Biomimetic Gradient Lubrication Hydrogel Contrived by Self-Reinforced MOFs Nanoparticle Network
Corresponding Author: Xiaolong Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 150
Abstract
The development of gradient lubrication materials is critical for numerous biomedical applications, particularly in magnifying mechanical properties and service longevity. Herein, we present an innovative approach to fabricate biomimetic gradient lubrication hydrogel through the synergistic integration of three-dimensional (3D) printed metal–organic frameworks (MOFs) nanoparticle network hydrogel skeletons with bio-inspired lubrication design. Specifically, robust hydrogel skeletons were engineered through single or multi-material 3D printing, followed by the in situ growth of MOFs nanoparticles within this hydrogel network to create a reinforced, load-bearing architecture. Subsequently, biomimetic lubrication capability was enabled by mechanically coupling another lubricating hydrogel within 3D-printed MOFs nanoparticle network hydrogel skeleton. The superficial layer is highly lubricious to ensure low coefficient of friction (~ 0.1141) and wear resistance (40,000 cycles), while the deeper layer is stiffer to afford the obligatory mechanical support (fracture strength ~ 2.50 MPa). Furthermore, the gradient architecture stiffness of the hydrogel can be modulated by manipulating the spatial distribution of MOFs within the 3D-printed hydrogel skeleton. As a proof-of-concept, biomimetic gradient hydrogel meniscus structures with C- and O-shaped configurations were constructed by leveraging multi-material 3D printing, demonstrating exceptional lubrication performance. This innovative biomimetic design opens new avenues for creating implantable biomedical gradient lubricating materials with reinforced mechanical and lubrication performance.
Highlights:
1 Self-reinforced network of metal-organic frameworks nanoparticles significantly improved the mechanical strength and durability of the hydrogel.
2 Biomimetic lubricating hydrogels with architectural and compositional gradients enabled by multi-material 3D printing.
3 Slippery hydrogel meniscus substitutes with complicated gradient structures and reliable cushioning layers were manufactured.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Bao, Z. Chen, G. Nian, M.W.M. Tan, C.H. Ahn et al., Unusually long polymers crosslinked by domains of physical bonds. Nat. Commun. 16(1), 4749 (2025). https://doi.org/10.1038/s41467-025-59875-z
- D. Liu, P. Jiang, Y. Hu, Y. Lu, Y. Wang, J. Wu, D. Hu, T. Wu, X. Wang, Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing. Int. J. Extrem. Manuf. 6(2), 025501 (2024). https://doi.org/10.1088/2631-7990/ad1730
- Y. Wang, D. Liu, D. Hu, C. Wang, Z. Li, J. Wu, P. Jiang, X. Yang, C. Bai, Z. Ji, X. Jia, X. Wang, Octopus-inspired self-adaptive hydrogel gripper capable of manipulating ultra-soft objects. Nano-Micro Lett. 18(1), 33 (2025). https://doi.org/10.1007/s40820-025-01880-4
- A.P. Dhand, M.D. Davidson, H.M. Zlotnick, T.J. Kolibaba, J.P. Killgore et al., Additive manufacturing of highly entangled polymer networks. Science 385, 566–572 (2024). https://doi.org/10.1126/science.adn6925
- B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin et al., Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019). https://doi.org/10.1126/science.aav9750
- T. Ding, C. Ren, L. Meng, G. Han, Y. Xue et al., Nonswelling lubricative nanocolloidal hydrogel resistant to biodegradation. Nano-Micro Lett. 17(1), 327 (2025). https://doi.org/10.1007/s40820-025-01830-0
- X. Chen, F. Liu, Q. Yu, M. Yang, Z. Suo, J. Tang, A soft and fatigue-resistant material that mimics heart valves. Matter 8(2), 101926 (2025). https://doi.org/10.1016/j.matt.2024.11.020
- B. Liu, H. Li, F. Meng, Z. Xu, L. Hao et al., 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 15(1), 1587 (2024). https://doi.org/10.1038/s41467-024-45938-0
- Y. Yang, Y. Ru, T. Zhao, M. Liu, Bioinspired multiphase composite gel materials: from controlled micro-phase separation to multiple functionalities. Chem 9(11), 3113–3137 (2023). https://doi.org/10.1016/j.chempr.2023.08.012
- B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22(10), 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
- S. Zhang, D. Ren, Q. Zhao, M. Peng, X. Wang et al., Observation of topological hydrogen-bonding domains in physical hydrogel for excellent self-healing and elasticity. Nat. Commun. 16, 2371 (2025). https://doi.org/10.1038/s41467-025-57692-y
- X. Shi, L. Ma, Y. Li, Z. Shi, Q. Wei, G. Ma, W. Zhang, Y. Guo, P. Wu, Z. Hu, Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv. Funct. Mater. 33(9), 2211720 (2023). https://doi.org/10.1002/adfm.202211720
- D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), 2206819 (2023). https://doi.org/10.1002/smll.202206819
- D. Hu, D. Liu, Y. Hu, Y. Wang, Y. Lu et al., Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 17(11), 9784–9795 (2024). https://doi.org/10.1007/s12274-024-6968-8
- D. Hu, Y. Yan, W. Wei, C. Bai, Y. Lu et al., Mechanically robust lubricating hydrogels contrived by harnessing low-entropy nanocrystalline polymer network. Adv. Funct. Mater. 35(43), 2508450 (2025). https://doi.org/10.1002/adfm.202508450
- X. Meng, Y. Qiao, C. Do, W. Bras, C. He, Y. Ke, T.P. Russell, D. Qiu, Hysteresis-free nanop-reinforced hydrogels. Adv. Mater. 34(7), 2108243 (2022). https://doi.org/10.1002/adma.202108243
- X. Mao, X. Ding, Q. Wang, X. Sun, L. Qin et al., Oriented self-assembly of flexible MOFs nanocrystals into anisotropic superstructures with homogeneous hydrogels behaviors. Small 20(17), 2308739 (2024). https://doi.org/10.1002/smll.202308739
- H. Liu, H. Peng, Y. Xin, J. Zhang, Metal–organic frameworks: a universal strategy towards super-elastic hydrogels. Polym. Chem. 10(18), 2263–2272 (2019). https://doi.org/10.1039/C9PY00085B
- W. Liu, O. Erol, D.H. Gracias, 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12(29), 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
- D.-Y. Gao, Z. Liu, Z.-L. Cheng, 2D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance. Colloids Surf A Physicochem Eng Asp 610, 125934 (2021). https://doi.org/10.1016/j.colsurfa.2020.125934
- W. Wu, J. Liu, P. Gong, Z. Li, C. Ke et al., Construction of core-shell NanoMOFs@microgel for aqueous lubrication and thermal-responsive drug release. Small 18(28), e2202510 (2022). https://doi.org/10.1002/smll.202202510
- H. Zhang, S. Yuan, B. Zheng, P. Wu, X. He, Yi. Zhao, Z. Zhong, X. Zhang, J. Guan, H. Wang, L. Yang, X. Zheng, Lubricating and dual-responsive injectable hydrogels formulated from ZIF-8 facilitate osteoarthritis treatment by remodeling the microenvironment. Small 21(3), e2407885 (2025). https://doi.org/10.1002/smll.202407885
- Y. Jiang, H. Liao, L. Yan, S. Jiang, Y. Zheng et al., A metal–organic framework-incorporated hydrogel for delivery of immunomodulatory neobavaisoflavone to promote cartilage regeneration in osteoarthritis. ACS Appl. Mater. Interfaces 15(40), 46598–46612 (2023). https://doi.org/10.1021/acsami.3c06706
- L. Tang, L. Gong, Y. Xu, S. Wu, W. Wang et al., Mechanically strong metal–organic framework nanop-based double network hydrogels for fluorescence imaging. ACS Appl. Nano Mater. 5(1), 1348–1355 (2022). https://doi.org/10.1021/acsanm.1c03034
- C.-T. Hsieh, K. Ariga, L.K. Shrestha, S.-H. Hsu, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks. Biomacromol 22(3), 1053–1064 (2021). https://doi.org/10.1021/acs.biomac.0c00920
- K. Cheng, F. Svec, Y. Lv, T. Tan, Hierarchical micro- and mesoporous Zn-based metal–organic frameworks templated by hydrogels: their use for enzyme immobilization and catalysis of Knoevenagel reaction. Small 15(44), 1902927 (2019). https://doi.org/10.1002/smll.201902927
- Y. Feng, Y. Wang, C. Chen, Z. Wang, J. Liu, Bioinspired multiscale regulation for hydrogels with superior mechanics. The Innovation Materials 2(4), 100105 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100105
- Y. Tang, B. Wu, J. Li, C. Lu, J. Wu, R. Xiong, Biomimetic structural hydrogels reinforced by gradient twisted plywood architectures. Adv. Mater. 37(1), 2411372 (2025). https://doi.org/10.1002/adma.202411372
- J. Xu, Y. Cui, P. Li, X. Sun, Z. Chen et al., Continuous mechanical-gradient hydrogel with on-demand distributed Mn2+/Mg-doped hydroxyapatite@Fe3O4 for functional osteochondral regeneration. Bioact. Mater. 49, 608–626 (2025). https://doi.org/10.1016/j.bioactmat.2025.03.013
- P. Wei, Y. Ma, K. Qin, Z. Fan, A 3D printed biomimetic scaffold for cartilage regeneration with lubrication, load-bearing, and adhesive fixation properties. Tribol. Int. 192, 109328 (2024). https://doi.org/10.1016/j.triboint.2024.109328
- B.A.G. de Melo, Y.A. Jodat, S. Mehrotra, M.A. Calabrese, T. Kamperman, B.B. Mandal, M.H.A. Santana, E. Alsberg, J. Leijten, S.R. Shin, 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Adv. Funct. Mater. 29(51), 1906330 (2019). https://doi.org/10.1002/adfm.201906330
- H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen, E. Kontturi, J. Seppälä, O.J. Rojas, Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
- B. Cheng, C. Li, B. Zhang, J. Liu, Z. Lu et al., Customizable low-friction tough hydrogels for potential cartilage tissue engineering by a rapid orthogonal photoreactive 3D-printing design. ACS Appl. Mater. Interfaces 15(11), 14826–14834 (2023). https://doi.org/10.1021/acsami.3c00065
- Q. Liu, X. Dong, H. Qi, H. Zhang, T. Li et al., 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat. Commun. 15(1), 3237 (2024). https://doi.org/10.1038/s41467-024-47597-7
- K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia, Y. Li, Y. Chen, N. Liu, J. He, J. Shi, Z. Hu, Y. Zhou, Z. Xie, Y. He, 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
- J.E. Barthold, K.P. McCreery, J. Martinez, C. Bellerjeau, Y. Ding et al., Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 14(2), 025021 (2022). https://doi.org/10.1088/1758-5090/ac584c
- Q. Zhang, Z. Xu, X. Zhang, C. Liu, R. Yang, Y. Sun, Y. Zhang, W. Liu, 3D printed high-strength supramolecular polymer hydrogel-cushioned radially and circumferentially oriented Meniscus Substitute. Adv. Funct. Mater. 32(23), 2200360 (2022). https://doi.org/10.1002/adfm.202200360
- K. Qin, X. Huang, S. Wang, J. Liang, Z. Fan, 3D-printed in situ growth of bilayer MOF hydrogels for accelerated osteochondral defect repair. Adv. Healthc. Mater. 14(2), 2403840 (2025). https://doi.org/10.1002/adhm.202403840
- C. Fan, Z. Xu, T. Wu, C. Cui, Y. Liu et al., 3D printing of lubricative stiff supramolecular polymer hydrogels for Meniscus replacement. Biomater. Sci. 9(15), 5116–5126 (2021). https://doi.org/10.1039/D1BM00836F
- F. Tian, W. Yan, M. Zhang, L. Zhao, Z. Gao, X. Hu, J. Cheng, S. Xu, L. Tang, Y. Ao, W. Huang, R. Yu, Meniscal scaffolds based on self-healable elastomer-hydrogel composites with biomimetic structure and tribological properties for repairing meniscal injuries. Chem. Eng. J. 500, 156591 (2024). https://doi.org/10.1016/j.cej.2024.156591
- L. Zhang, L. Fu, X. Zhang, L. Chen, Q. Cai et al., Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 9(5), 1547–1573 (2021). https://doi.org/10.1039/D0BM01595D
- A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, A. Khademhosseini, Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 7(4), 1441–1451 (2011). https://doi.org/10.1016/j.actbio.2011.01.011
- H.H. Lu, S. Thomopoulos, Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201–226 (2013). https://doi.org/10.1146/annurev-bioeng-071910-124656
- I. Calejo, R. Costa-Almeida, R.L. Reis, M.E. Gomes, A physiology-inspired multifactorial toolbox in soft-to-hard musculoskeletal interface tissue engineering. Trends Biotechnol. 38(1), 83–98 (2020). https://doi.org/10.1016/j.tibtech.2019.06.003
- Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
- M. Peng, G. Xiao, X. Tang, Y. Zhou, Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47(23), 8411–8419 (2014). https://doi.org/10.1021/ma501590x
- L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu et al., Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11(1), 62 (2020). https://doi.org/10.1038/s41467-019-13959-9
- M. Ahmad, R. Patel, D.T. Lee, P. Corkery, A. Kraetz et al., ZIF-8 vibrational spectra: peak assignments and defect signals. ACS Appl. Mater. Interfaces 16(21), 27887–27897 (2024). https://doi.org/10.1021/acsami.4c02396
- S. Wang, L. Yu, X. Jia, L. Zhang, H. Liu et al., Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. The Innovation Materials 2(4), 100092 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100092
- N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary reinforcement of polymer networks: a stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 36(6), 2309576 (2024). https://doi.org/10.1002/adma.202309576
- M. Hirsch, A. Charlet, E. Amstad, 3D printing of strong and tough double network granular hydrogels. Adv. Funct. Mater. 31(5), 2005929 (2021). https://doi.org/10.1002/adfm.202005929
- J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, P. Buma, Biomaterials in search of a meniscus substitute. Biomaterials 35(11), 3527–3540 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.017
References
X. Bao, Z. Chen, G. Nian, M.W.M. Tan, C.H. Ahn et al., Unusually long polymers crosslinked by domains of physical bonds. Nat. Commun. 16(1), 4749 (2025). https://doi.org/10.1038/s41467-025-59875-z
D. Liu, P. Jiang, Y. Hu, Y. Lu, Y. Wang, J. Wu, D. Hu, T. Wu, X. Wang, Slippery hydrogel with desiccation-tolerant ‘skin’ for high-precision additive manufacturing. Int. J. Extrem. Manuf. 6(2), 025501 (2024). https://doi.org/10.1088/2631-7990/ad1730
Y. Wang, D. Liu, D. Hu, C. Wang, Z. Li, J. Wu, P. Jiang, X. Yang, C. Bai, Z. Ji, X. Jia, X. Wang, Octopus-inspired self-adaptive hydrogel gripper capable of manipulating ultra-soft objects. Nano-Micro Lett. 18(1), 33 (2025). https://doi.org/10.1007/s40820-025-01880-4
A.P. Dhand, M.D. Davidson, H.M. Zlotnick, T.J. Kolibaba, J.P. Killgore et al., Additive manufacturing of highly entangled polymer networks. Science 385, 566–572 (2024). https://doi.org/10.1126/science.adn6925
B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin et al., Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019). https://doi.org/10.1126/science.aav9750
T. Ding, C. Ren, L. Meng, G. Han, Y. Xue et al., Nonswelling lubricative nanocolloidal hydrogel resistant to biodegradation. Nano-Micro Lett. 17(1), 327 (2025). https://doi.org/10.1007/s40820-025-01830-0
X. Chen, F. Liu, Q. Yu, M. Yang, Z. Suo, J. Tang, A soft and fatigue-resistant material that mimics heart valves. Matter 8(2), 101926 (2025). https://doi.org/10.1016/j.matt.2024.11.020
B. Liu, H. Li, F. Meng, Z. Xu, L. Hao et al., 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat. Commun. 15(1), 1587 (2024). https://doi.org/10.1038/s41467-024-45938-0
Y. Yang, Y. Ru, T. Zhao, M. Liu, Bioinspired multiphase composite gel materials: from controlled micro-phase separation to multiple functionalities. Chem 9(11), 3113–3137 (2023). https://doi.org/10.1016/j.chempr.2023.08.012
B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22(10), 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
S. Zhang, D. Ren, Q. Zhao, M. Peng, X. Wang et al., Observation of topological hydrogen-bonding domains in physical hydrogel for excellent self-healing and elasticity. Nat. Commun. 16, 2371 (2025). https://doi.org/10.1038/s41467-025-57692-y
X. Shi, L. Ma, Y. Li, Z. Shi, Q. Wei, G. Ma, W. Zhang, Y. Guo, P. Wu, Z. Hu, Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv. Funct. Mater. 33(9), 2211720 (2023). https://doi.org/10.1002/adfm.202211720
D. Liu, Y. Cao, P. Jiang, Y. Wang, Y. Lu et al., Tough, transparent, and slippery PVA hydrogel led by syneresis. Small 19(14), 2206819 (2023). https://doi.org/10.1002/smll.202206819
D. Hu, D. Liu, Y. Hu, Y. Wang, Y. Lu et al., Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains. Nano Res. 17(11), 9784–9795 (2024). https://doi.org/10.1007/s12274-024-6968-8
D. Hu, Y. Yan, W. Wei, C. Bai, Y. Lu et al., Mechanically robust lubricating hydrogels contrived by harnessing low-entropy nanocrystalline polymer network. Adv. Funct. Mater. 35(43), 2508450 (2025). https://doi.org/10.1002/adfm.202508450
X. Meng, Y. Qiao, C. Do, W. Bras, C. He, Y. Ke, T.P. Russell, D. Qiu, Hysteresis-free nanop-reinforced hydrogels. Adv. Mater. 34(7), 2108243 (2022). https://doi.org/10.1002/adma.202108243
X. Mao, X. Ding, Q. Wang, X. Sun, L. Qin et al., Oriented self-assembly of flexible MOFs nanocrystals into anisotropic superstructures with homogeneous hydrogels behaviors. Small 20(17), 2308739 (2024). https://doi.org/10.1002/smll.202308739
H. Liu, H. Peng, Y. Xin, J. Zhang, Metal–organic frameworks: a universal strategy towards super-elastic hydrogels. Polym. Chem. 10(18), 2263–2272 (2019). https://doi.org/10.1039/C9PY00085B
W. Liu, O. Erol, D.H. Gracias, 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 12(29), 33267–33275 (2020). https://doi.org/10.1021/acsami.0c08880
D.-Y. Gao, Z. Liu, Z.-L. Cheng, 2D Ni-Fe MOF nanosheets reinforced poly(vinyl alcohol) hydrogels with enhanced mechanical and tribological performance. Colloids Surf A Physicochem Eng Asp 610, 125934 (2021). https://doi.org/10.1016/j.colsurfa.2020.125934
W. Wu, J. Liu, P. Gong, Z. Li, C. Ke et al., Construction of core-shell NanoMOFs@microgel for aqueous lubrication and thermal-responsive drug release. Small 18(28), e2202510 (2022). https://doi.org/10.1002/smll.202202510
H. Zhang, S. Yuan, B. Zheng, P. Wu, X. He, Yi. Zhao, Z. Zhong, X. Zhang, J. Guan, H. Wang, L. Yang, X. Zheng, Lubricating and dual-responsive injectable hydrogels formulated from ZIF-8 facilitate osteoarthritis treatment by remodeling the microenvironment. Small 21(3), e2407885 (2025). https://doi.org/10.1002/smll.202407885
Y. Jiang, H. Liao, L. Yan, S. Jiang, Y. Zheng et al., A metal–organic framework-incorporated hydrogel for delivery of immunomodulatory neobavaisoflavone to promote cartilage regeneration in osteoarthritis. ACS Appl. Mater. Interfaces 15(40), 46598–46612 (2023). https://doi.org/10.1021/acsami.3c06706
L. Tang, L. Gong, Y. Xu, S. Wu, W. Wang et al., Mechanically strong metal–organic framework nanop-based double network hydrogels for fluorescence imaging. ACS Appl. Nano Mater. 5(1), 1348–1355 (2022). https://doi.org/10.1021/acsanm.1c03034
C.-T. Hsieh, K. Ariga, L.K. Shrestha, S.-H. Hsu, Development of MOF reinforcement for structural stability and toughness enhancement of biodegradable bioinks. Biomacromol 22(3), 1053–1064 (2021). https://doi.org/10.1021/acs.biomac.0c00920
K. Cheng, F. Svec, Y. Lv, T. Tan, Hierarchical micro- and mesoporous Zn-based metal–organic frameworks templated by hydrogels: their use for enzyme immobilization and catalysis of Knoevenagel reaction. Small 15(44), 1902927 (2019). https://doi.org/10.1002/smll.201902927
Y. Feng, Y. Wang, C. Chen, Z. Wang, J. Liu, Bioinspired multiscale regulation for hydrogels with superior mechanics. The Innovation Materials 2(4), 100105 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100105
Y. Tang, B. Wu, J. Li, C. Lu, J. Wu, R. Xiong, Biomimetic structural hydrogels reinforced by gradient twisted plywood architectures. Adv. Mater. 37(1), 2411372 (2025). https://doi.org/10.1002/adma.202411372
J. Xu, Y. Cui, P. Li, X. Sun, Z. Chen et al., Continuous mechanical-gradient hydrogel with on-demand distributed Mn2+/Mg-doped hydroxyapatite@Fe3O4 for functional osteochondral regeneration. Bioact. Mater. 49, 608–626 (2025). https://doi.org/10.1016/j.bioactmat.2025.03.013
P. Wei, Y. Ma, K. Qin, Z. Fan, A 3D printed biomimetic scaffold for cartilage regeneration with lubrication, load-bearing, and adhesive fixation properties. Tribol. Int. 192, 109328 (2024). https://doi.org/10.1016/j.triboint.2024.109328
B.A.G. de Melo, Y.A. Jodat, S. Mehrotra, M.A. Calabrese, T. Kamperman, B.B. Mandal, M.H.A. Santana, E. Alsberg, J. Leijten, S.R. Shin, 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Adv. Funct. Mater. 29(51), 1906330 (2019). https://doi.org/10.1002/adfm.201906330
H. Baniasadi, R. Abidnejad, M. Fazeli, J. Lipponen, J. Niskanen, E. Kontturi, J. Seppälä, O.J. Rojas, Innovations in hydrogel-based manufacturing: a comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 324, 103095 (2024). https://doi.org/10.1016/j.cis.2024.103095
B. Cheng, C. Li, B. Zhang, J. Liu, Z. Lu et al., Customizable low-friction tough hydrogels for potential cartilage tissue engineering by a rapid orthogonal photoreactive 3D-printing design. ACS Appl. Mater. Interfaces 15(11), 14826–14834 (2023). https://doi.org/10.1021/acsami.3c00065
Q. Liu, X. Dong, H. Qi, H. Zhang, T. Li et al., 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat. Commun. 15(1), 3237 (2024). https://doi.org/10.1038/s41467-024-47597-7
K. Yao, G. Hong, X. Yuan, W. Kong, P. Xia, Y. Li, Y. Chen, N. Liu, J. He, J. Shi, Z. Hu, Y. Zhou, Z. Xie, Y. He, 3D printing of tough hydrogel scaffolds with functional surface structures for tissue regeneration. Nano-Micro Lett. 17(1), 27 (2024). https://doi.org/10.1007/s40820-024-01524-z
J.E. Barthold, K.P. McCreery, J. Martinez, C. Bellerjeau, Y. Ding et al., Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 14(2), 025021 (2022). https://doi.org/10.1088/1758-5090/ac584c
Q. Zhang, Z. Xu, X. Zhang, C. Liu, R. Yang, Y. Sun, Y. Zhang, W. Liu, 3D printed high-strength supramolecular polymer hydrogel-cushioned radially and circumferentially oriented Meniscus Substitute. Adv. Funct. Mater. 32(23), 2200360 (2022). https://doi.org/10.1002/adfm.202200360
K. Qin, X. Huang, S. Wang, J. Liang, Z. Fan, 3D-printed in situ growth of bilayer MOF hydrogels for accelerated osteochondral defect repair. Adv. Healthc. Mater. 14(2), 2403840 (2025). https://doi.org/10.1002/adhm.202403840
C. Fan, Z. Xu, T. Wu, C. Cui, Y. Liu et al., 3D printing of lubricative stiff supramolecular polymer hydrogels for Meniscus replacement. Biomater. Sci. 9(15), 5116–5126 (2021). https://doi.org/10.1039/D1BM00836F
F. Tian, W. Yan, M. Zhang, L. Zhao, Z. Gao, X. Hu, J. Cheng, S. Xu, L. Tang, Y. Ao, W. Huang, R. Yu, Meniscal scaffolds based on self-healable elastomer-hydrogel composites with biomimetic structure and tribological properties for repairing meniscal injuries. Chem. Eng. J. 500, 156591 (2024). https://doi.org/10.1016/j.cej.2024.156591
L. Zhang, L. Fu, X. Zhang, L. Chen, Q. Cai et al., Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 9(5), 1547–1573 (2021). https://doi.org/10.1039/D0BM01595D
A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, A. Khademhosseini, Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 7(4), 1441–1451 (2011). https://doi.org/10.1016/j.actbio.2011.01.011
H.H. Lu, S. Thomopoulos, Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu. Rev. Biomed. Eng. 15, 201–226 (2013). https://doi.org/10.1146/annurev-bioeng-071910-124656
I. Calejo, R. Costa-Almeida, R.L. Reis, M.E. Gomes, A physiology-inspired multifactorial toolbox in soft-to-hard musculoskeletal interface tissue engineering. Trends Biotechnol. 38(1), 83–98 (2020). https://doi.org/10.1016/j.tibtech.2019.06.003
Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
M. Peng, G. Xiao, X. Tang, Y. Zhou, Hydrogen-bonding assembly of rigid-rod poly(p-sulfophenylene terephthalamide) and flexible-chain poly(vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47(23), 8411–8419 (2014). https://doi.org/10.1021/ma501590x
L. Li, Y. Zhang, H. Lu, Y. Wang, J. Xu et al., Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 11(1), 62 (2020). https://doi.org/10.1038/s41467-019-13959-9
M. Ahmad, R. Patel, D.T. Lee, P. Corkery, A. Kraetz et al., ZIF-8 vibrational spectra: peak assignments and defect signals. ACS Appl. Mater. Interfaces 16(21), 27887–27897 (2024). https://doi.org/10.1021/acsami.4c02396
S. Wang, L. Yu, X. Jia, L. Zhang, H. Liu et al., Cellulose nanofibril-guided orienting response of supramolecular network enables superstretchable, robust, and antifatigue hydrogel. The Innovation Materials 2(4), 100092 (2024). https://doi.org/10.59717/j.xinn-mater.2024.100092
N. Tang, Y. Jiang, K. Wei, Z. Zheng, H. Zhang, J. Hu, Evolutionary reinforcement of polymer networks: a stepwise-enhanced strategy for ultrarobust eutectogels. Adv. Mater. 36(6), 2309576 (2024). https://doi.org/10.1002/adma.202309576
M. Hirsch, A. Charlet, E. Amstad, 3D printing of strong and tough double network granular hydrogels. Adv. Funct. Mater. 31(5), 2005929 (2021). https://doi.org/10.1002/adfm.202005929
J.J. Rongen, T.G. van Tienen, B. van Bochove, D.W. Grijpma, P. Buma, Biomaterials in search of a meniscus substitute. Biomaterials 35(11), 3527–3540 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.017