Hybrid Field-Effect Transistors and Photodetectors Based on Organic Semiconductor and CsPbI3 Perovskite Nanorods Bilayer Structure
Corresponding Author: Jia Huang
Nano-Micro Letters,
Vol. 10 No. 4 (2018), Article Number: 57
Abstract
The outstanding performances of nanostructured all-inorganic CsPbX3 (X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI3 nanorod layer was fabricated. The high-quality CsPbI3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device. The perovskite layer efficiently absorbs light, while the organic semiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor, with a photoresponsivity as high as 4300 A W−1, ultra-high photosensitivity of 2.2 × 106, and excellent stability over 1 month. This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors.
Highlights:
1 A high-performance phototransistor with an organic semiconductor and CsPbI3 perovskite nanorod hybrid structure was fabricated and characterized.
2 The perovskite layer efficiently absorbs the input illumination, while the organic semiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate tuning.
3 The hybrid phototransistor exhibits high performance with a photoresponsivity as high as 4300 A W−1, ultra-high photosensitivity of 2.2 × 106, and long-term stability of 1 month.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
- B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116(7), 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
- W. Deng, X.Z. Xu, X.J. Zhang, Y.D. Zhang, X.C. Jin, L. Wang, S.T. Lee, J.S. Jie, Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 26(26), 4797–4802 (2016). https://doi.org/10.1002/adfm.201601054
- H. Cho, Y.H. Kim, C. Wolf, H.D. Lee, T.W. Lee, Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 2018, 1704587 (2018). https://doi.org/10.1002/adma.201704587
- Y. Fu, H. Zhu, A.W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.Y. Zhu, S. Jin, Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16(2), 1000–1008 (2016). https://doi.org/10.1021/acs.nanolett.5b04053
- H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46(17), 5204–5236 (2017). https://doi.org/10.1039/C6CS00896H
- S. Chen, G. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
- C. Chen, X. Zhang, G. Wu, H. Li, H. Chen, Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor. Adv. Opt. Mater. 5(2), 1600539 (2016). https://doi.org/10.1002/adom.201600539
- N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420 (2016). https://doi.org/10.1002/aenm.201501420
- C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S.M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
- S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou, J. Ma, L.-W. Wang, S.R. Leone, P. Yang, Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 113(8), 1993–1998 (2016). https://doi.org/10.1073/pnas.1600789113
- M. Lai, Q. Kong, C.G. Bischak, Y. Yu, L. Dou, S.W. Eaton, N.S. Ginsberg, P. Yang, Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10(4), 1107–1114 (2017). https://doi.org/10.1007/s12274-016-1415-0
- C. Lu, H. Li, K. Kolodziejski, C. Dun, W. Huang, D. Carroll, S.M. Geyer, Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 11(2), 762–768 (2018). https://doi.org/10.1007/s12274-017-1685-1
- X.S. Zhang, Q. Wang, Z.W. Jin, J.R. Zhang, S.F. Liu, Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4:Yb, Er quantum dots. Nanoscale 9(19), 6278–6285 (2017). https://doi.org/10.1039/c7nr02010d
- A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, Z. Fan, All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17(8), 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
- H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28(3), 403–433 (2016). https://doi.org/10.1002/adma.201503534
- M. Li, X. Zhang, Y. Du, P. Yang, Colloidal CsPbX3 (X = Br, I, Cl) NCs: morphology controlling, composition evolution, and photoluminescence shift. J. Lumin. 190, 397–402 (2017). https://doi.org/10.1016/j.jlumin.2017.05.080
- H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang et al., Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11(2), 1189–1195 (2017). https://doi.org/10.1021/acsnano.6b07374
- F. Fang, W. Chen, Y. Li, H. Liu, M. Mei et al., Employing polar solvent controlled ionization in precursors for synthesis of high-quality inorganic perovskite nanocrystals at room temperature. Adv. Funct. Mater. 28(10), 1706000 (2018). https://doi.org/10.1002/adfm.201706000
- T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang et al., Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 12(2), 1611–1617 (2018). https://doi.org/10.1021/acsnano.7b08201
- X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou et al., All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 8(33), 15158–15161 (2016). https://doi.org/10.1039/c6nr01828a
- X.M. Li, F. Cao, D.J. Yu, J. Chen, Z.G. Sun et al., All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13(9), 1603996 (2017). https://doi.org/10.1002/smll.201603996
- Y.L. Chu, X.H. Wu, J.J. Lu, D.P. Liu, J. Du, G.Q. Zhang, J. Huang, Photosensitive and flexible organic field-effect transistors based on interface trapping effect and their application in 2D imaging array. Adv. Sci. 3(8), 1500435 (2016). https://doi.org/10.1002/advs.201500435
- X.H. Wu, Y. Ma, G.Q. Zhang, Y.L. Chu, J. Du et al., Thermally stable, biocompatible, and flexible organic field-effect transistors and their application in temperature sensing arrays for artificial skin. Adv. Funct. Mater. 25(14), 2138–2146 (2015). https://doi.org/10.1002/adfm.201404535
- J. Huang, H.L. Zhu, Y.C. Chen, C. Preston, K. Rohrbach, J. Cumings, L.B. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013). https://doi.org/10.1021/nn304407r
- X. Wu, S. Mao, J. Chen, J. Huang, Strategies for improving the performance of sensors based on organic field-effect transistors. Adv. Mater. 30(17), 1705642 (2018). https://doi.org/10.1002/adma.201705642
- W. Wang, L. Wang, G. Dai, W. Deng, X. Zhang, J. Jie, X. Zhang, Controlled growth of large-area aligned single-crystalline organic nanoribbon arrays for transistors and light-emitting diodes driving. Nano-Micro Lett. 9(4), 52 (2017). https://doi.org/10.1007/s40820-017-0153-5
- P. Yu, K. Hu, H. Chen, L. Zheng, X. Fang, Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater. 27(38), 1703166 (2017). https://doi.org/10.1002/adfm.201703166
- H. Gao, J. Feng, B. Zhang, C. Xiao, Y. Wu et al., Capillary-bridge mediated assembly of conjugated polymer arrays toward organic photodetectors. Adv. Funct. Mater. 27(34), 1701347 (2017). https://doi.org/10.1002/adfm.201701347
- S. Tong, J. Sun, C. Wang, Y. Huang, C. Zhang et al., High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Adv. Electron. Mater. 3(7), 1700058 (2017). https://doi.org/10.1002/aelm.201700058
- J. Huang, J. Du, Z. Cevher, Y.H. Ren, X.H. Wu, Y.L. Chu, Printable and flexible phototransistors based on blend of organic semiconductor and biopolymer. Adv. Funct. Mater. 27(9), 1604163 (2017). https://doi.org/10.1002/adfm.201604163
- G. Wu, C. Chen, S. Liu, C. Fan, H. Li, H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals. Adv. Electron. Mater. 1(8), 1500136 (2015). https://doi.org/10.1002/aelm.201500136
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian et al., Inorganic CsPbI3 perovskite coating on pbs quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8(6), 1702049 (2017). https://doi.org/10.1002/aenm.201702049
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112(4), 2208–2267 (2012). https://doi.org/10.1021/cr100380z
- Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot-organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
- A. De, N. Mondal, A. Samanta, Hole transfer dynamics from photoexcited cesium lead halide perovskite nanocrystals: 1-aminopyrene as hole acceptor. J. Phys. Chem. C (Article ASAP) (2018). https://doi.org/10.1021/acs.jpcc.7b12813
- D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan et al., Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 5, 5162 (2014). https://doi.org/10.1038/ncomms6162
- F. Li, H. Wang, D. Kufer, L. Liang, W. Yu et al., Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 29(16), 1602432 (2017). https://doi.org/10.1002/adma.201602432
- L.F. Lv, Y.B. Xu, H.H. Fang, W.J. Luo, F.J. Xu et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8(28), 13589–13596 (2016). https://doi.org/10.1039/c6nr03428d
- Z. Sun, J. Li, F. Yan, Highly sensitive organic near-infrared phototransistors based on poly(3-hexylthiophene) and PbS quantum dots. J. Mater. Chem. 22(40), 21673–21678 (2012). https://doi.org/10.1039/C2JM34773C
- G. Horowitz, Organic field-effect transistors. Adv. Mater. 10(5), 365–377 (1998). https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
- MathSciNet
- Y. Xu, P.R. Berger, J.N. Wilson, U.H.F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection. Appl. Phys. Lett. 85(18), 4219–4221 (2004). https://doi.org/10.1063/1.1812834
- Y.Y. Noh, D.Y. Kim, Y. Yoshida, K. Yase, B.J. Jung, E. Lim, H.K. Shim, High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Appl. Phys. Lett. 86(4), 043501 (2005). https://doi.org/10.1063/1.1856144
- D. Ljubic, C.S. Smithson, Y. Wu, S. Zhu, Effect of polymer binders on uv-responsive organic thin-film phototransistors with benzothienobenzothiophene semiconductor. ACS Appl. Mater. Interfaces 8(6), 3744–3754 (2016). https://doi.org/10.1021/acsami.5b09001
- K.J. Baeg, M. Binda, D. Natali, M. Caironi, Y.Y. Noh, Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013). https://doi.org/10.1002/adma.201204979
- H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 28(23), 4632–4638 (2016). https://doi.org/10.1002/adma.201600058
References
J.S. Manser, J.A. Christians, P.V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116(21), 12956–13008 (2016). https://doi.org/10.1021/acs.chemrev.6b00136
B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116(7), 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
W. Deng, X.Z. Xu, X.J. Zhang, Y.D. Zhang, X.C. Jin, L. Wang, S.T. Lee, J.S. Jie, Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 26(26), 4797–4802 (2016). https://doi.org/10.1002/adfm.201601054
H. Cho, Y.H. Kim, C. Wolf, H.D. Lee, T.W. Lee, Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 2018, 1704587 (2018). https://doi.org/10.1002/adma.201704587
Y. Fu, H. Zhu, A.W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.Y. Zhu, S. Jin, Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 16(2), 1000–1008 (2016). https://doi.org/10.1021/acs.nanolett.5b04053
H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46(17), 5204–5236 (2017). https://doi.org/10.1039/C6CS00896H
S. Chen, G. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29(24), 1605448 (2017). https://doi.org/10.1002/adma.201605448
C. Chen, X. Zhang, G. Wu, H. Li, H. Chen, Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor. Adv. Opt. Mater. 5(2), 1600539 (2016). https://doi.org/10.1002/adom.201600539
N.H. Tiep, Z. Ku, H.J. Fan, Recent advances in improving the stability of perovskite solar cells. Adv. Energy Mater. 6(3), 1501420 (2016). https://doi.org/10.1002/aenm.201501420
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S.M. Zakeeruddin, U. Rothlisberger, M. Gratzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou, J. Ma, L.-W. Wang, S.R. Leone, P. Yang, Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 113(8), 1993–1998 (2016). https://doi.org/10.1073/pnas.1600789113
M. Lai, Q. Kong, C.G. Bischak, Y. Yu, L. Dou, S.W. Eaton, N.S. Ginsberg, P. Yang, Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10(4), 1107–1114 (2017). https://doi.org/10.1007/s12274-016-1415-0
C. Lu, H. Li, K. Kolodziejski, C. Dun, W. Huang, D. Carroll, S.M. Geyer, Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 11(2), 762–768 (2018). https://doi.org/10.1007/s12274-017-1685-1
X.S. Zhang, Q. Wang, Z.W. Jin, J.R. Zhang, S.F. Liu, Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4:Yb, Er quantum dots. Nanoscale 9(19), 6278–6285 (2017). https://doi.org/10.1039/c7nr02010d
A. Waleed, M.M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang, Z. Fan, All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 17(8), 4951–4957 (2017). https://doi.org/10.1021/acs.nanolett.7b02101
H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28(3), 403–433 (2016). https://doi.org/10.1002/adma.201503534
M. Li, X. Zhang, Y. Du, P. Yang, Colloidal CsPbX3 (X = Br, I, Cl) NCs: morphology controlling, composition evolution, and photoluminescence shift. J. Lumin. 190, 397–402 (2017). https://doi.org/10.1016/j.jlumin.2017.05.080
H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang et al., Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 11(2), 1189–1195 (2017). https://doi.org/10.1021/acsnano.6b07374
F. Fang, W. Chen, Y. Li, H. Liu, M. Mei et al., Employing polar solvent controlled ionization in precursors for synthesis of high-quality inorganic perovskite nanocrystals at room temperature. Adv. Funct. Mater. 28(10), 1706000 (2018). https://doi.org/10.1002/adfm.201706000
T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang et al., Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 12(2), 1611–1617 (2018). https://doi.org/10.1021/acsnano.7b08201
X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou et al., All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale 8(33), 15158–15161 (2016). https://doi.org/10.1039/c6nr01828a
X.M. Li, F. Cao, D.J. Yu, J. Chen, Z.G. Sun et al., All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13(9), 1603996 (2017). https://doi.org/10.1002/smll.201603996
Y.L. Chu, X.H. Wu, J.J. Lu, D.P. Liu, J. Du, G.Q. Zhang, J. Huang, Photosensitive and flexible organic field-effect transistors based on interface trapping effect and their application in 2D imaging array. Adv. Sci. 3(8), 1500435 (2016). https://doi.org/10.1002/advs.201500435
X.H. Wu, Y. Ma, G.Q. Zhang, Y.L. Chu, J. Du et al., Thermally stable, biocompatible, and flexible organic field-effect transistors and their application in temperature sensing arrays for artificial skin. Adv. Funct. Mater. 25(14), 2138–2146 (2015). https://doi.org/10.1002/adfm.201404535
J. Huang, H.L. Zhu, Y.C. Chen, C. Preston, K. Rohrbach, J. Cumings, L.B. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013). https://doi.org/10.1021/nn304407r
X. Wu, S. Mao, J. Chen, J. Huang, Strategies for improving the performance of sensors based on organic field-effect transistors. Adv. Mater. 30(17), 1705642 (2018). https://doi.org/10.1002/adma.201705642
W. Wang, L. Wang, G. Dai, W. Deng, X. Zhang, J. Jie, X. Zhang, Controlled growth of large-area aligned single-crystalline organic nanoribbon arrays for transistors and light-emitting diodes driving. Nano-Micro Lett. 9(4), 52 (2017). https://doi.org/10.1007/s40820-017-0153-5
P. Yu, K. Hu, H. Chen, L. Zheng, X. Fang, Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater. 27(38), 1703166 (2017). https://doi.org/10.1002/adfm.201703166
H. Gao, J. Feng, B. Zhang, C. Xiao, Y. Wu et al., Capillary-bridge mediated assembly of conjugated polymer arrays toward organic photodetectors. Adv. Funct. Mater. 27(34), 1701347 (2017). https://doi.org/10.1002/adfm.201701347
S. Tong, J. Sun, C. Wang, Y. Huang, C. Zhang et al., High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Adv. Electron. Mater. 3(7), 1700058 (2017). https://doi.org/10.1002/aelm.201700058
J. Huang, J. Du, Z. Cevher, Y.H. Ren, X.H. Wu, Y.L. Chu, Printable and flexible phototransistors based on blend of organic semiconductor and biopolymer. Adv. Funct. Mater. 27(9), 1604163 (2017). https://doi.org/10.1002/adfm.201604163
G. Wu, C. Chen, S. Liu, C. Fan, H. Li, H. Chen, Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals. Adv. Electron. Mater. 1(8), 1500136 (2015). https://doi.org/10.1002/aelm.201500136
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian et al., Inorganic CsPbI3 perovskite coating on pbs quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8(6), 1702049 (2017). https://doi.org/10.1002/aenm.201702049
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112(4), 2208–2267 (2012). https://doi.org/10.1021/cr100380z
Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, J. Huang, High-performance inorganic perovskite quantum dot-organic semiconductor hybrid phototransistors. Adv. Mater. 29(44), 1704062 (2017). https://doi.org/10.1002/adma.201704062
A. De, N. Mondal, A. Samanta, Hole transfer dynamics from photoexcited cesium lead halide perovskite nanocrystals: 1-aminopyrene as hole acceptor. J. Phys. Chem. C (Article ASAP) (2018). https://doi.org/10.1021/acs.jpcc.7b12813
D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan et al., Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 5, 5162 (2014). https://doi.org/10.1038/ncomms6162
F. Li, H. Wang, D. Kufer, L. Liang, W. Yu et al., Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 29(16), 1602432 (2017). https://doi.org/10.1002/adma.201602432
L.F. Lv, Y.B. Xu, H.H. Fang, W.J. Luo, F.J. Xu et al., Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale 8(28), 13589–13596 (2016). https://doi.org/10.1039/c6nr03428d
Z. Sun, J. Li, F. Yan, Highly sensitive organic near-infrared phototransistors based on poly(3-hexylthiophene) and PbS quantum dots. J. Mater. Chem. 22(40), 21673–21678 (2012). https://doi.org/10.1039/C2JM34773C
G. Horowitz, Organic field-effect transistors. Adv. Mater. 10(5), 365–377 (1998). https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
MathSciNet
Y. Xu, P.R. Berger, J.N. Wilson, U.H.F. Bunz, Photoresponsivity of polymer thin-film transistors based on polyphenyleneethynylene derivative with improved hole injection. Appl. Phys. Lett. 85(18), 4219–4221 (2004). https://doi.org/10.1063/1.1812834
Y.Y. Noh, D.Y. Kim, Y. Yoshida, K. Yase, B.J. Jung, E. Lim, H.K. Shim, High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Appl. Phys. Lett. 86(4), 043501 (2005). https://doi.org/10.1063/1.1856144
D. Ljubic, C.S. Smithson, Y. Wu, S. Zhu, Effect of polymer binders on uv-responsive organic thin-film phototransistors with benzothienobenzothiophene semiconductor. ACS Appl. Mater. Interfaces 8(6), 3744–3754 (2016). https://doi.org/10.1021/acsami.5b09001
K.J. Baeg, M. Binda, D. Natali, M. Caironi, Y.Y. Noh, Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25(31), 4267–4295 (2013). https://doi.org/10.1002/adma.201204979
H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 28(23), 4632–4638 (2016). https://doi.org/10.1002/adma.201600058