Efficient and Pure I-III-VI AIGS Quantum Dot-Based Light-Emitting Diodes via Ligand-Reshaped Surface State
Corresponding Author: Jizhong Song
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 242
Abstract
The I-III-VI silver indium gallium sulfide (AIGS) quantum dots (QDs) have gained extensive attention owing to their tunable emission wavelength and ecofriendly composition; however, the performance of AIGS QD-based light-emitting diodes (QLEDs) remains constrained by suboptimal surface state, significantly lagging behind that of other heavy-metal-containing QD counterparts. Herein, we propose a ligand-reshaped strategy aimed at optimizing the surface state of AIGS QDs to enhance the performance of QLEDs. A polyfunctional ligand, dimercaptosuccinic acid (DSA), is introduced to reshape the QD surface through passivation of uncoordinated Ga3+ and suppression of S vacancies. After DSA passivation, the QDs exhibit not only exceptional luminescent properties with a photoluminescence quantum yield of 89%, but also pure emission with a narrow full width at half maximum of 31 nm. Concurrently, DSA passivation markedly improves the electrical transport characteristic of QDs, thereby ensuring efficient carrier injection. Resultantly, the reshaped QLED achieves a maximum peak external quantum efficiency of 8.4% along with a narrow FWHM of 31 nm, representing a record performance reported thus far for the AIGS system. The proposed DSA ligand-reshaped strategy endows AIGS QLEDs with both high efficiency and color purity, substantially advancing their potential for the application in QD lightings and display technologies.
Highlights:
1 A ligand reshaped strategy is proposed to optimize the surface state of silver indium gallium sulfide (AIGS) quantum dots (QDs) via a polyfunctional ligand, mercaptosuccinic acid.
2 Both donor–acceptor pair and non radiative recombination pathways are decreased after passivation, which leads to a notable narrowing full width at half maximum to 31 nm and an enhancement of photoluminescence quantum yield up to 89%.
3 The efficient and pure QD based light emitting diodes (QLEDs) exhibit a maximum peak external quantum efficiency of 8.4%, representing the record performance of AIGS QLEDs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, M. Li, W. Fan, L. Xu, J. Yao et al., Ligand compensation enabling efficient and stable exciton recombination in perovskite QDs for high-performance QLEDs. Appl. Phys. Rev. 11(3), 031405 (2024). https://doi.org/10.1063/5.0191238
- K. Zhang, W. Fan, T. Yao, S. Wang, Z. Yang et al., Polymer-surface-mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Adv. Mater. 36(14), 2310521 (2024). https://doi.org/10.1002/adma.202310521
- S.-Q. Sun, Q. Sun, Y. Cai, Z.-Q. Feng, Q. Zheng et al., Mitigation of nonradiative recombination by reconfiguring triplet energy of additive toward efficient blue perovskite light-emitting diodes. ACS Nano 19(13), 13053–13062 (2025). https://doi.org/10.1021/acsnano.4c18116
- H. Baek, S. Kang, J. Heo, S. Choi, R. Kim et al., Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat. Commun. 15(1), 1671 (2024). https://doi.org/10.1038/s41467-024-45944-2
- Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36(27), e2402325 (2024). https://doi.org/10.1002/adma.202402325
- H.J. Lee, S. Im, D. Jung, K. Kim, J.A. Chae et al., Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat. Commun. 14(1), 3779 (2023). https://doi.org/10.1038/s41467-023-39509-y
- Z. Wu, L. Xu, J. Wang, J. Song, Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron. Adv. 7(9), 240050 (2024). https://doi.org/10.29026/oea.2024.240050
- R. Padmavathy, A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, Structural, electronic and mechanical properties of AgIn1-XGaXS2 (X = 0, 0.25, 0.50, 0.75, 1) chalcogenides. Indian J. Phys. 95(9), 1751–1756 (2021). https://doi.org/10.1007/s12648-020-01841-0
- T. Bai, X. Wang, Y. Dong, S. Xing, Z. Shi et al., One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg. Chem. 59(9), 5975–5982 (2020). https://doi.org/10.1021/acs.inorgchem.9b03768
- X. Xie, J. Zhao, L. Ouyang, W. Niu, Y. Li et al., One-pot synthesis of color-tunable narrow-bandwidth Ag-In-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. Nano Lett. 24(31), 9683–9690 (2024). https://doi.org/10.1021/acs.nanolett.4c02454
- L. Ouyang, L. Wang, X. Xie, S. Wang, Y. Feng et al., Seed-mediated growth synthesis and tunable narrow-band luminescence of quaternary Ag-In-Ga-S alloyed nanocrystals. Nanoscale 16(9), 4591–4599 (2024). https://doi.org/10.1039/d3nr06037c
- S. Zhang, L. Yang, G. Liu, S. Zhang, Q. Shan et al., Eco-friendly Zn-Ag-In-Ga-S quantum dots: amorphous indium sulfide passivated silver/sulfur vacancies achieving efficient red light-emitting diodes. ACS Appl. Mater. Interfaces 15(43), 50254–50264 (2023). https://doi.org/10.1021/acsami.3c10642
- S. Yang, D. Yan, H. Zhu, N. Wei, Y. Dong et al., Dual ligand strategy for efficient and stable Ag–In–Ga–S aqueous quantum dots. ChemNanoMat 10(11), e202400252 (2024). https://doi.org/10.1002/cnma.202400252
- G. Motomura, S. Ohisa, T. Uematsu, S. Kuwabata, T. Kameyama et al., Pure green Ag–In–Ga–S/Ga–S quantum dot light-emitting diodes with electron transport materials exhibiting enhanced luminescence properties. Adv. Phys. Res. 3(10), 2400042 (2024). https://doi.org/10.1002/apxr.202400042
- Y. Kim, H.-J. Yeo, S.M. Park, S. Ryu, Y.-H. Kim et al., Halide-mediated surface passivation and optical modulation in Ag−In−Ga−S quantum dots: the critical role of precursor selection. Chem. Eng. J. 514, 163270 (2025). https://doi.org/10.1016/j.cej.2025.163270
- D. Yan, Y. Dong, N. Wei, S. Yang, H. Zhu et al., High photoluminescence Ag-In-Ga-S quantum dots based on ZnX2-treated surface passivation. Nano Res. 17(8), 7533–7541 (2024). https://doi.org/10.1007/s12274-024-6724-0
- T. Uematsu, M. Tepakidareekul, T. Hirano, T. Torimoto, S. Kuwabata, Facile high-yield synthesis of Ag–In–Ga–S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem. Mater. 35(3), 1094–1106 (2023). https://doi.org/10.1021/acs.chemmater.2c03023
- L. Yang, S. Zhang, B. Xu, J. Jiang, B. Cai et al., I-III-VI quantum dots and derivatives: design, synthesis, and properties for light-emitting diodes. Nano Lett. 23(7), 2443–2453 (2023). https://doi.org/10.1021/acs.nanolett.2c03138
- Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 115(5), 1786–1792 (2011). https://doi.org/10.1021/jp110409q
- W. Niu, X. Xie, Z. Chen, R. Sun, Y. Li et al., Realization of narrow-bandwidth Cu-Ga-S-based quantum dots with controllable luminescence. Adv. Opt. Mater. 12(23), 2400762 (2024). https://doi.org/10.1002/adom.202400762
- H. Zang, H. Li, N.S. Makarov, K.A. Velizhanin, K. Wu et al., Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-p emission line widths. Nano Lett. 17(3), 1787–1795 (2017). https://doi.org/10.1021/acs.nanolett.6b05118
- L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga et al., Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 133(5), 1176–1179 (2011). https://doi.org/10.1021/ja108261h
- D. Yan, H. Chen, L. Zhang, Y. Luo, Y. Dong et al., Intrinsic defect self-compensation enables spectrum narrowing of uniform alloyed Ag–In–Ga–S quantum dots. ACS Energy Lett. 10(8), 3755–3762 (2025). https://doi.org/10.1021/acsenergylett.5c01454
- W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata, Luminescent quaternary Ag(InxGa1–x)S2/GaSy core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg. Chem. 60(17), 13101–13109 (2021). https://doi.org/10.1021/acs.inorgchem.1c01513
- N. Kirkwood, J.O.V. Monchen, R.W. Crisp, G. Grimaldi, H.A.C. Bergstein et al., Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140(46), 15712–15723 (2018). https://doi.org/10.1021/jacs.8b07783
- G. Motomura, K. Ogura, Y. Iwasaki, T. Uematsu, S. Kuwabata et al., Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Appl. Phys. Lett. 117(9), 091101 (2020). https://doi.org/10.1063/5.0018132
- J. Li, J. Chen, L. Xu, S. Liu, S. Lan et al., A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes. Mater. Chem. Front. 4(5), 1444–1453 (2020). https://doi.org/10.1039/c9qm00734b
- Q. Wu, F. Cao, W. Yu, S. Wang, W. Hou et al., Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs. Nature 639(8055), 633–638 (2025). https://doi.org/10.1038/s41586-025-08645-4
- S. Kalytchuk, O. Zhovtiuk, S.V. Kershaw, R. Zbořil, A.L. Rogach, Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small 12(4), 466–476 (2016). https://doi.org/10.1002/smll.201501984
- J. Park, Y.-H. Won, T. Kim, E. Jang, D. Kim, Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots. Small 16(41), 2003542 (2020). https://doi.org/10.1002/smll.202003542
- W. Yin, M. Li, W. Dong, Z. Luo, Y. Li et al., Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 6(2), 477–484 (2021). https://doi.org/10.1021/acsenergylett.0c02651
- J. Zhu, C. Ge, B. Jiang, X. Zhang, J. Luo et al., Efficient pure-red tin-based perovskite light-emitting diodes enabled by multifunctional lewis-base additives. Adv. Funct. Mater. 35(42), 2506504 (2025). https://doi.org/10.1002/adfm.202506504
- L. Wang, H. Liu, F. Fang, J. Pan, Z. Gao et al., High-efficiency cadmium-free blue quantum dot light-emitting diodes enabled by engineering of a hole transporting interface with a multifunctional molecule. ACS Photonics 12(5), 2449–2457 (2025). https://doi.org/10.1021/acsphotonics.4c02140
- J. Chen, N.-G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31(47), e1803019 (2019). https://doi.org/10.1002/adma.201803019
- T.-H. Han, M.-R. Choi, C.-W. Jeon, Y.-H. Kim, S.-K. Kwon et al., Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci. Adv. 2(10), e1601428 (2016). https://doi.org/10.1126/sciadv.1601428
- J. Wei, F. Li, C. Chang, Q. Zhang, Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes. J. Phys. Commun. 4(4), 045016 (2020). https://doi.org/10.1088/2399-6528/ab885a
- G. Motomura, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto et al., Quantum-dot light-emitting diodes exhibiting narrow-spectrum green electroluminescence by using Ag-In-Ga-S/GaSx quantum dots. ACS Appl. Mater. Interfaces 15(6), 8336–8344 (2023). https://doi.org/10.1021/acsami.2c21232
- Z. Li, S. Cao, K. Wang, Q. Li, Y. Huang et al., Highly efficient narrowed emitting AgInxGa1–xS2/AgGaS2 quantum dots via an HF-assisted one-pot synthesis strategy and their light-emitting diodes. J. Mater. Chem. C 12(18), 6528–6539 (2024). https://doi.org/10.1039/d4tc00615a
- X. Xie, J. Zhao, L. Ouyang, Z. Yin, X. Li et al., Narrow-bandwidth blue-emitting Ag-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 13(51), 11857–11863 (2022). https://doi.org/10.1021/acs.jpclett.2c03437
- Z. Li, X. Qin, Y. Huang, J. Zhao, S. Cao, J. Zheng, Effect of shell-thickness regulation on luminescence performance of AgInxGa1-xS2/AgGaS2 quantum dots. Chin. J. Luminesc. 45(11), 1849 (2024). https://doi.org/10.37188/cjl.20240195
- J. Ban, S.Y. Eom, H.J. Lee, M.N. An, B. Cho et al., Effect of the incorporation of gallium ions into silver indium sulfide nanocrystals. Chem. Commun. 60(44), 5731–5734 (2024). https://doi.org/10.1039/d4cc00859f
References
J. Wang, M. Li, W. Fan, L. Xu, J. Yao et al., Ligand compensation enabling efficient and stable exciton recombination in perovskite QDs for high-performance QLEDs. Appl. Phys. Rev. 11(3), 031405 (2024). https://doi.org/10.1063/5.0191238
K. Zhang, W. Fan, T. Yao, S. Wang, Z. Yang et al., Polymer-surface-mediated mechanochemical reaction for rapid and scalable manufacture of perovskite QD phosphors. Adv. Mater. 36(14), 2310521 (2024). https://doi.org/10.1002/adma.202310521
S.-Q. Sun, Q. Sun, Y. Cai, Z.-Q. Feng, Q. Zheng et al., Mitigation of nonradiative recombination by reconfiguring triplet energy of additive toward efficient blue perovskite light-emitting diodes. ACS Nano 19(13), 13053–13062 (2025). https://doi.org/10.1021/acsnano.4c18116
H. Baek, S. Kang, J. Heo, S. Choi, R. Kim et al., Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat. Commun. 15(1), 1671 (2024). https://doi.org/10.1038/s41467-024-45944-2
Y. Nong, J. Yao, J. Li, L. Xu, Z. Yang et al., Boosting external quantum efficiency of blue perovskite QLEDs exceeding 23% by trifluoroacetate passivation and mixed hole transportation design. Adv. Mater. 36(27), e2402325 (2024). https://doi.org/10.1002/adma.202402325
H.J. Lee, S. Im, D. Jung, K. Kim, J.A. Chae et al., Coherent heteroepitaxial growth of I-III-VI2 Ag(In,Ga)S2 colloidal nanocrystals with near-unity quantum yield for use in luminescent solar concentrators. Nat. Commun. 14(1), 3779 (2023). https://doi.org/10.1038/s41467-023-39509-y
Z. Wu, L. Xu, J. Wang, J. Song, Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes. Opto-Electron. Adv. 7(9), 240050 (2024). https://doi.org/10.29026/oea.2024.240050
R. Padmavathy, A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, Structural, electronic and mechanical properties of AgIn1-XGaXS2 (X = 0, 0.25, 0.50, 0.75, 1) chalcogenides. Indian J. Phys. 95(9), 1751–1756 (2021). https://doi.org/10.1007/s12648-020-01841-0
T. Bai, X. Wang, Y. Dong, S. Xing, Z. Shi et al., One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap. Inorg. Chem. 59(9), 5975–5982 (2020). https://doi.org/10.1021/acs.inorgchem.9b03768
X. Xie, J. Zhao, L. Ouyang, W. Niu, Y. Li et al., One-pot synthesis of color-tunable narrow-bandwidth Ag-In-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. Nano Lett. 24(31), 9683–9690 (2024). https://doi.org/10.1021/acs.nanolett.4c02454
L. Ouyang, L. Wang, X. Xie, S. Wang, Y. Feng et al., Seed-mediated growth synthesis and tunable narrow-band luminescence of quaternary Ag-In-Ga-S alloyed nanocrystals. Nanoscale 16(9), 4591–4599 (2024). https://doi.org/10.1039/d3nr06037c
S. Zhang, L. Yang, G. Liu, S. Zhang, Q. Shan et al., Eco-friendly Zn-Ag-In-Ga-S quantum dots: amorphous indium sulfide passivated silver/sulfur vacancies achieving efficient red light-emitting diodes. ACS Appl. Mater. Interfaces 15(43), 50254–50264 (2023). https://doi.org/10.1021/acsami.3c10642
S. Yang, D. Yan, H. Zhu, N. Wei, Y. Dong et al., Dual ligand strategy for efficient and stable Ag–In–Ga–S aqueous quantum dots. ChemNanoMat 10(11), e202400252 (2024). https://doi.org/10.1002/cnma.202400252
G. Motomura, S. Ohisa, T. Uematsu, S. Kuwabata, T. Kameyama et al., Pure green Ag–In–Ga–S/Ga–S quantum dot light-emitting diodes with electron transport materials exhibiting enhanced luminescence properties. Adv. Phys. Res. 3(10), 2400042 (2024). https://doi.org/10.1002/apxr.202400042
Y. Kim, H.-J. Yeo, S.M. Park, S. Ryu, Y.-H. Kim et al., Halide-mediated surface passivation and optical modulation in Ag−In−Ga−S quantum dots: the critical role of precursor selection. Chem. Eng. J. 514, 163270 (2025). https://doi.org/10.1016/j.cej.2025.163270
D. Yan, Y. Dong, N. Wei, S. Yang, H. Zhu et al., High photoluminescence Ag-In-Ga-S quantum dots based on ZnX2-treated surface passivation. Nano Res. 17(8), 7533–7541 (2024). https://doi.org/10.1007/s12274-024-6724-0
T. Uematsu, M. Tepakidareekul, T. Hirano, T. Torimoto, S. Kuwabata, Facile high-yield synthesis of Ag–In–Ga–S quaternary quantum dots and coating with gallium sulfide shells for narrow band-edge emission. Chem. Mater. 35(3), 1094–1106 (2023). https://doi.org/10.1021/acs.chemmater.2c03023
L. Yang, S. Zhang, B. Xu, J. Jiang, B. Cai et al., I-III-VI quantum dots and derivatives: design, synthesis, and properties for light-emitting diodes. Nano Lett. 23(7), 2443–2453 (2023). https://doi.org/10.1021/acs.nanolett.2c03138
Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 115(5), 1786–1792 (2011). https://doi.org/10.1021/jp110409q
W. Niu, X. Xie, Z. Chen, R. Sun, Y. Li et al., Realization of narrow-bandwidth Cu-Ga-S-based quantum dots with controllable luminescence. Adv. Opt. Mater. 12(23), 2400762 (2024). https://doi.org/10.1002/adom.202400762
H. Zang, H. Li, N.S. Makarov, K.A. Velizhanin, K. Wu et al., Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-p emission line widths. Nano Lett. 17(3), 1787–1795 (2017). https://doi.org/10.1021/acs.nanolett.6b05118
L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga et al., Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 133(5), 1176–1179 (2011). https://doi.org/10.1021/ja108261h
D. Yan, H. Chen, L. Zhang, Y. Luo, Y. Dong et al., Intrinsic defect self-compensation enables spectrum narrowing of uniform alloyed Ag–In–Ga–S quantum dots. ACS Energy Lett. 10(8), 3755–3762 (2025). https://doi.org/10.1021/acsenergylett.5c01454
W. Hoisang, T. Uematsu, T. Torimoto, S. Kuwabata, Luminescent quaternary Ag(InxGa1–x)S2/GaSy core/shell quantum dots prepared using dithiocarbamate compounds and photoluminescence recovery via post treatment. Inorg. Chem. 60(17), 13101–13109 (2021). https://doi.org/10.1021/acs.inorgchem.1c01513
N. Kirkwood, J.O.V. Monchen, R.W. Crisp, G. Grimaldi, H.A.C. Bergstein et al., Finding and fixing traps in II-VI and III-V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140(46), 15712–15723 (2018). https://doi.org/10.1021/jacs.8b07783
G. Motomura, K. Ogura, Y. Iwasaki, T. Uematsu, S. Kuwabata et al., Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Appl. Phys. Lett. 117(9), 091101 (2020). https://doi.org/10.1063/5.0018132
J. Li, J. Chen, L. Xu, S. Liu, S. Lan et al., A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes. Mater. Chem. Front. 4(5), 1444–1453 (2020). https://doi.org/10.1039/c9qm00734b
Q. Wu, F. Cao, W. Yu, S. Wang, W. Hou et al., Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs. Nature 639(8055), 633–638 (2025). https://doi.org/10.1038/s41586-025-08645-4
S. Kalytchuk, O. Zhovtiuk, S.V. Kershaw, R. Zbořil, A.L. Rogach, Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small 12(4), 466–476 (2016). https://doi.org/10.1002/smll.201501984
J. Park, Y.-H. Won, T. Kim, E. Jang, D. Kim, Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots. Small 16(41), 2003542 (2020). https://doi.org/10.1002/smll.202003542
W. Yin, M. Li, W. Dong, Z. Luo, Y. Li et al., Multidentate ligand polyethylenimine enables bright color-saturated blue light-emitting diodes based on CsPbBr3 nanoplatelets. ACS Energy Lett. 6(2), 477–484 (2021). https://doi.org/10.1021/acsenergylett.0c02651
J. Zhu, C. Ge, B. Jiang, X. Zhang, J. Luo et al., Efficient pure-red tin-based perovskite light-emitting diodes enabled by multifunctional lewis-base additives. Adv. Funct. Mater. 35(42), 2506504 (2025). https://doi.org/10.1002/adfm.202506504
L. Wang, H. Liu, F. Fang, J. Pan, Z. Gao et al., High-efficiency cadmium-free blue quantum dot light-emitting diodes enabled by engineering of a hole transporting interface with a multifunctional molecule. ACS Photonics 12(5), 2449–2457 (2025). https://doi.org/10.1021/acsphotonics.4c02140
J. Chen, N.-G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31(47), e1803019 (2019). https://doi.org/10.1002/adma.201803019
T.-H. Han, M.-R. Choi, C.-W. Jeon, Y.-H. Kim, S.-K. Kwon et al., Ultrahigh-efficiency solution-processed simplified small-molecule organic light-emitting diodes using universal host materials. Sci. Adv. 2(10), e1601428 (2016). https://doi.org/10.1126/sciadv.1601428
J. Wei, F. Li, C. Chang, Q. Zhang, Synthesis of emission tunable AgInS2/ZnS quantum dots and application for light emitting diodes. J. Phys. Commun. 4(4), 045016 (2020). https://doi.org/10.1088/2399-6528/ab885a
G. Motomura, T. Uematsu, S. Kuwabata, T. Kameyama, T. Torimoto et al., Quantum-dot light-emitting diodes exhibiting narrow-spectrum green electroluminescence by using Ag-In-Ga-S/GaSx quantum dots. ACS Appl. Mater. Interfaces 15(6), 8336–8344 (2023). https://doi.org/10.1021/acsami.2c21232
Z. Li, S. Cao, K. Wang, Q. Li, Y. Huang et al., Highly efficient narrowed emitting AgInxGa1–xS2/AgGaS2 quantum dots via an HF-assisted one-pot synthesis strategy and their light-emitting diodes. J. Mater. Chem. C 12(18), 6528–6539 (2024). https://doi.org/10.1039/d4tc00615a
X. Xie, J. Zhao, L. Ouyang, Z. Yin, X. Li et al., Narrow-bandwidth blue-emitting Ag-Ga-Zn-S semiconductor nanocrystals for quantum-dot light-emitting diodes. J. Phys. Chem. Lett. 13(51), 11857–11863 (2022). https://doi.org/10.1021/acs.jpclett.2c03437
Z. Li, X. Qin, Y. Huang, J. Zhao, S. Cao, J. Zheng, Effect of shell-thickness regulation on luminescence performance of AgInxGa1-xS2/AgGaS2 quantum dots. Chin. J. Luminesc. 45(11), 1849 (2024). https://doi.org/10.37188/cjl.20240195
J. Ban, S.Y. Eom, H.J. Lee, M.N. An, B. Cho et al., Effect of the incorporation of gallium ions into silver indium sulfide nanocrystals. Chem. Commun. 60(44), 5731–5734 (2024). https://doi.org/10.1039/d4cc00859f