Ultra-Light Poly(N-isopropylacrylamide) Hydrogels: Light Weight Water Materials for Passive Thermal Management via Insulation and Cooling
Corresponding Author: Jin Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 225
Abstract
Water, despite its abundance, high heat capacity, and environmental benignity, has long been constrained by its intrinsic density (~ 1.0 g cm−3) and fluidic nature, which limit its use as a lightweight, structurally stable material above the freezing point. Reconfiguring water into an ultra-light yet solid-like form while retaining its inherent thermal and optical advantages is therefore of great significance for next-generation cooling technologies that demand low mass, portability, and sustainability. Herein, we report an ultra-light hydrogel based on poly(N-isopropylacrylamide), in which hollow foaming microspheres are incorporated to create ultra-low-density water materials. By confining water within this composite network, the hydrogel achieves a record-low density of 0.041 g cm−3 while maintaining a high water content of 52.7 wt%. The microspheres generate sealed air pockets that serve as highly effective thermal barriers, yielding a thermal conductivity of only 0.034–0.039 W m−1 K−1 and enabling a > 50 °C temperature differential in hot-stage tests. Furthermore, the hydrogel exhibits excellent spectral properties, with high solar reflectance (0.94) and high infrared emittance (0.84), resulting in a sub-ambient cooling of up to 10.8 °C in outdoor experiments. The synergy of ultra-low density, mechanical robustness, and multifunctional thermal regulation demonstrates a viable pathway toward practical light water materials for energy-efficient, portable, and sustainable thermal management.
Highlights:
1 The hydrogel achieves an ultra-light water-based structure (0.041 g cm−3, 52.7 wt% water) by incorporating hollow foaming microspheres.
2 Sealed air pockets enable ultra-low thermal conductivity (0.034–0.039 W m−1 K−1) and over 50 °C thermal shielding under high-temperature conditions.
3 High solar reflectance (0.94) and infrared emittance (0.84) deliver up to 10.8 °C sub-ambient outdoor cooling.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.W. Ock, J. Yin, S. Wang, X. Zhao, J.M. Baik et al., Advances in blue energy fuels: harvesting energy from ocean for self-powered electrolysis. Adv. Energy Mater. 15(2), 2400563 (2025). https://doi.org/10.1002/aenm.202400563
- M. Esteban, D. Leary, Current developments and future prospects of offshore wind and ocean energy. Appl. Energy 90(1), 128–136 (2012). https://doi.org/10.1016/j.apenergy.2011.06.011
- N.T. Vinogradova, T.M. Pavelsky, J.T. Farrar, F. Hossain, L.-L. Fu, A new look at Earth’s water and energy with SWOT. Nat. Water 3(1), 27–37 (2025). https://doi.org/10.1038/s44221-024-00372-w
- H. Ni, Y.-F. Zheng, Z. Mao, Q. Wang, R.-X. Chen et al., Distribution, cycling and impact of water in the Earth’s interior. Natl. Sci. Rev. 4(6), 879–891 (2017). https://doi.org/10.1093/nsr/nwx130
- H. Biemans, C. Siderius, A.F. Lutz, S. Nepal, B. Ahmad et al., Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2(7), 594–601 (2019). https://doi.org/10.1038/s41893-019-0305-3
- H. Ovink, S. Rahimzoda, J. Cullman, A.J. Imperiale, The UN 2023 Water Conference and pathways towards sustainability transformation for a water-secure world. Nat. Water 1(3), 212–215 (2023). https://doi.org/10.1038/s44221-023-00052-1
- F. Heller, Water and film: fluidity of time and space and its somatic perception. WIREs Water 5(6), e1315 (2018). https://doi.org/10.1002/wat2.1315
- U. Raviv, P. Laurat, J. Klein, Fluidity of water confined to subnanometre films. Nature 413(6851), 51–54 (2001). https://doi.org/10.1038/35092523
- Y. Song, N. Xu, G. Liu, H. Qi, W. Zhao et al., High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17(8), 857–863 (2022). https://doi.org/10.1038/s41565-022-01135-y
- Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29(43), 1905485 (2019). https://doi.org/10.1002/adfm.201905485
- W. Zhu, Y. Huang, C. Zhu, H.-H. Wu, L. Wang et al., Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat. Commun. 10, 1925 (2019). https://doi.org/10.1038/s41467-019-09950-z
- E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
- J. Aitken, The maximum density of water. Nature 91(2283), 558 (1913). https://doi.org/10.1038/091558d0
- C. Chang, X. Xu, X. Guo, B. Rasakhodzhaev, M. Zhao et al., Experimental and numerical study of ice storage and melting process of external melting ice coil. J. Energy Storage 77, 109961 (2024). https://doi.org/10.1016/j.est.2023.109961
- O. Mishima, L.D. Calvert, E. Whalley, ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310(5976), 393–395 (1984). https://doi.org/10.1038/310393a0
- L. Chen, Z. Chen, Y. Liu, E. Lichtfouse, Y. Jiang et al., Benefits and limitations of recycled water systems in the building sector: a review. Environ. Chem. Lett. 22(2), 785–814 (2024). https://doi.org/10.1007/s10311-023-01683-2
- Y. Li, Z. Wang, Q. Zhang, K. Tian, J. Liu et al., Lightweight materials for high energy density lithium–sulfur batteries. Adv. Energy Mater. 15(19), 2406069 (2025). https://doi.org/10.1002/aenm.202406069
- K. König, J. Mathieu, M. Vielhaber, Resource conservation by means of lightweight design and design for circularity: a concept for decision making in the early phase of product development. Resour. Conserv. Recycl. 201, 107331 (2024). https://doi.org/10.1016/j.resconrec.2023.107331
- H. Lee, T. Yu, M. Zheng, D. Jourdan, Y. Sun et al., Programmable sponge for hydro-active morphing module with light weight and high-volume change. Adv. Funct. Mater. e19611 (2025). https://doi.org/10.1002/adfm.202519611
- T. Zhou, L. He, Y. Zhen, X. Tai, S. Dai et al., Superstrong lightweight aerogel with supercontinuous layer by surface reaction. Adv. Mater. 37(10), e2418083 (2025). https://doi.org/10.1002/adma.202418083
- M. Ahmad Jan, W. Zhang, F. Khan, S. Abbas, R. Khan, Lightweight and smart data fusion approaches for wearable devices of the Internet of Medical Things. Inf. Fusion 103, 102076 (2024). https://doi.org/10.1016/j.inffus.2023.102076
- J. Deng, W. Zhuang, L. Bao, X. Wu, J. Gao et al., A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019). https://doi.org/10.1016/j.carbon.2019.04.019
- H. Wang, W. Lu, Z. Wu, G. Zhang, Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renew. Energy 145, 52–64 (2020). https://doi.org/10.1016/j.renene.2019.05.124
- H. Quan, W. Yang, Z. Tang, R.O. Ritchie, M.A. Meyers, Active defense mechanisms of thorny catfish. Mater. Today 38, 35–48 (2020). https://doi.org/10.1016/j.mattod.2020.04.028
- J. Peng, X. Yang, W. Shen, J. Li, M. Qi, Energy, power, and actuation systems for sustained untethered flight in gram-scale aerial vehicles. Joule 9(10), 102104 (2025). https://doi.org/10.1016/j.joule.2025.102104
- T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J.P. Gong, Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363(6426), 504–508 (2019). https://doi.org/10.1126/science.aau9533
- H. Ju, H. Zhang, L.X. Hou, M. Zuo, M. Du et al., Polymerization-induced crystallization of dopant molecules: an efficient strategy for room-temperature phosphorescence of hydrogels. J. Am. Chem. Soc. 145(6), 3763–3773 (2023). https://doi.org/10.1021/jacs.2c13264
- Z.R. Zhang, H. Ju, H. Zhang, Z.J. Wang, M. Du et al., Polymerization-induced crystallization to form stretchable hydrogels with banded spherulites and circularly polarized luminescence. Adv. Mater. 37(34), 2505444 (2025). https://doi.org/10.1002/adma.202505444
- X. Hu, L. Liu, P. Hu, D. Yuan, S. Ge et al., Converting light into programmable temperatures via Janus hydrogels for passive infrared thermography. Small 21(14), e2500665 (2025). https://doi.org/10.1002/smll.202500665
- X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
- Q. Ye, Y. Huang, B. Yao, Z. Chen, C. Shi et al., Radiative coupled evaporation cooling hydrogel for above-ambient heat dissipation and flame retardancy. Nano-Micro Lett. 18(1), 50 (2025). https://doi.org/10.1007/s40820-025-01903-0
- X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
- D. Pan, Z. Han, J. Lei, Y. Niu, H. Liu et al., Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection. Sci. Bull. 70(5), 722–732 (2025). https://doi.org/10.1016/j.scib.2025.01.005
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- J. Xu, W. Xie, H. Han, C. Xiao, J. Li et al., Radiative cooling materials for extreme environmental applications. Nano-Micro Lett. 17(1), 324 (2025). https://doi.org/10.1007/s40820-025-01835-9
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- Y. Li, Y. Feng, M. Qin, K. Chen, Y. An et al., Co-anchored hollow carbonized kapok fiber encapsulated phase change materials for upgrading photothermal utilization. Small 21(21), 2500479 (2025). https://doi.org/10.1002/smll.202500479
- Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
- J. Calleja-Agius, K. England, N. Calleja, The effect of global warming on mortality. Early Hum. Dev. 155, 105222 (2021). https://doi.org/10.1016/j.earlhumdev.2020.105222
- G. Murali, T. Iwamura, M. Shai, U. Roll, Future temperature extremes threaten land vertebrates. Nature 615(7952), 461–467 (2023). https://doi.org/10.1038/s41586-022-05606-z
- C. Çamur, R. Babu, J.A. Suárez Del Pino, N. Rampal, J. Pérez-Carvajal et al., Monolithic zirconium-based metal-organic frameworks for energy-efficient water adsorption applications. Adv. Mater. 35(23), e2209104 (2023). https://doi.org/10.1002/adma.202209104
- Z. Jin, Y. Zheng, D. Huang, Y. Zhang, S. Lv et al., Dehumidification load ratio: influence mechanism on air conditioning and energy saving potential analysis for building cooling. Sustain. Cities Soc. 99, 104942 (2023). https://doi.org/10.1016/j.scs.2023.104942
- X. Chen, J. Lin, Y. Feng, K. Chen, M. Qin et al., Carbon-metal network boosting photon/phonon transport in photothermal phase change materials. Carbon 238, 120192 (2025). https://doi.org/10.1016/j.carbon.2025.120192
- X. Chen, C. Liu, W. Aftab, Advanced solid–solid phase change thermal storage material. Nano Res. Energy 3(2), e9120103 (2024). https://doi.org/10.26599/nre.2023.9120103
- Y. Feng, G. Hai, G. Sun, K. Chen, X. Wang et al., Dual-functional phase change composites integrating thermal buffering and electromagnetic wave absorption via multi-interfacial engineering. Adv. Fiber Mater. 7(6), 1873–1887 (2025). https://doi.org/10.1007/s42765-025-00585-y
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16(1), 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
- J. Lei, Z. Han, L. Xiang, D. Pan, H. Liu et al., The preparation of SiO2/SWCNT@Ni composite film with sandwich structure and its excellent electromagnetic shielding and thermal insulation performances in extreme environment. Adv. Compos. Hybrid Mater. 8(2), 204 (2025). https://doi.org/10.1007/s42114-025-01235-y
- S. Zong, H. Wen, H. Lv, T. Li, R. Tang et al., Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr. Polym. 278, 118943 (2022). https://doi.org/10.1016/j.carbpol.2021.118943
- X. Yang, P. Wang, X. Tang, Z. Wang, J. Ye et al., Dual-modal hydrogels with synergistically enhanced mechanical-thermoelectric performance for intelligent wearable sensing and automotive temperature feedback systems. Nano Energy 140, 111057 (2025). https://doi.org/10.1016/j.nanoen.2025.111057
- G. Chen, F. Ma, J. Li, P. Yang, Y. Wang et al., Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. Int. J. Biol. Macromol. 268(2), 131735 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131735
- H. Yu, J. Liu, L. Zhao, Y. Liu, L. Gu et al., Synthesis of acrylic resin and methacrylic resin microspheres by suspension polymerization. Front. Chem. 11, 1193553 (2023). https://doi.org/10.3389/fchem.2023.1193553
- D. Wei, H. Wang, J. Zhu, L. Luo, H. Huang et al., Highly stretchable, fast self-healing, responsive conductive hydrogels for supercapacitor electrode and motion sensor. Macromol. Mater. Eng. 305(5), 2000018 (2020). https://doi.org/10.1002/mame.202000018
- L. Lang, H. Hao, J. Yao, H. Wang, H. Wang et al., Purely zwitterionic polymer injectable hydrogels for vitreous substitutes. Sci. China Mater. 68(9), 3390–3400 (2025). https://doi.org/10.1007/s40843-025-3620-x
- M. Tan, J. Wang, W. Song, J. Fang, X. Zhang, Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microps for solar steam generation. J. Mater. Chem. A 7(3), 1244–1251 (2019). https://doi.org/10.1039/c8ta10057h
- Q. Ding, X. Xu, Y. Yue, C. Mei, C. Huang et al., Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 10(33), 27987–28002 (2018). https://doi.org/10.1021/acsami.8b09656
- Z. Xia, M. Patchan, J. Maranchi, J. Elisseeff, M. Trexler, Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J. Appl. Polym. Sci. 127(6), 4537–4541 (2013). https://doi.org/10.1002/app.38052
- L. Cao, J. Verduijn, L. Van der Meeren, Y. Huang, L.C. Vallejos et al., Alginate-CaCO3 hybrid colloidal hydrogel with tunable physicochemical properties for cell growth. Int. J. Biol. Macromol. 259(Pt 1), 129069 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129069
- D. Shi, Y. Gu, W. Wu, C. Zhang, W. Wang et al., Collaboration of lignin solvent self-assembly and Ca2+ crosslinking triggered a highly compressible and ion-conductive hydrogel. Chem. Eng. J. 522, 167539 (2025). https://doi.org/10.1016/j.cej.2025.167539
- H.-B. Yang, Y.-X. Lu, X. Yue, Z.-X. Liu, W.-B. Sun et al., Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels. Nat. Commun. 16(1), 62 (2025). https://doi.org/10.1038/s41467-024-55344-1
- A.-I. Simion, C.-G. Grigoraș, L. Favier, Batch adsorption of orange II dye on a new green hydrogel-study on working parameters and process enhancement. Gels 11(1), 79 (2025). https://doi.org/10.3390/gels11010079
- Y. Samchenko, O. Sych, N. Pinchuk, L. Kernosenko, T. Poltoratska et al., Si-modified biogenic hydroxyapatite/alginate hydrogel composites for injectable application: preparation, structure, and properties. Polym. Adv. Technol. 36(8), e70296 (2025). https://doi.org/10.1002/pat.70296
- L. Liu, J. Fu, X. Hu, D. Yuan, J. Wang et al., Ultrafine silica aerogels microspheres for adaptive thermal management in large-temperature-fluctuation environment. Chem. Eng. J. 470, 144258 (2023). https://doi.org/10.1016/j.cej.2023.144258
- S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
- Y. Wang, X. Tan, X. Yang, Y. Qiao, A. Tsamis et al., Freeze resistant hydroxypropyl cellulose hydrogel with passive radiative cooling performance for thermochromic smart window. Chem. Eng. J. 510, 161797 (2025). https://doi.org/10.1016/j.cej.2025.161797
- B. Ma, Y. Cheng, P. Hu, D. Fang, J. Wang, Passive daytime radiative cooling of silica aerogels. Nanomaterials 13(3), 467 (2023). https://doi.org/10.3390/nano13030467
- S. Zhang, L. Wang, J. Feng, Y. Jiang, L. Li, Fumed silica-derived, ambient dried, and low-cost nanoporous aerogel-like monoliths for thermal insulation. ACS Appl. Nano Mater. 6(12), 10511–10520 (2023). https://doi.org/10.1021/acsanm.3c01490
- S. Jiang, S. Jiang, J. Yan, C. Lin, W. Wang et al., Large-scale continuous production of cellulose/hollow SiO2 composite aerogel fibers for outdoor all-day radiation cooling. Nano Energy 136, 110688 (2025). https://doi.org/10.1016/j.nanoen.2025.110688
References
I.W. Ock, J. Yin, S. Wang, X. Zhao, J.M. Baik et al., Advances in blue energy fuels: harvesting energy from ocean for self-powered electrolysis. Adv. Energy Mater. 15(2), 2400563 (2025). https://doi.org/10.1002/aenm.202400563
M. Esteban, D. Leary, Current developments and future prospects of offshore wind and ocean energy. Appl. Energy 90(1), 128–136 (2012). https://doi.org/10.1016/j.apenergy.2011.06.011
N.T. Vinogradova, T.M. Pavelsky, J.T. Farrar, F. Hossain, L.-L. Fu, A new look at Earth’s water and energy with SWOT. Nat. Water 3(1), 27–37 (2025). https://doi.org/10.1038/s44221-024-00372-w
H. Ni, Y.-F. Zheng, Z. Mao, Q. Wang, R.-X. Chen et al., Distribution, cycling and impact of water in the Earth’s interior. Natl. Sci. Rev. 4(6), 879–891 (2017). https://doi.org/10.1093/nsr/nwx130
H. Biemans, C. Siderius, A.F. Lutz, S. Nepal, B. Ahmad et al., Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2(7), 594–601 (2019). https://doi.org/10.1038/s41893-019-0305-3
H. Ovink, S. Rahimzoda, J. Cullman, A.J. Imperiale, The UN 2023 Water Conference and pathways towards sustainability transformation for a water-secure world. Nat. Water 1(3), 212–215 (2023). https://doi.org/10.1038/s44221-023-00052-1
F. Heller, Water and film: fluidity of time and space and its somatic perception. WIREs Water 5(6), e1315 (2018). https://doi.org/10.1002/wat2.1315
U. Raviv, P. Laurat, J. Klein, Fluidity of water confined to subnanometre films. Nature 413(6851), 51–54 (2001). https://doi.org/10.1038/35092523
Y. Song, N. Xu, G. Liu, H. Qi, W. Zhao et al., High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17(8), 857–863 (2022). https://doi.org/10.1038/s41565-022-01135-y
Z. Liu, B. Wu, B. Zhu, Z. Chen, M. Zhu et al., Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29(43), 1905485 (2019). https://doi.org/10.1002/adfm.201905485
W. Zhu, Y. Huang, C. Zhu, H.-H. Wu, L. Wang et al., Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat. Commun. 10, 1925 (2019). https://doi.org/10.1038/s41467-019-09950-z
E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
J. Aitken, The maximum density of water. Nature 91(2283), 558 (1913). https://doi.org/10.1038/091558d0
C. Chang, X. Xu, X. Guo, B. Rasakhodzhaev, M. Zhao et al., Experimental and numerical study of ice storage and melting process of external melting ice coil. J. Energy Storage 77, 109961 (2024). https://doi.org/10.1016/j.est.2023.109961
O. Mishima, L.D. Calvert, E. Whalley, ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310(5976), 393–395 (1984). https://doi.org/10.1038/310393a0
L. Chen, Z. Chen, Y. Liu, E. Lichtfouse, Y. Jiang et al., Benefits and limitations of recycled water systems in the building sector: a review. Environ. Chem. Lett. 22(2), 785–814 (2024). https://doi.org/10.1007/s10311-023-01683-2
Y. Li, Z. Wang, Q. Zhang, K. Tian, J. Liu et al., Lightweight materials for high energy density lithium–sulfur batteries. Adv. Energy Mater. 15(19), 2406069 (2025). https://doi.org/10.1002/aenm.202406069
K. König, J. Mathieu, M. Vielhaber, Resource conservation by means of lightweight design and design for circularity: a concept for decision making in the early phase of product development. Resour. Conserv. Recycl. 201, 107331 (2024). https://doi.org/10.1016/j.resconrec.2023.107331
H. Lee, T. Yu, M. Zheng, D. Jourdan, Y. Sun et al., Programmable sponge for hydro-active morphing module with light weight and high-volume change. Adv. Funct. Mater. e19611 (2025). https://doi.org/10.1002/adfm.202519611
T. Zhou, L. He, Y. Zhen, X. Tai, S. Dai et al., Superstrong lightweight aerogel with supercontinuous layer by surface reaction. Adv. Mater. 37(10), e2418083 (2025). https://doi.org/10.1002/adma.202418083
M. Ahmad Jan, W. Zhang, F. Khan, S. Abbas, R. Khan, Lightweight and smart data fusion approaches for wearable devices of the Internet of Medical Things. Inf. Fusion 103, 102076 (2024). https://doi.org/10.1016/j.inffus.2023.102076
J. Deng, W. Zhuang, L. Bao, X. Wu, J. Gao et al., A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019). https://doi.org/10.1016/j.carbon.2019.04.019
H. Wang, W. Lu, Z. Wu, G. Zhang, Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renew. Energy 145, 52–64 (2020). https://doi.org/10.1016/j.renene.2019.05.124
H. Quan, W. Yang, Z. Tang, R.O. Ritchie, M.A. Meyers, Active defense mechanisms of thorny catfish. Mater. Today 38, 35–48 (2020). https://doi.org/10.1016/j.mattod.2020.04.028
J. Peng, X. Yang, W. Shen, J. Li, M. Qi, Energy, power, and actuation systems for sustained untethered flight in gram-scale aerial vehicles. Joule 9(10), 102104 (2025). https://doi.org/10.1016/j.joule.2025.102104
T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J.P. Gong, Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363(6426), 504–508 (2019). https://doi.org/10.1126/science.aau9533
H. Ju, H. Zhang, L.X. Hou, M. Zuo, M. Du et al., Polymerization-induced crystallization of dopant molecules: an efficient strategy for room-temperature phosphorescence of hydrogels. J. Am. Chem. Soc. 145(6), 3763–3773 (2023). https://doi.org/10.1021/jacs.2c13264
Z.R. Zhang, H. Ju, H. Zhang, Z.J. Wang, M. Du et al., Polymerization-induced crystallization to form stretchable hydrogels with banded spherulites and circularly polarized luminescence. Adv. Mater. 37(34), 2505444 (2025). https://doi.org/10.1002/adma.202505444
X. Hu, L. Liu, P. Hu, D. Yuan, S. Ge et al., Converting light into programmable temperatures via Janus hydrogels for passive infrared thermography. Small 21(14), e2500665 (2025). https://doi.org/10.1002/smll.202500665
X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17(1), 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
Q. Ye, Y. Huang, B. Yao, Z. Chen, C. Shi et al., Radiative coupled evaporation cooling hydrogel for above-ambient heat dissipation and flame retardancy. Nano-Micro Lett. 18(1), 50 (2025). https://doi.org/10.1007/s40820-025-01903-0
X. Hu, P. Hu, L. Liu, L. Zhao, S. Dou et al., Lightweight and hierarchically porous hydrogels for wearable passive cooling under extreme heat stress. Matter 7(12), 4398–4409 (2024). https://doi.org/10.1016/j.matt.2024.09.008
D. Pan, Z. Han, J. Lei, Y. Niu, H. Liu et al., Core-shell structured BN/SiO2 nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection. Sci. Bull. 70(5), 722–732 (2025). https://doi.org/10.1016/j.scib.2025.01.005
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
J. Xu, W. Xie, H. Han, C. Xiao, J. Li et al., Radiative cooling materials for extreme environmental applications. Nano-Micro Lett. 17(1), 324 (2025). https://doi.org/10.1007/s40820-025-01835-9
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13(1), 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
Y. Li, Y. Feng, M. Qin, K. Chen, Y. An et al., Co-anchored hollow carbonized kapok fiber encapsulated phase change materials for upgrading photothermal utilization. Small 21(21), 2500479 (2025). https://doi.org/10.1002/smll.202500479
Y. Li, P. Liu, P. Li, Y. Feng, Y. Gao et al., Neural network-inspired hybrid aerogel boosting solar thermal storage and microwave absorption. Nano Res. Energy 3(3), e9120120 (2024). https://doi.org/10.26599/nre.2024.9120120
J. Calleja-Agius, K. England, N. Calleja, The effect of global warming on mortality. Early Hum. Dev. 155, 105222 (2021). https://doi.org/10.1016/j.earlhumdev.2020.105222
G. Murali, T. Iwamura, M. Shai, U. Roll, Future temperature extremes threaten land vertebrates. Nature 615(7952), 461–467 (2023). https://doi.org/10.1038/s41586-022-05606-z
C. Çamur, R. Babu, J.A. Suárez Del Pino, N. Rampal, J. Pérez-Carvajal et al., Monolithic zirconium-based metal-organic frameworks for energy-efficient water adsorption applications. Adv. Mater. 35(23), e2209104 (2023). https://doi.org/10.1002/adma.202209104
Z. Jin, Y. Zheng, D. Huang, Y. Zhang, S. Lv et al., Dehumidification load ratio: influence mechanism on air conditioning and energy saving potential analysis for building cooling. Sustain. Cities Soc. 99, 104942 (2023). https://doi.org/10.1016/j.scs.2023.104942
X. Chen, J. Lin, Y. Feng, K. Chen, M. Qin et al., Carbon-metal network boosting photon/phonon transport in photothermal phase change materials. Carbon 238, 120192 (2025). https://doi.org/10.1016/j.carbon.2025.120192
X. Chen, C. Liu, W. Aftab, Advanced solid–solid phase change thermal storage material. Nano Res. Energy 3(2), e9120103 (2024). https://doi.org/10.26599/nre.2023.9120103
Y. Feng, G. Hai, G. Sun, K. Chen, X. Wang et al., Dual-functional phase change composites integrating thermal buffering and electromagnetic wave absorption via multi-interfacial engineering. Adv. Fiber Mater. 7(6), 1873–1887 (2025). https://doi.org/10.1007/s42765-025-00585-y
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
Z. Han, Y. Niu, X. Shi, D. Pan, H. Liu et al., MXene@c-MWCNT adhesive silica nanofiber membranes enhancing electromagnetic interference shielding and thermal insulation performance in extreme environments. Nano-Micro Lett. 16(1), 195 (2024). https://doi.org/10.1007/s40820-024-01398-1
J. Lei, Z. Han, L. Xiang, D. Pan, H. Liu et al., The preparation of SiO2/SWCNT@Ni composite film with sandwich structure and its excellent electromagnetic shielding and thermal insulation performances in extreme environment. Adv. Compos. Hybrid Mater. 8(2), 204 (2025). https://doi.org/10.1007/s42114-025-01235-y
S. Zong, H. Wen, H. Lv, T. Li, R. Tang et al., Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr. Polym. 278, 118943 (2022). https://doi.org/10.1016/j.carbpol.2021.118943
X. Yang, P. Wang, X. Tang, Z. Wang, J. Ye et al., Dual-modal hydrogels with synergistically enhanced mechanical-thermoelectric performance for intelligent wearable sensing and automotive temperature feedback systems. Nano Energy 140, 111057 (2025). https://doi.org/10.1016/j.nanoen.2025.111057
G. Chen, F. Ma, J. Li, P. Yang, Y. Wang et al., Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. Int. J. Biol. Macromol. 268(2), 131735 (2024). https://doi.org/10.1016/j.ijbiomac.2024.131735
H. Yu, J. Liu, L. Zhao, Y. Liu, L. Gu et al., Synthesis of acrylic resin and methacrylic resin microspheres by suspension polymerization. Front. Chem. 11, 1193553 (2023). https://doi.org/10.3389/fchem.2023.1193553
D. Wei, H. Wang, J. Zhu, L. Luo, H. Huang et al., Highly stretchable, fast self-healing, responsive conductive hydrogels for supercapacitor electrode and motion sensor. Macromol. Mater. Eng. 305(5), 2000018 (2020). https://doi.org/10.1002/mame.202000018
L. Lang, H. Hao, J. Yao, H. Wang, H. Wang et al., Purely zwitterionic polymer injectable hydrogels for vitreous substitutes. Sci. China Mater. 68(9), 3390–3400 (2025). https://doi.org/10.1007/s40843-025-3620-x
M. Tan, J. Wang, W. Song, J. Fang, X. Zhang, Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microps for solar steam generation. J. Mater. Chem. A 7(3), 1244–1251 (2019). https://doi.org/10.1039/c8ta10057h
Q. Ding, X. Xu, Y. Yue, C. Mei, C. Huang et al., Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 10(33), 27987–28002 (2018). https://doi.org/10.1021/acsami.8b09656
Z. Xia, M. Patchan, J. Maranchi, J. Elisseeff, M. Trexler, Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. J. Appl. Polym. Sci. 127(6), 4537–4541 (2013). https://doi.org/10.1002/app.38052
L. Cao, J. Verduijn, L. Van der Meeren, Y. Huang, L.C. Vallejos et al., Alginate-CaCO3 hybrid colloidal hydrogel with tunable physicochemical properties for cell growth. Int. J. Biol. Macromol. 259(Pt 1), 129069 (2024). https://doi.org/10.1016/j.ijbiomac.2023.129069
D. Shi, Y. Gu, W. Wu, C. Zhang, W. Wang et al., Collaboration of lignin solvent self-assembly and Ca2+ crosslinking triggered a highly compressible and ion-conductive hydrogel. Chem. Eng. J. 522, 167539 (2025). https://doi.org/10.1016/j.cej.2025.167539
H.-B. Yang, Y.-X. Lu, X. Yue, Z.-X. Liu, W.-B. Sun et al., Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels. Nat. Commun. 16(1), 62 (2025). https://doi.org/10.1038/s41467-024-55344-1
A.-I. Simion, C.-G. Grigoraș, L. Favier, Batch adsorption of orange II dye on a new green hydrogel-study on working parameters and process enhancement. Gels 11(1), 79 (2025). https://doi.org/10.3390/gels11010079
Y. Samchenko, O. Sych, N. Pinchuk, L. Kernosenko, T. Poltoratska et al., Si-modified biogenic hydroxyapatite/alginate hydrogel composites for injectable application: preparation, structure, and properties. Polym. Adv. Technol. 36(8), e70296 (2025). https://doi.org/10.1002/pat.70296
L. Liu, J. Fu, X. Hu, D. Yuan, J. Wang et al., Ultrafine silica aerogels microspheres for adaptive thermal management in large-temperature-fluctuation environment. Chem. Eng. J. 470, 144258 (2023). https://doi.org/10.1016/j.cej.2023.144258
S. Pu, J. Fu, Y. Liao, L. Ge, Y. Zhou et al., Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv. Mater. 32(17), e1907307 (2020). https://doi.org/10.1002/adma.201907307
Y. Wang, X. Tan, X. Yang, Y. Qiao, A. Tsamis et al., Freeze resistant hydroxypropyl cellulose hydrogel with passive radiative cooling performance for thermochromic smart window. Chem. Eng. J. 510, 161797 (2025). https://doi.org/10.1016/j.cej.2025.161797
B. Ma, Y. Cheng, P. Hu, D. Fang, J. Wang, Passive daytime radiative cooling of silica aerogels. Nanomaterials 13(3), 467 (2023). https://doi.org/10.3390/nano13030467
S. Zhang, L. Wang, J. Feng, Y. Jiang, L. Li, Fumed silica-derived, ambient dried, and low-cost nanoporous aerogel-like monoliths for thermal insulation. ACS Appl. Nano Mater. 6(12), 10511–10520 (2023). https://doi.org/10.1021/acsanm.3c01490
S. Jiang, S. Jiang, J. Yan, C. Lin, W. Wang et al., Large-scale continuous production of cellulose/hollow SiO2 composite aerogel fibers for outdoor all-day radiation cooling. Nano Energy 136, 110688 (2025). https://doi.org/10.1016/j.nanoen.2025.110688