (2023). https://doi.org/10.1021/acsnano.2c11538