A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health
Corresponding Author: Paul B. Tchounwou
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 53
Abstract
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
Highlights:
1 Structures and properties of graphene-based nanomaterials (GBNs) including graphene, graphene oxide (GO), reduced graphene oxide (RGO) and modified graphene are introduced briefly.
2 Recent advances in GBNs for the biomedical applications in drug delivery, biosensor, bioimaging and tissue engineering are summarized and analyzed.
3 Potential risks resulted from the vast production and applications of GBNs to the environment and health are discussed to ensure sustainable development of GBNs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: an historical account of graphene and some perspectives for its future. Angew. Chem. Int. Edit. 49(49), 9336–9344 (2010). https://doi.org/10.1002/anie.201003024
- G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). https://doi.org/10.1021/nl8035367
- C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4), 2891–2897 (2013). https://doi.org/10.1021/nn401196a
- O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6), 711–723 (2010). https://doi.org/10.1002/smll.200901934
- J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005). https://doi.org/10.1002/elan.200403113
- MathSciNet
- M.S. Dresselhaus, P. Avouris, Introduction to carbon materials research. Top. Appl. Phys. 80, 1–9 (2001). https://doi.org/10.1007/3-540-39947-X_1
- F.M.P. Tonelli, V.A.M. Goulart, K.N. Gomes, M.S. Ladeira, A.K. Santos, E. Lorençon, L.O. Ladeira, R.R. Resende, Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10(15), 2423–2450 (2015). https://doi.org/10.2217/nnm.15.65
- J.M. Yoo, J.H. Kang, B.H. Hong, Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44(14), 4835–4852 (2015). https://doi.org/10.1039/c5cs00072f
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- G. Bottari, M.Á. Herranz, L. Wibmer, M. Volland, L. Rodríguez-Pérez et al., Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 46(15), 4464–4500 (2017). https://doi.org/10.1039/c7cs00229g
- T.-H. Kim, T. Lee, W. El-Said, J.-W. Choi, Graphene-based materials for stem cell applications. Materials 8(12), 8674–8690 (2015). https://doi.org/10.3390/ma8125481
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29(38), 1702590 (2017). https://doi.org/10.1002/adma.201702590
- F. Liu, C.W. Lee, J.S. Im, Graphene-based carbon materials for electrochemical energy storage. J. Nanomater. 2013, 642915 (2013). https://doi.org/10.1155/2013/642915
- G. Gonçalves, P. Marques, M. Vila, Graphene-Based Materials in Health and Environment. Carbon Nanostructures (Springer, Switzerland, 2016). https://doi.org/10.1007/978-3-319-45639-3
- S.S. Nanda, G.C. Papaefthymiou, D.K. Yi, Functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 40(5), 291–315 (2015). https://doi.org/10.1080/10408436.2014.1002604
- L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13(1), 57 (2016). https://doi.org/10.1186/s12989-016-0168-y
- K.V. Krishna, C. Ménard-Moyon, S. Verma, A. Bianco, Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 8(10), 1669–1688 (2013). https://doi.org/10.2217/nnm.13.140
- C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
- Z.S. Singh, Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol. Sci. Appl. 2016(9), 15–28 (2016). https://doi.org/10.2147/nsa.s101818
- D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/b917103g
- P.R. Wallace, The band theory of graphite. Phys. Rev. 72(3), 258 (1947). https://doi.org/10.1103/PhysRev.72.258
- MATH
- K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- K. Muthoosamy, S. Manickam, State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason. Sonochem. 39(2017), 478–493 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.019
- G. Shim, M.-G. Kim, J.Y. Park, Y.-K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliver. Rev. 105, 205–227 (2016). https://doi.org/10.1016/j.addr.2016.04.004
- S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
- H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). https://doi.org/10.1021/jp060936f
- T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57(7), 1061–1105 (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002
- V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620
- G. Reina, J.M. González-Domínguez, A. Criado, E. Vázquez, A. Bianco, M. Prato, Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46(15), 4400–4416 (2017). https://doi.org/10.1039/c7cs00363c
- A. Jana, E. Scheer, S. Polarz, Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017). https://doi.org/10.3762/bjnano.8.74
- K.E. Whitener, P.E. Sheehan, Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014). https://doi.org/10.1016/j.diamond.2014.04.006
- J. Xu, Y. Wang, S. Hu, Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2016). https://doi.org/10.1007/s00604-016-2007-0
- J. Lin, X. Chen, P. Huang, Graphene-based nanomaterials for bioimaging. Adv. Drug Deliver. Rev. 105, 242–254 (2016). https://doi.org/10.1016/j.addr.2016.05.013
- P. Huang, S. Wang, X. Wang, G. Shen, J. Lin et al., Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol. 11(1), 117–125 (2015). https://doi.org/10.1166/jbn.2015.2055
- X. Huang, F. Boey, H.U.A. Zhang, A brief review on graphene-nanoparticle composites. Cosmos 06(02), 159–166 (2010). https://doi.org/10.1142/s0219607710000607
- M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: a review. Mater. Res. Bull. 59, 323–328 (2014). https://doi.org/10.1016/j.materresbull.2014.07.051
- S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94, 224–242 (2015). https://doi.org/10.1016/j.carbon.2015.06.030
- H. Zhang, G. Grüner, Y. Zhao, Recent advancements of graphene in biomedicine. J. Mater. Chem. B 2013(1), 2542–2567 (2013). https://doi.org/10.1039/c3tb20405g
- T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Graphene-based flexible electronic devices. Mater. Sci. Eng., R 118, 1–43 (2017). https://doi.org/10.1016/j.mser.2017.05.001
- H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28(22), 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
- K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 8(12), 2392–2403 (2013). https://doi.org/10.1038/nprot.2013.146
- J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12), 9243–9257 (2013). https://doi.org/10.1016/j.actbio.2013.08.016
- D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008). https://doi.org/10.1021/ja8021686
- S.-E. Zhu, M. Krishna Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013). https://doi.org/10.1063/1.4802799
- Y. Yang, A.M. Asiri, Z. Tang, D. Du, Y. Lin, Graphene based materials for biomedical applications. Mater. Today 16(10), 365–373 (2013). https://doi.org/10.1016/j.mattod.2013.09.004
- M. Nurunnabi, K. Parvez, M. Nafiujjaman, V. Revuri, H.A. Khan, X. Feng, Y.-K. Lee, Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 5(52), 42141–42161 (2015). https://doi.org/10.1039/c5ra04756k
- K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42(2), 530–547 (2013). https://doi.org/10.1039/c2cs35342c
- K. Yang, H. Gong, X. Shi, J. Wan, Y. Zhang, Z. Liu, In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11), 2787–2795 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.001
- T.L. Moore, R. Podilakrishna, A. Rao, F. Alexis, Systemic administration of polymer-coated nano-graphene to deliver drugs to glioblastoma. Part. Part. Syst. Charact. 31(8), 886–894 (2014). https://doi.org/10.1002/ppsc.201300379
- S.M. Chowdhury, C. Surhland, Z. Sanchez, P. Chaudhary, M.A. Suresh Kumar et al., Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed. Nanotechnol. Biol. Med. 11(1), 109–118 (2015). https://doi.org/10.1016/j.nano.2014.08.001
- X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008). https://doi.org/10.1007/s12274-008-8021-8
- Nayak EbPK, Recent advances in graphene research (InTech; 2016). https://doi.org/10.5772/61909
- H. Wu, W. Lu, J.-J. Shao, C. Zhang, M.-B. Wu, B.-H. Li, Q.-H. Yang, Ph-dependent size, surface chemistry and electrochemical properties of graphene oxide. Carbon 67, 795 (2014). https://doi.org/10.1016/j.carbon.2013.10.044
- V.K. Rana, M.-C. Choi, J.-Y. Kong, G.Y. Kim, M.J. Kim, S.-H. Kim, S. Mishra, R.P. Singh, C.-S. Ha, Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. 296(2), 131–140 (2010). https://doi.org/10.1002/mame.201000307
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA-Cancer J. Clin. 66(1), 7–30 (2016). https://doi.org/10.3322/caac.21332
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017. CA-Cancer J. Clin. 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387
- L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding, J.T. Johnson, T.L. Whiteside, A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor- 1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 13(15), 4345–4354 (2007). https://doi.org/10.1158/1078-0432.ccr-07-0472
- J.A. Burger, Cxcr4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5), 1761–1767 (2006). https://doi.org/10.1182/blood-2005-08-3182
- M. Bissell, M. Labarge, Context, tissue plasticity, and cancerare tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1), 17–23 (2005). https://doi.org/10.1016/s1535-6108(04)00375-7
- K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1), 52–67 (2010). https://doi.org/10.1016/j.cell.2010.03.015
- L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010). https://doi.org/10.1002/smll.200901680
- B. Adhikari, A. Biswas, A. Banerjee, Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels. ACS Appl. Mater. Interfaces. 4(10), 5472–5482 (2012). https://doi.org/10.1021/am301373n
- W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of chemo-photothermal therapy using pegylated graphene oxide. Biomaterials 32(33), 8555–8561 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.071
- Y.-W. Chen, Y.-L. Su, S.-H. Hu, S.-Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliver. Rev. 105, 190–204 (2016). https://doi.org/10.1016/j.addr.2016.05.022
- L. Liu, J. Zhang, J. Zhao, F. Liu, Mechanical properties of graphene oxides. Nanoscale 4(19), 5910–5916 (2012). https://doi.org/10.1039/c2nr31164j
- X. Bian, Z.-L. Song, Y. Qian, W. Gao, Z.-Q. Cheng et al., Fabrication of graphene-isolated-au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 4(1), 6093 (2014). https://doi.org/10.1038/srep06093
- C. Yao, L. Zhang, J. Wang, Y. He, J. Xin, S. Wang, H. Xu, Z. Zhang, Gold nanoparticle mediated phototherapy for cancer. J. Nanomater. 2016, 5497136 (2016). https://doi.org/10.1155/2016/5497136
- Y.-H. Lee, Y.-H. Lai, Synthesis, characterization, and biological evaluation of anti-her2 indocyanine green-encapsulated peg-coated plga nanoparticles for targeted phototherapy of breast cancer cells. PLoS ONE 11(12), e0168192 (2016). https://doi.org/10.1371/journal.pone.0168192
- L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
- U. Chitgupi, Y. Qin, J.F. Lovell, Targeted nanomaterials for phototherapy. Nanotheranostics 1(1), 38–58 (2017). https://doi.org/10.7150/ntno.17694
- E. Paszko, C. Ehrhardt, M.O. Senge, D.P. Kelleher, J.V. Reynolds, Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn. 8(1), 14–29 (2011). https://doi.org/10.1016/j.pdpdt.2010.12.001
- D.K. Chatterjee, L.S. Fong, Y. Zhang, Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliver. Rev. 60(15), 1627–1637 (2008). https://doi.org/10.1016/j.addr.2008.08.003
- S. Shi, F. Chen, E.B. Ehlerding, W. Cai, Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug. Chem. 25(9), 1609–1619 (2014). https://doi.org/10.1021/bc500332c
- B. Zhang, Y. Wang, G. Zhai, Biomedical applications of the graphene-based materials. Mater. Sci. Eng., C 61, 953–964 (2016). https://doi.org/10.1016/j.msec.2015.12.073
- R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052–6074 (2016). https://doi.org/10.1002/adma.201506306
- N. Rahmanian, H. Hamishehkar, J.E.N. Dolatabadi, N. Arsalani, Nano graphene oxide: a novel carrier for oral delivery of flavonoids. Colloid Surfaces B 123, 331–338 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.036
- Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai, Carbon materials for drug delivery & cancer therapy. Mater. Today 14(7–8), 316–323 (2011). https://doi.org/10.1016/s1369-7021(11)70161-4
- S. Some, A.R. Gwon, E. Hwang, G.-H. Bahn, Y. Yoon et al., Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep. 4(1), 6314 (2014). https://doi.org/10.1038/srep06314
- X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloid Surfaces B 122, 638–644 (2014). https://doi.org/10.1016/j.colsurfb.2014.07.043
- B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9), 7000–7009 (2011). https://doi.org/10.1021/nn201560b
- C. Xu, D. Yang, L. Mei, Q. Li, H. Zhu, T. Wang, Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces. 5(24), 12911–12920 (2013). https://doi.org/10.1021/am404714w
- U. Dembereldorj, S.Y. Choi, E.-O. Ganbold, N.W. Song, D. Kim, J. Choo, S.Y. Lee, S. Kim, S.-W. Joo, Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem. Photobiol. 90(3), 659–666 (2013). https://doi.org/10.1111/php.12212
- C. Wang, J. Mallela, U.S. Garapati, S. Ravi, V. Chinnasamy, Y. Girard, M. Howell, S. Mohapatra, A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomed. Nanotechnol. Biol. Med. 9(7), 903–911 (2013). https://doi.org/10.1016/j.nano.2013.01.003
- Y. Jin, J. Wang, H. Ke, S. Wang, Z. Dai, Graphene oxide modified pla microcapsules containing gold nanoparticles for ultrasonic/ct bimodal imaging guided photothermal tumor therapy. Biomaterials 34(20), 4794–4802 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.027
- L. Feng, K. Li, X. Shi, M. Gao, J. Liu, Z. Liu, Smart ph-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater. 3(8), 1261–1271 (2014). https://doi.org/10.1002/adhm.201300549
- B.P. Viraka Nellore, A. Pramanik, S.R. Chavva, S.S. Sinha, C. Robinson et al., Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss. 175, 257–271 (2014). https://doi.org/10.1039/c4fd00074a
- D. Hu, J. Zhang, G. Gao, Z. Sheng, H. Cui, L. Cai, Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics 6(7), 1043–1052 (2016). https://doi.org/10.7150/thno.14566
- J. Li, S. Tan, R. Kooger, C. Zhang, Y. Zhang, Micrornas as novel biological targets for detection and regulation. Chem. Soc. Rev. 43(2), 506–517 (2014). https://doi.org/10.1039/c3cs60312a
- A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T.S. Rao et al., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8), 8050–8062 (2014). https://doi.org/10.1021/nn5020787
- L. Feng, X. Yang, X. Shi, X. Tan, R. Peng, J. Wang, Z. Liu, Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11), 1989–1997 (2013). https://doi.org/10.1002/smll.201202538
- T. Niidome, L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9(24), 1647–1652 (2002). https://doi.org/10.1038/sj.gt.3301923
- R. Waehler, S.J. Russell, D.T. Curiel, Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8(8), 573–587 (2007). https://doi.org/10.1038/nrg2141
- H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11), 1569–1578 (2011). https://doi.org/10.1002/smll.201100191
- H. Kim, D. Lee, J. Kim, T.-I. Kim, W.J. Kim, Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7(8), 6735–6746 (2013). https://doi.org/10.1021/nn403096s
- H. Kim, W.J. Kim, Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 10(1), 117–126 (2013). https://doi.org/10.1002/smll.201202636
- T. Sandle, Antibiotic/antimicrobial resistance, in The Sage Encyclopedia of Pharmacology and Society, ed. by S. Boslaugh (Sage, Thousand Oaks, 2016)
- A.M. Allahverdiyev, K.V. Kon, E.S. Abamor, M. Bagirova, M. Rafailovich, Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti-infe. 9(11), 1035–1052 (2011). https://doi.org/10.1586/eri.11.121
- W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano 4(7), 4317–4323 (2010). https://doi.org/10.1021/nn101097v
- Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang et al., Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8(8), 594–601 (2013). https://doi.org/10.1038/nnano.2013.125
- S. Liu, M. Hu, T.H. Zeng, R. Wu, R. Jiang, J. Wei, L. Wang, J. Kong, Y. Chen, Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33), 12364–12372 (2012). https://doi.org/10.1021/la3023908
- M.-C. Wu, A.R. Deokar, J.-H. Liao, P.-Y. Shih, Y.-C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7(2), 1281–1290 (2013). https://doi.org/10.1021/nn304782d
- S. Gurunathan, J. Woong Han, A. Abdal Daye, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012). https://doi.org/10.2147/ijn.s37397
- I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans. ACS Nano 7(10), 8972–8980 (2013). https://doi.org/10.1021/nn4034794
- C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, D. Cui, The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34(15), 3882–3890 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.001
- Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan, Y. Ouyang, Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloid Surfaces B 107, 107–114 (2013). https://doi.org/10.1016/j.colsurfb.2013.01.073
- N. Hussain, A. Gogoi, R.K. Sarma, P. Sharma, A. Barras, R. Boukherroub, R. Saikia, P. Sengupta, M.R. Das, Reduced graphene oxide nanosheets decorated with au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79(12), 1774–1784 (2014). https://doi.org/10.1002/cplu.201402240
- O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 113(47), 20214–20220 (2009). https://doi.org/10.1021/jp906325q
- Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces. 6(4), 2791–2798 (2014). https://doi.org/10.1021/am4053317
- I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4(15), 4746–4756 (2012). https://doi.org/10.1039/c2nr30774j
- S. Some, S.-M. Ho, P. Dua, E. Hwang, Y.H. Shin, H. Yoo, J.-S. Kang, D.-K. Lee, H. Lee, Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6(8), 7151–7161 (2012). https://doi.org/10.1021/nn302215y
- J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces. 5(9), 3867–3874 (2013). https://doi.org/10.1021/am4005495
- Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, S. Yang, A novel wound dressing based on ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 24(25), 3933–3943 (2014). https://doi.org/10.1002/adfm.201304202
- B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, E. Xie, Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9), 2978–2982 (2012). https://doi.org/10.1039/c2nr11958g
- S.R. Shin, Y.-C. Li, H.L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y.S. Zhang, A. Tamayol, A. Khademhosseini, Graphene-based materials for tissue engineering. Adv. Drug Deliver. Rev. 105, 255–274 (2016). https://doi.org/10.1016/j.addr.2016.03.007
- O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/c6tb00152a
- A.L. Rutz, K.E. Hyland, A.E. Jakus, W.R. Burghardt, R.N. Shah, A multimaterial bioink method for 3d printing tunable, cell-compatible hydrogels. Adv. Mater. 27(9), 1607–1614 (2015). https://doi.org/10.1002/adma.201405076
- S. Seethamraju, S. Kumar, K.B. Bharadwaj, G. Madras, S. Raghavan, P.C. Ramamurthy, Million-fold decrease in polymer moisture permeability by a graphene monolayer. ACS Nano 10(7), 6501–6509 (2016). https://doi.org/10.1021/acsnano.6b02588
- S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017
- J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017). https://doi.org/10.1038/nnano.2017.21
- H.M. Hegab, A. ElMekawy, L. Zou, D. Mulcahy, C.P. Saint, M. Ginic-Markovic, The controversial antibacterial activity of graphene-based materials. Carbon 105, 362–376 (2016). https://doi.org/10.1016/j.carbon.2016.04.046
- H. Ji, H. Sun, X. Qu, Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv. Drug Deliver. Rev. 105, 176–189 (2016). https://doi.org/10.1016/j.addr.2016.04.009
- J. Zhao, Z. Wang, J.C. White, B. Xing, Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48(17), 9995–10009 (2014). https://doi.org/10.1021/es5022679
- M.E. Foo, S.C.B. Gopinath, Feasibility of graphene in biomedical applications. Biomed. Pharmacother. 94, 354–361 (2017). https://doi.org/10.1016/j.biopha.2017.07.122
- P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 22(13), 6402–6412 (2012). https://doi.org/10.1039/c2jm16929k
- X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25(4), 901–905 (2009). https://doi.org/10.1016/j.bios.2009.09.004
- L. Jiang, Y. Liu, S. Liu, G. Zeng, X. Hu et al., Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon. Environ. Sci. Technol. 51(11), 6352–6359 (2017). https://doi.org/10.1021/acs.est.7b00073
- L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). https://doi.org/10.1002/adfm.200900377
- D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012). https://doi.org/10.1021/cr300115g
- D. Lin, J. Wu, H. Ju, F. Yan, Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens. Bioelectron. 52, 153–158 (2014). https://doi.org/10.1016/j.bios.2013.08.051
- B. Liu, D. Tang, J. Tang, B. Su, Q. Li, G. Chen, A graphene-based au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Analyst 136(11), 2218–2220 (2011). https://doi.org/10.1039/c0an00921k
- K.T. Nguyen, Y. Zhao, Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6(12), 6245–6266 (2014). https://doi.org/10.1039/c4nr00612g
- J. Tian, T. Huang, P. Wang, J. Lu, God/hrp bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing. J. Electrochem. Soc. 162(12), B319–B325 (2015). https://doi.org/10.1149/2.0411512jes
- C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 25(5), 1070–1074 (2010). https://doi.org/10.1016/j.bios.2009.09.024
- P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4(5), 1800 (2012). https://doi.org/10.1039/c2nr11938b
- X. Wu, S.-J. Ding, K. Lin, J. Su, A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J. Mater. Chem. B 5(17), 3084–3102 (2017). https://doi.org/10.1039/c6tb03067j
- V. Poornima Parvathi, M. Umadevi, R. Bhaviya Raj, Improved waste water treatment by bio-synthesized graphene sand composite. J. Environ. Manag. 162, 299–305 (2015). https://doi.org/10.1016/j.jenvman.2015.07.055
- A. El-Fiqi, J.H. Lee, E.-J. Lee, H.-W. Kim, Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 9(12), 9508–9521 (2013). https://doi.org/10.1016/j.actbio.2013.07.036
- V. Rosa, Z. Zhang, R.H.M. Grande, J.E. Nör, Dental pulp tissue engineering in full-length human root canals. J. Dent. Res. 92(11), 970–975 (2013). https://doi.org/10.1177/0022034513505772
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- L. Wang, C. Lu, B. Zhang, B. Zhao, F. Wu, S. Guan, Fabrication and characterization of flexible silk fibroin films reinforced with graphene oxide for biomedical applications. RSC Adv. 4(76), 40312–40320 (2014). https://doi.org/10.1039/c4ra04529g
- D. Li, T. Liu, X. Yu, D. Wu, Z. Su, Fabrication of graphene-biomacromolecule hybrid materials for tissue engineering application. Polym. Chem. 8(30), 4309–4321 (2017). https://doi.org/10.1039/C7PY00935F
- T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011). https://doi.org/10.1021/nn200500h
- S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36), H263–H267 (2011). https://doi.org/10.1002/adma.201101503
- G. Nasim, G. Hamidreza, K. Mahshid, F. Mohammadhossein, A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication 9(2), 025008 (2017). https://doi.org/10.1088/1758-5090/aa68ed
- M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009). https://doi.org/10.1021/ac900136z
- S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9(4), 1593–1597 (2009). https://doi.org/10.1021/nl803798y
- A. Bianco, Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Edit. 52(19), 4986–4997 (2013). https://doi.org/10.1002/anie.201209099
- C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, A. Pluen, Graphene in therapeutics delivery: problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 104, 235–250 (2016). https://doi.org/10.1016/j.ejpb.2016.04.015
- E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 277, 1–10 (2015). https://doi.org/10.1016/j.cej.2015.04.107
- V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25(1), 15–34 (2012). https://doi.org/10.1021/tx200339h
- S. Syama, P.V. Mohanan, Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 86, 546–555 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.116
- B. Zhang, P. Wei, Z. Zhou, T. Wei, Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv. Drug Deliver. Rev. 105, 145–162 (2016). https://doi.org/10.1016/j.addr.2016.08.009
- I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 47(12), 6288–6296 (2013). https://doi.org/10.1021/es400483k
- I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. Environ. Sci. Technol. 48(16), 9382–9390 (2014). https://doi.org/10.1021/es5020828
- I. Chowdhury, W.-C. Hou, D. Goodwin, M. Henderson, R.G. Zepp, D. Bouchard, Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Res. 78, 37–46 (2015). https://doi.org/10.1016/j.watres.2015.04.001
- L. Wu, L. Liu, B. Gao, R. Muñoz-Carpena, M. Zhang, H. Chen, Z. Zhou, H. Wang, Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 29(49), 15174–15181 (2013). https://doi.org/10.1021/la404134x
- Z. Hua, Z. Tang, X. Bai, J. Zhang, L. Yu, H. Cheng, Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environ. Pollut. 205, 161–169 (2015). https://doi.org/10.1016/j.envpol.2015.05.039
- F. Ahmed, D.F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J. Hazard. Mater. 256–257, 33–39 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.064
- Y. Deng, J. Li, M. Qiu, F. Yang, J. Zhang, C. Yuan, Deriving characterization factors on freshwater ecotoxicity of graphene oxide nanomaterial for life cycle impact assessment. Int. J. Life Cycle Ass. 22(2), 222–236 (2016). https://doi.org/10.1007/s11367-016-1151-4
- M. Rethinasabapathy, S.-M. Kang, S.-C. Jang, Y.S. Huh, Three-dimensional porous graphene materials for environmental applications. Carbon lett 22, 1–13 (2017). https://doi.org/10.5714/cl.2017.22.001
- X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138(7), 2064–2077 (2016). https://doi.org/10.1002/chin.201622265
- J. Wu, Y.-S. Wang, X.-Y. Yang, Y.-Y. Liu, J.-R. Yang, R. Yang, N. Zhang, Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology 23(35), 355101 (2012). https://doi.org/10.1088/0957-4484/23/35/355101
- D. Ma, J. Lin, Y. Chen, W. Xue, L.-M. Zhang, In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8), 3001–3007 (2012). https://doi.org/10.1016/j.carbon.2012.02.083
- U. Dembereldorj, M. Kim, S. Kim, E.-O. Ganbold, S.Y. Lee, S.-W. Joo, A spatiotemporal anticancer drug release platform of pegylated graphene oxide triggered by glutathione in vitro and in vivo. J. Mater. Chem. 22(45), 23845–23851 (2012). https://doi.org/10.1039/c2jm34853e
- H. Wen, C. Dong, H. Dong, A. Shen, W. Xia et al., Engineered redox-responsive peg detachment mechanism in pegylated nano-graphene oxide for intracellular drug delivery. Small 8(5), 760–769 (2012). https://doi.org/10.1002/smll.201101613
- T. Zhou, X. Zhou, D. Xing, Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 35(13), 4185–4194 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.044
- C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.-M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Edit. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
- Y. Pan, H. Bao, N.G. Sahoo, T. Wu, L. Li, Water-soluble poly(n-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater. 21(14), 2754–2763 (2011). https://doi.org/10.1002/adfm.201100078
- T. Kavitha, I.-K. Kang, S.-Y. Park, Poly(n-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloid Surfaces B 115, 37–45 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.022
- N.G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H.K.F. Cheng, L. Li, L.P. Tan, Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. 47(18), 5235–5237 (2011). https://doi.org/10.1039/c1cc00075f
- K. Liu, Y. Wang, H. Li, Y. Duan, A facile one-pot synthesis of starch functionalized graphene as nano-carrier for ph sensitive and starch-mediated drug delivery. Colloid Surfaces B 128, 86–93 (2015). https://doi.org/10.1016/j.colsurfb.2015.02.010
- A. Angelopoulou, E. Voulgari, E.K. Diamanti, D. Gournis, K. Avgoustakis, Graphene oxide stabilized by pla–peg copolymers for the controlled delivery of paclitaxel. Eur. J. Pharm. Biopharm. 93, 18–26 (2015). https://doi.org/10.1016/j.ejpb.2015.03.022
- J. Li, Z. Lyv, Y. Li, H. Liu, J. Wang, W. Zhan, H. Chen, H. Chen, X. Li, A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials 51, 12–21 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.074
- J. An, Y. Gou, C. Yang, F. Hu, C. Wang, Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng., C 33(5), 2827–2837 (2013). https://doi.org/10.1016/j.msec.2013.03.008
- J.-P. Chen, Y.-J. Lu, S.-C. Hung, J.-P. Chen, K.-C. Wei, Improving thermal stability and efficacy of bcnu in treating glioma cells using paa-functionalized graphene oxide. Int. J. Nanomed. 2012(7), 1737–1747 (2012). https://doi.org/10.2147/ijn.s29376
- X. Fan, G. Jiao, W. Zhao, P. Jin, X. Li, Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for ph-activated release. Nanoscale 5(3), 1143–1152 (2013). https://doi.org/10.1039/c2nr33158f
- X.T. Zheng, P. Chen, C.M. Li, Anticancer efficacy and subcellular site of action investigated by real-time monitoring of cellular responses to localized drug delivery in single cells. Small 8(17), 2670–2674 (2012). https://doi.org/10.1002/smll.201102636
- M. Kakran, N.G. Sahoo, H. Bao, Y. Pan, L. Li, Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr. Med. Chem. 18(29), 4503–4512 (2011). https://doi.org/10.2174/092986711797287548
- S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, M.-R. Park, D.-N. Kwon, J.-H. Kim, Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 19(4), 1280–1288 (2013). https://doi.org/10.1016/j.jiec.2012.12.029
- S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9), 6971–6980 (2011). https://doi.org/10.1021/nn202451x
- B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic et al., Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15), 4428–4435 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.014
- D. Zhang, X. Liu, X. Wang, Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J. Inorg. Biochem. 105(9), 1181–1186 (2011). https://doi.org/10.1016/j.jinorgbio.2011.05.014
- A.F. de Faria, D.S.T. Martinez, S.M.M. Meira, A.C.M. de Moraes, A. Brandelli, A.G.S. Filho, O.L. Alves, Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloid Surfaces B 113, 115–124 (2014). https://doi.org/10.1016/j.colsurfb.2013.08.006
- S. Vijay Kumar, N.M. Huang, H.N. Lim, A.R. Marlinda, I. Harrison, C.H. Chia, One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chem. Eng. J. 219, 217–224 (2013). https://doi.org/10.1016/j.cej.2012.09.063
- Z. Zhu, M. Su, L. Ma, L. Ma, D. Liu, Z. Wang, Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta 117, 449–455 (2013). https://doi.org/10.1016/j.talanta.2013.09.017
- M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloid Surfaces B 83(1), 16–22 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.033
- M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia et al., The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloid Surfaces B 105, 128–136 (2013). https://doi.org/10.1016/j.colsurfb.2012.12.033
- M.S. Haider, A.C. Badejo, G.N. Shao, S.M. Imran, N. Abbas, Y.G. Chai, M. Hussain, H.T. Kim, Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached ag nanoparticle. Solid State Sci. 44, 1–9 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.03.024
- V.H. Nguyen, B.-K. Kim, Y.-L. Jo, J.-J. Shim, Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J. Supercrit. Fluid. 72, 28–35 (2012). https://doi.org/10.1016/j.supflu.2012.08.005
- Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360(2), 463–470 (2011). https://doi.org/10.1016/j.jcis.2011.05.009
- J. Shen, T. Li, M. Shi, N. Li, M. Ye, Polyelectrolyte-assisted one-step hydrothermal synthesis of ag-reduced graphene oxide composite and its antibacterial properties. Mater. Sci. Eng., C 32(7), 2042–2047 (2012). https://doi.org/10.1016/j.msec.2012.05.017
- X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, Z. Lin, X. Zhang, The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50(10), 3407–3415 (2012). https://doi.org/10.1016/j.carbon.2012.02.002
- H. Zhou, Y. Liu, W. Chi, C. Yu, Y. Yu, Preparation and antibacterial properties of ag@polydopamine/graphene oxide sheet nanocomposite. Appl. Surf. Sci. 282, 181–185 (2013). https://doi.org/10.1016/j.apsusc.2013.05.099
- Z. Tai, H. Ma, B. Liu, X. Yan, Q. Xue, Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications. Colloid Surfaces B 89, 147–151 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.006
- B. Pant, P. Pokharel, A.P. Tiwari, P.S. Saud, M. Park, Z.K. Ghouri, S. Choi, S.-J. Park, H.-Y. Kim, Characterization and antibacterial properties of aminophenol grafted and ag nps decorated graphene nanocomposites. Ceram. Int. 41(4), 5656–5662 (2015). https://doi.org/10.1016/j.ceramint.2014.12.150
- M.K. Joshi, H.R. Pant, H.J. Kim, J.H. Kim, C.S. Kim, One-pot synthesis of ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloid Surf. A-Physicochem. Eng. Asp. 446, 102–108 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.058
- L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-tio2-ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J. Hazard. Mater. 261, 214–223 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.034
- C.-H. Deng, J.-L. Gong, G.-M. Zeng, C.-G. Niu, Q.-Y. Niu, W. Zhang, H.-Y. Liu, Inactivation performance and mechanism of escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. J. Hazard. Mater. 276, 66–76 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.011
- S. Bykkam, S. Narsingam, M. Ahmadipour, T. Dayakar, K. Venkateswara Rao, C. Shilpa Chakra, S. Kalakotla, Few layered graphene sheet decorated by zno nanoparticles for anti-bacterial application. Superlattices Microstruct. 83, 776–784 (2015). https://doi.org/10.1016/j.spmi.2015.03.063
- T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50(8), 2994–3000 (2012). https://doi.org/10.1016/j.carbon.2012.02.082
- S. Cao, C. Chen, J. Zhang, C. Zhang, W. Yu, B. Liang, Y. Tsang, Mnox quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method. Appl. Catal. B-Environ. 176–177, 500–512 (2015). https://doi.org/10.1016/j.apcatb.2015.04.041
- S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshi, M. Saranya et al., Solvothermal synthesis of MnFe2O4–graphene composite—investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015). https://doi.org/10.1016/j.apsusc.2014.11.096
- Y.-N. Chang, X.-M. Ou, G.-M. Zeng, J.-L. Gong, C.-H. Deng et al., Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Appl. Surf. Sci. 343, 1–10 (2015). https://doi.org/10.1016/j.apsusc.2015.03.082
- C. Chen, S. Cao, W. Yu, X. Xie, Q. Liu, Y. Tsang, Y. Xiao, Adsorption, photocatalytic and sunlight-driven antibacterial activity of bi2wo6/graphene oxide nanoflakes. Vacuum 116, 48–53 (2015). https://doi.org/10.1016/j.vacuum.2015.02.031
- T. Li, J. Shen, N. Li, M. Ye, Facile in situ synthesis of hydrophilic rgo–cd–ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng., C 39, 352–358 (2014). https://doi.org/10.1016/j.msec.2014.03.027
- C.-H. Deng, J.-L. Gong, G.-M. Zeng, Y. Jiang, C. Zhang, H.-Y. Liu, S.-Y. Huan, Graphene–cds nanocomposite inactivation performance toward escherichia coli in the presence of humic acid under visible light irradiation. Chem. Eng. J. 284, 41–53 (2016). https://doi.org/10.1016/j.cej.2015.08.106
- P. Li, S. Sun, A. Dong, Y. Hao, S. Shi, Z. Sun, G. Gao, Y. Chen, Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Appl. Surf. Sci. 355, 446–452 (2015). https://doi.org/10.1016/j.apsusc.2015.07.148
- H.N. Lim, N.M. Huang, C.H. Loo, Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J. Non Cryst. Solids 358(3), 525–530 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.11.007
- M. Haniff Wahid, U.H. Stroeher, E. Eroglu, X. Chen, K. Vimalanathan, C.L. Raston, R.A. Boulos, Aqueous based synthesis of antimicrobial-decorated graphene. J. Colloid Interface Sci. 443, 88–96 (2015). https://doi.org/10.1016/j.jcis.2014.11.043
- A. Soroush, W. Ma, M. Cyr, M.S. Rahaman, B. Asadishad, N. Tufenkji, In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ. Sci. Technol. Lett. 3(1), 13–18 (2015). https://doi.org/10.1021/acs.estlett.5b00304
- V. Vatanpour, A. Shockravi, H. Zarrabi, Z. Nikjavan, A. Javadi, Fabrication and characterization of anti-fouling and anti-bacterial ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. J. Ind. Eng. Chem. 30, 342–352 (2015). https://doi.org/10.1016/j.jiec.2015.06.004
- X.-F. Sun, J. Qin, P.-F. Xia, B.-B. Guo, C.-M. Yang, C. Song, S.-G. Wang, Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 281, 53–59 (2015). https://doi.org/10.1016/j.cej.2015.06.059
- M. Mazaheri, O. Akhavan, A. Simchi, Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 301, 456–462 (2014). https://doi.org/10.1016/j.apsusc.2014.02.099
- Y. Liu, M. Park, H.K. Shin, B. Pant, J. Choi, Y.W. Park, J.Y. Lee, S.-J. Park, H.-Y. Kim, Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J. Ind. Eng. Chem. 20(6), 4415–4420 (2014). https://doi.org/10.1016/j.jiec.2014.02.009
- L. Duan, Y. Wang, Y. Zhang, J. Liu, Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl. Surf. Sci. 355, 436–445 (2015). https://doi.org/10.1016/j.apsusc.2015.07.127
- F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1(1), 71–76 (2013). https://doi.org/10.1021/ez4001356
- L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W. Gao, L. Kong, Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365, 126–135 (2015). https://doi.org/10.1016/j.desal.2015.02.032
- Z.-B. Zhang, J.-J. Wu, Y. Su, J. Zhou, Y. Gao, H.-Y. Yu, J.-S. Gu, Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl. Surf. Sci. 332, 300–307 (2015). https://doi.org/10.1016/j.apsusc.2015.01.193
- R. Major, M. Sanak, A. Mzyk, L. Lipinska, M. Kot, P. Lacki, F. Bruckert, B. Major, Graphene based porous coatings with antibacterial and antithrombogenous function—materials and design. Arch. Civ. Mech. Eng. 14(4), 540–549 (2014). https://doi.org/10.1016/j.acme.2014.04.012
- C. Bora, P. Bharali, S. Baglari, S.K. Dolui, B.K. Konwar, Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos. Sci. Technol 87, 1–7 (2013). https://doi.org/10.1016/j.compscitech.2013.07.025
- H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces. 7(32), 18004–18016 (2015). https://doi.org/10.1021/acsami.5b04818
- L. Yu, Y. Zhang, B. Zhang, J. Liu, H. Zhang, C. Song, Preparation and characterization of hpei-go/pes ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 447, 452–462 (2013). https://doi.org/10.1016/j.memsci.2013.07.042
- A. Nourmohammadi, R. Rahighi, O. Akhavan, A. Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloys Compd. 612, 380–385 (2014). https://doi.org/10.1016/j.jallcom.2014.05.195
- O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010). https://doi.org/10.1021/nn101390x
- A. Janković, S. Eraković, M. Vukašinović-Sekulić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog. Org. Coat. 83, 1–10 (2015). https://doi.org/10.1016/j.porgcoat.2015.01.019
- L. Dellieu, E. Lawarée, N. Reckinger, C. Didembourg, J.J. Letesson, M. Sarrazin, O. Deparis, J.Y. Matroule, J.F. Colomer, Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon 84, 310–316 (2015). https://doi.org/10.1016/j.carbon.2014.12.025
- X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, X. Yuan, H. Xiong, Z. Guo, A facile one-pot method to two kinds of graphene oxide-based hydrogels with broad-spectrum antimicrobial properties. Chem. Eng. J. 260, 331–337 (2015). https://doi.org/10.1016/j.cej.2014.08.102
- Y. Wang, P. Zhang, C.F. Liu, C.Z. Huang, A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification. RSC Adv. 3(24), 9240–9246 (2013). https://doi.org/10.1039/c3ra22687e
- R. Surudžić, A. Janković, N. Bibić, M. Vukašinović-Sekulić, A. Perić-Grujić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Physico–chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos. Part B-Eng. 85, 102–112 (2016). https://doi.org/10.1016/j.compositesb.2015.09.029
- Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13(6), 2436–2441 (2013). https://doi.org/10.1021/nl400368v
- Z. Sun, P. Huang, G. Tong, J. Lin, A. Jin et al., Vegf-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale 5(15), 6857–6866 (2013). https://doi.org/10.1039/c3nr01573d
- K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
- Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, B. Yang, Graphene oxide based surface-enhanced raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013). https://doi.org/10.1039/c2cp43715e
- X. Ma, Q. Qu, Y. Zhao, Z. Luo, Y. Zhao, K.W. Ng, Y. Zhao, Graphene oxide wrapped gold nanoparticles for intracellular raman imaging and drug delivery. J. Mater. Chem. B 1(47), 6495–6500 (2013). https://doi.org/10.1039/c3tb21385d
- Y. Wang, L. Polavarapu, L.M. Liz-Marzán, Reduced graphene oxide-supported gold nanostars for improved sers sensing and drug delivery. ACS Appl. Mater. Interfaces. 6(24), 21798–21805 (2014). https://doi.org/10.1021/am501382y
- J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in sers and catalysis. Nanoscale 2(12), 2733–2738 (2010). https://doi.org/10.1039/c0nr00473a
- J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, Z. Zhang, Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 8(16), 2577–2584 (2012). https://doi.org/10.1002/smll.201102743
- Z.-L. Song, Z. Chen, X. Bian, L.-Y. Zhou, D. Ding et al., Alkyne-functionalized superstable graphitic silver nanoparticles for raman imaging. J. Am. Chem. Soc. 136(39), 13558–13561 (2014). https://doi.org/10.1021/ja507368z
- H. Hong, K. Yang, Y. Zhang, J.W. Engle, L. Feng et al., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6(3), 2361–2370 (2012). https://doi.org/10.1021/nn204625e
- H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W. Cai, In vivo targeting and positron emission tomography imaging of tumor vasculature with 66ga-labeled nano-graphene. Biomaterials 33(16), 4147–4156 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.031
- Y. Fazaeli, O. Akhavan, R. Rahighi, M.R. Aboudzadeh, E. Karimi, H. Afarideh, In vivo spect imaging of tumors by 198,199au-labeled graphene oxide nanostructures. Mater. Sci. Eng., C 45, 196–204 (2014). https://doi.org/10.1016/j.msec.2014.09.019
- H.-W. Yang, C.-Y. Huang, C.-W. Lin, H.-L. Liu, C.-W. Huang et al., Gadolinium-functionalized nanographene oxide for combined drug and microrna delivery and magnetic resonance imaging. Biomaterials 35(24), 6534–6542 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.057
- K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24(14), 1867 (2012). https://doi.org/10.1002/adma.201290077
- Y.H. Hu, The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small 10(8), 1451–1452 (2013). https://doi.org/10.1002/smll.201303644
- G. Lalwani, X. Cai, L. Nie, L.V. Wang, B. Sitharaman, Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1(3–4), 62–67 (2013). https://doi.org/10.1016/j.pacs.2013.10.001
- Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, G.-N. Chen, Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J. Mater. Chem. B 1(42), 5762–5767 (2013). https://doi.org/10.1039/c3tb20986e
- Z. Sheng, L. Song, J. Zheng, D. Hu, M. He et al., Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34(21), 5236–5243 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.090
- J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C. Zhang, Z. Zhang, A tumor-targeting near-infrared laser-triggered drug delivery system based on go@ag nanoparticles for chemo-photothermal therapy and x-ray imaging. Biomaterials 35(22), 5847–5861 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.042
- H. Zhang, H. Wu, J. Wang, Y. Yang, D. Wu, Y. Zhang, Y. Zhang, Z. Zhou, S. Yang, Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials 42, 66–77 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.055
- X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20), 4786–4793 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.023
- H. Zhou, K. Zhao, W. Li, N. Yang, Y. Liu, C. Chen, T. Wei, The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via tlr- and nf-κb-related signaling pathways. Biomaterials 33(29), 6933–6942 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.064
- Y. Li, Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, R.-S. Liu, Y.-Z. Chang, C. Chen, The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2), 402–411 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.091
- A. Sasidharan, L.S. Panchakarla, A.R. Sadanandan, A. Ashokan, P. Chandran et al., Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8(8), 1251–1263 (2012). https://doi.org/10.1002/smll.201102393
- Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, H. Gao, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U.S.A. 110(30), 12295–12300 (2013). https://doi.org/10.1073/pnas.1222276110
- H. Mao, W. Chen, S. Laurent, C. Thirifays, C. Burtea, F. Rezaee, M. Mahmoudi, Hard corona composition and cellular toxicities of the graphene sheets. Colloid Surfaces B 109, 212–218 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.049
- Y. Qin, Z.-W. Zhou, S.-T. Pan, Z.-X. He, X. Zhang, J.-X. Qiu, W. Duan, T. Yang, S.-F. Zhou, Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κb mediated signaling pathways in activated thp-1 macrophages. Toxicology 327, 62–76 (2015). https://doi.org/10.1016/j.tox.2014.10.011
- M.C. Duch, G.R.S. Budinger, Y.T. Liang, S. Soberanes, D. Urich et al., Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11(12), 5201–5207 (2011). https://doi.org/10.1021/nl202515a
- H. Zhou, B. Zhang, J. Zheng, M. Yu, T. Zhou et al., The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 35(5), 1597–1607 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.020
- T. Lammel, P. Boisseaux, M.-L. Fernández-Cruz, J.M. Navas, Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line hep g2. Part. Fibre Toxicol. 10(1), 27 (2013). https://doi.org/10.1186/1743-8977-10-27
- N. Chatterjee, H.-J. Eom, J. Choi, A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials 35(4), 1109–1127 (2014). https://doi.org/10.1016/j.biomaterials.2013.09.108
- Y. Li, Q. Wu, Y. Zhao, Y. Bai, P. Chen, T. Xia, D. Wang, Response of micrornas to in vitro treatment with graphene oxide. ACS Nano 8(3), 2100–2110 (2014). https://doi.org/10.1021/nn4065378
- M.-C. Matesanz, M. Vila, M.-J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P.-A.A.P. Marques, M.-T. Portolés, The effects of graphene oxide nanosheets localized on f-actin filaments on cell-cycle alterations. Biomaterials 34(5), 1562–1569 (2013). https://doi.org/10.1016/j.biomaterials.2012.11.001
- Y. Li, Z. Lu, Z. Li, G. Nie, Y. Fang, Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. J. Nanopart. Res. 16(5), 2384 (2014). https://doi.org/10.1007/s11051-014-2384-4
- K.-H. Liao, Y.-S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces. 3(7), 2607–2615 (2011). https://doi.org/10.1021/am200428v
- W. Zhang, L. Yan, M. Li, R. Zhao, X. Yang et al., Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol. Lett. 237(2), 61–71 (2015). https://doi.org/10.1016/j.toxlet.2015.05.021
- K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 8 (2010). https://doi.org/10.1007/s11671-010-9751-6
- M. Papi, M.C. Lauriola, V. Palmieri, G. Ciasca, G. Maulucci, M. De Spirito, Plasma protein corona reduces the haemolytic activity of graphene oxide nano and micro flakes. RSC Adv. 5(99), 81638–81641 (2015). https://doi.org/10.1039/c5ra15083c
- W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011). https://doi.org/10.1021/nn200021j
- H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, Z. Su, The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16), 4013–4021 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.021
- G. Qu, S. Liu, S. Zhang, L. Wang, X. Wang et al., Graphene oxide induces toll-like receptor 4 (tlr4)-dependent necrosis in macrophages. ACS Nano 7(7), 5732–5745 (2013). https://doi.org/10.1021/nn402330b
- J. Russier, E. Treossi, A. Scarsi, F. Perrozzi, H. Dumortier, L. Ottaviano, M. Meneghetti, V. Palermo, A. Bianco, Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale 5(22), 11234–11247 (2013). https://doi.org/10.1039/c3nr03543c
- X. Zhi, H. Fang, C. Bao, G. Shen, J. Zhang, K. Wang, S. Guo, T. Wan, D. Cui, The immunotoxicity of graphene oxides and the effect of pvp-coating. Biomaterials 34(21), 5254–5261 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.024
- C. Jin, F. Wang, Y. Tang, X. Zhang, J. Wang, Y. Yang, Distribution of graphene oxide and TiO2–graphene oxide composite in a549 cells. Biol. Trace Elem. Res. 159(1–3), 393–398 (2014). https://doi.org/10.1007/s12011-014-0027-3
- Z. Yang, C. Ge, J. Liu, Y. Chong, Z. Gu, C.A. Jimenez-Cruz, Z. Chai, R. Zhou, Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 7(44), 18725–18737 (2015). https://doi.org/10.1039/c5nr01172h
- J. Park, B. Kim, J. Han, J. Oh, S. Park et al., Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 9(5), 4987–4999 (2015). https://doi.org/10.1021/nn507149w
- J. Linares, M.C. Matesanz, M. Vila, M.J. Feito, G. Gonçalves, M. Vallet-Regí, P.A.A.P. Marques, M.T. Portolés, Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces. 6(16), 13697–13706 (2014). https://doi.org/10.1021/am5031598
- Q. Mu, G. Su, L. Li, B.O. Gilbertson, L.H. Yu, Q. Zhang, Y.-P. Sun, B. Yan, Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces. 4(4), 2259–2266 (2012). https://doi.org/10.1021/am300253c
- T. Zhou, B. Zhang, P. Wei, Y. Du, H. Zhou et al., Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 35(37), 9833–9843 (2014). https://doi.org/10.1016/j.biomaterials.2014.08.033
- Z. Liu, J.T. Robinson, X. Sun, H. Dai, Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008). https://doi.org/10.1021/ja8
References
D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, From conception to realization: an historical account of graphene and some perspectives for its future. Angew. Chem. Int. Edit. 49(49), 9336–9344 (2010). https://doi.org/10.1002/anie.201003024
G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). https://doi.org/10.1021/nl8035367
C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7(4), 2891–2897 (2013). https://doi.org/10.1021/nn401196a
O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6), 711–723 (2010). https://doi.org/10.1002/smll.200901934
J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005). https://doi.org/10.1002/elan.200403113
MathSciNet
M.S. Dresselhaus, P. Avouris, Introduction to carbon materials research. Top. Appl. Phys. 80, 1–9 (2001). https://doi.org/10.1007/3-540-39947-X_1
F.M.P. Tonelli, V.A.M. Goulart, K.N. Gomes, M.S. Ladeira, A.K. Santos, E. Lorençon, L.O. Ladeira, R.R. Resende, Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10(15), 2423–2450 (2015). https://doi.org/10.2217/nnm.15.65
J.M. Yoo, J.H. Kang, B.H. Hong, Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44(14), 4835–4852 (2015). https://doi.org/10.1039/c5cs00072f
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
G. Bottari, M.Á. Herranz, L. Wibmer, M. Volland, L. Rodríguez-Pérez et al., Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 46(15), 4464–4500 (2017). https://doi.org/10.1039/c7cs00229g
T.-H. Kim, T. Lee, W. El-Said, J.-W. Choi, Graphene-based materials for stem cell applications. Materials 8(12), 8674–8690 (2015). https://doi.org/10.3390/ma8125481
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29(38), 1702590 (2017). https://doi.org/10.1002/adma.201702590
F. Liu, C.W. Lee, J.S. Im, Graphene-based carbon materials for electrochemical energy storage. J. Nanomater. 2013, 642915 (2013). https://doi.org/10.1155/2013/642915
G. Gonçalves, P. Marques, M. Vila, Graphene-Based Materials in Health and Environment. Carbon Nanostructures (Springer, Switzerland, 2016). https://doi.org/10.1007/978-3-319-45639-3
S.S. Nanda, G.C. Papaefthymiou, D.K. Yi, Functionalization of graphene oxide and its biomedical applications. Crit. Rev. Solid State Mater. Sci. 40(5), 291–315 (2015). https://doi.org/10.1080/10408436.2014.1002604
L. Ou, B. Song, H. Liang, J. Liu, X. Feng, B. Deng, T. Sun, L. Shao, Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13(1), 57 (2016). https://doi.org/10.1186/s12989-016-0168-y
K.V. Krishna, C. Ménard-Moyon, S. Verma, A. Bianco, Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 8(10), 1669–1688 (2013). https://doi.org/10.2217/nnm.13.140
C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10), 2211–2224 (2013). https://doi.org/10.1021/ar300159f
Z.S. Singh, Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol. Sci. Appl. 2016(9), 15–28 (2016). https://doi.org/10.2147/nsa.s101818
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). https://doi.org/10.1039/b917103g
P.R. Wallace, The band theory of graphite. Phys. Rev. 72(3), 258 (1947). https://doi.org/10.1103/PhysRev.72.258
MATH
K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
K. Muthoosamy, S. Manickam, State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason. Sonochem. 39(2017), 478–493 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.019
G. Shim, M.-G. Kim, J.Y. Park, Y.-K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliver. Rev. 105, 205–227 (2016). https://doi.org/10.1016/j.addr.2016.04.004
S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). https://doi.org/10.1021/jp060936f
T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications. Prog. Mater Sci. 57(7), 1061–1105 (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002
V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116(9), 5464–5519 (2016). https://doi.org/10.1021/acs.chemrev.5b00620
G. Reina, J.M. González-Domínguez, A. Criado, E. Vázquez, A. Bianco, M. Prato, Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 46(15), 4400–4416 (2017). https://doi.org/10.1039/c7cs00363c
A. Jana, E. Scheer, S. Polarz, Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017). https://doi.org/10.3762/bjnano.8.74
K.E. Whitener, P.E. Sheehan, Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014). https://doi.org/10.1016/j.diamond.2014.04.006
J. Xu, Y. Wang, S. Hu, Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2016). https://doi.org/10.1007/s00604-016-2007-0
J. Lin, X. Chen, P. Huang, Graphene-based nanomaterials for bioimaging. Adv. Drug Deliver. Rev. 105, 242–254 (2016). https://doi.org/10.1016/j.addr.2016.05.013
P. Huang, S. Wang, X. Wang, G. Shen, J. Lin et al., Surface functionalization of chemically reduced graphene oxide for targeted photodynamic therapy. J. Biomed. Nanotechnol. 11(1), 117–125 (2015). https://doi.org/10.1166/jbn.2015.2055
X. Huang, F. Boey, H.U.A. Zhang, A brief review on graphene-nanoparticle composites. Cosmos 06(02), 159–166 (2010). https://doi.org/10.1142/s0219607710000607
M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: a review. Mater. Res. Bull. 59, 323–328 (2014). https://doi.org/10.1016/j.materresbull.2014.07.051
S. Thakur, N. Karak, Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94, 224–242 (2015). https://doi.org/10.1016/j.carbon.2015.06.030
H. Zhang, G. Grüner, Y. Zhao, Recent advancements of graphene in biomedicine. J. Mater. Chem. B 2013(1), 2542–2567 (2013). https://doi.org/10.1039/c3tb20405g
T.-H. Han, H. Kim, S.-J. Kwon, T.-W. Lee, Graphene-based flexible electronic devices. Mater. Sci. Eng., R 118, 1–43 (2017). https://doi.org/10.1016/j.mser.2017.05.001
H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim, J.-H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28(22), 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 8(12), 2392–2403 (2013). https://doi.org/10.1038/nprot.2013.146
J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12), 9243–9257 (2013). https://doi.org/10.1016/j.actbio.2013.08.016
D.W. Boukhvalov, M.I. Katsnelson, Modeling of graphite oxide. J. Am. Chem. Soc. 130(32), 10697–10701 (2008). https://doi.org/10.1021/ja8021686
S.-E. Zhu, M. Krishna Ghatkesar, C. Zhang, G.C.A.M. Janssen, Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013). https://doi.org/10.1063/1.4802799
Y. Yang, A.M. Asiri, Z. Tang, D. Du, Y. Lin, Graphene based materials for biomedical applications. Mater. Today 16(10), 365–373 (2013). https://doi.org/10.1016/j.mattod.2013.09.004
M. Nurunnabi, K. Parvez, M. Nafiujjaman, V. Revuri, H.A. Khan, X. Feng, Y.-K. Lee, Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 5(52), 42141–42161 (2015). https://doi.org/10.1039/c5ra04756k
K. Yang, L. Feng, X. Shi, Z. Liu, Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42(2), 530–547 (2013). https://doi.org/10.1039/c2cs35342c
K. Yang, H. Gong, X. Shi, J. Wan, Y. Zhang, Z. Liu, In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11), 2787–2795 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.001
T.L. Moore, R. Podilakrishna, A. Rao, F. Alexis, Systemic administration of polymer-coated nano-graphene to deliver drugs to glioblastoma. Part. Part. Syst. Charact. 31(8), 886–894 (2014). https://doi.org/10.1002/ppsc.201300379
S.M. Chowdhury, C. Surhland, Z. Sanchez, P. Chaudhary, M.A. Suresh Kumar et al., Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed. Nanotechnol. Biol. Med. 11(1), 109–118 (2015). https://doi.org/10.1016/j.nano.2014.08.001
X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008). https://doi.org/10.1007/s12274-008-8021-8
Nayak EbPK, Recent advances in graphene research (InTech; 2016). https://doi.org/10.5772/61909
H. Wu, W. Lu, J.-J. Shao, C. Zhang, M.-B. Wu, B.-H. Li, Q.-H. Yang, Ph-dependent size, surface chemistry and electrochemical properties of graphene oxide. Carbon 67, 795 (2014). https://doi.org/10.1016/j.carbon.2013.10.044
V.K. Rana, M.-C. Choi, J.-Y. Kong, G.Y. Kim, M.J. Kim, S.-H. Kim, S. Mishra, R.P. Singh, C.-S. Ha, Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. 296(2), 131–140 (2010). https://doi.org/10.1002/mame.201000307
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. CA-Cancer J. Clin. 66(1), 7–30 (2016). https://doi.org/10.3322/caac.21332
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017. CA-Cancer J. Clin. 67(1), 7–30 (2017). https://doi.org/10.3322/caac.21387
L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding, J.T. Johnson, T.L. Whiteside, A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor- 1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 13(15), 4345–4354 (2007). https://doi.org/10.1158/1078-0432.ccr-07-0472
J.A. Burger, Cxcr4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5), 1761–1767 (2006). https://doi.org/10.1182/blood-2005-08-3182
M. Bissell, M. Labarge, Context, tissue plasticity, and cancerare tumor stem cells also regulated by the microenvironment? Cancer Cell 7(1), 17–23 (2005). https://doi.org/10.1016/s1535-6108(04)00375-7
K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1), 52–67 (2010). https://doi.org/10.1016/j.cell.2010.03.015
L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010). https://doi.org/10.1002/smll.200901680
B. Adhikari, A. Biswas, A. Banerjee, Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels. ACS Appl. Mater. Interfaces. 4(10), 5472–5482 (2012). https://doi.org/10.1021/am301373n
W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of chemo-photothermal therapy using pegylated graphene oxide. Biomaterials 32(33), 8555–8561 (2011). https://doi.org/10.1016/j.biomaterials.2011.07.071
Y.-W. Chen, Y.-L. Su, S.-H. Hu, S.-Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliver. Rev. 105, 190–204 (2016). https://doi.org/10.1016/j.addr.2016.05.022
L. Liu, J. Zhang, J. Zhao, F. Liu, Mechanical properties of graphene oxides. Nanoscale 4(19), 5910–5916 (2012). https://doi.org/10.1039/c2nr31164j
X. Bian, Z.-L. Song, Y. Qian, W. Gao, Z.-Q. Cheng et al., Fabrication of graphene-isolated-au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 4(1), 6093 (2014). https://doi.org/10.1038/srep06093
C. Yao, L. Zhang, J. Wang, Y. He, J. Xin, S. Wang, H. Xu, Z. Zhang, Gold nanoparticle mediated phototherapy for cancer. J. Nanomater. 2016, 5497136 (2016). https://doi.org/10.1155/2016/5497136
Y.-H. Lee, Y.-H. Lai, Synthesis, characterization, and biological evaluation of anti-her2 indocyanine green-encapsulated peg-coated plga nanoparticles for targeted phototherapy of breast cancer cells. PLoS ONE 11(12), e0168192 (2016). https://doi.org/10.1371/journal.pone.0168192
L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114(21), 10869–10939 (2014). https://doi.org/10.1021/cr400532z
U. Chitgupi, Y. Qin, J.F. Lovell, Targeted nanomaterials for phototherapy. Nanotheranostics 1(1), 38–58 (2017). https://doi.org/10.7150/ntno.17694
E. Paszko, C. Ehrhardt, M.O. Senge, D.P. Kelleher, J.V. Reynolds, Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn. 8(1), 14–29 (2011). https://doi.org/10.1016/j.pdpdt.2010.12.001
D.K. Chatterjee, L.S. Fong, Y. Zhang, Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliver. Rev. 60(15), 1627–1637 (2008). https://doi.org/10.1016/j.addr.2008.08.003
S. Shi, F. Chen, E.B. Ehlerding, W. Cai, Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug. Chem. 25(9), 1609–1619 (2014). https://doi.org/10.1021/bc500332c
B. Zhang, Y. Wang, G. Zhai, Biomedical applications of the graphene-based materials. Mater. Sci. Eng., C 61, 953–964 (2016). https://doi.org/10.1016/j.msec.2015.12.073
R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052–6074 (2016). https://doi.org/10.1002/adma.201506306
N. Rahmanian, H. Hamishehkar, J.E.N. Dolatabadi, N. Arsalani, Nano graphene oxide: a novel carrier for oral delivery of flavonoids. Colloid Surfaces B 123, 331–338 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.036
Z. Liu, J.T. Robinson, S.M. Tabakman, K. Yang, H. Dai, Carbon materials for drug delivery & cancer therapy. Mater. Today 14(7–8), 316–323 (2011). https://doi.org/10.1016/s1369-7021(11)70161-4
S. Some, A.R. Gwon, E. Hwang, G.-H. Bahn, Y. Yoon et al., Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep. 4(1), 6314 (2014). https://doi.org/10.1038/srep06314
X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloid Surfaces B 122, 638–644 (2014). https://doi.org/10.1016/j.colsurfb.2014.07.043
B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9), 7000–7009 (2011). https://doi.org/10.1021/nn201560b
C. Xu, D. Yang, L. Mei, Q. Li, H. Zhu, T. Wang, Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl. Mater. Interfaces. 5(24), 12911–12920 (2013). https://doi.org/10.1021/am404714w
U. Dembereldorj, S.Y. Choi, E.-O. Ganbold, N.W. Song, D. Kim, J. Choo, S.Y. Lee, S. Kim, S.-W. Joo, Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem. Photobiol. 90(3), 659–666 (2013). https://doi.org/10.1111/php.12212
C. Wang, J. Mallela, U.S. Garapati, S. Ravi, V. Chinnasamy, Y. Girard, M. Howell, S. Mohapatra, A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomed. Nanotechnol. Biol. Med. 9(7), 903–911 (2013). https://doi.org/10.1016/j.nano.2013.01.003
Y. Jin, J. Wang, H. Ke, S. Wang, Z. Dai, Graphene oxide modified pla microcapsules containing gold nanoparticles for ultrasonic/ct bimodal imaging guided photothermal tumor therapy. Biomaterials 34(20), 4794–4802 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.027
L. Feng, K. Li, X. Shi, M. Gao, J. Liu, Z. Liu, Smart ph-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater. 3(8), 1261–1271 (2014). https://doi.org/10.1002/adhm.201300549
B.P. Viraka Nellore, A. Pramanik, S.R. Chavva, S.S. Sinha, C. Robinson et al., Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discuss. 175, 257–271 (2014). https://doi.org/10.1039/c4fd00074a
D. Hu, J. Zhang, G. Gao, Z. Sheng, H. Cui, L. Cai, Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics. Theranostics 6(7), 1043–1052 (2016). https://doi.org/10.7150/thno.14566
J. Li, S. Tan, R. Kooger, C. Zhang, Y. Zhang, Micrornas as novel biological targets for detection and regulation. Chem. Soc. Rev. 43(2), 506–517 (2014). https://doi.org/10.1039/c3cs60312a
A. Paul, A. Hasan, H.A. Kindi, A.K. Gaharwar, V.T.S. Rao et al., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8(8), 8050–8062 (2014). https://doi.org/10.1021/nn5020787
L. Feng, X. Yang, X. Shi, X. Tan, R. Peng, J. Wang, Z. Liu, Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11), 1989–1997 (2013). https://doi.org/10.1002/smll.201202538
T. Niidome, L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9(24), 1647–1652 (2002). https://doi.org/10.1038/sj.gt.3301923
R. Waehler, S.J. Russell, D.T. Curiel, Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8(8), 573–587 (2007). https://doi.org/10.1038/nrg2141
H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11), 1569–1578 (2011). https://doi.org/10.1002/smll.201100191
H. Kim, D. Lee, J. Kim, T.-I. Kim, W.J. Kim, Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7(8), 6735–6746 (2013). https://doi.org/10.1021/nn403096s
H. Kim, W.J. Kim, Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 10(1), 117–126 (2013). https://doi.org/10.1002/smll.201202636
T. Sandle, Antibiotic/antimicrobial resistance, in The Sage Encyclopedia of Pharmacology and Society, ed. by S. Boslaugh (Sage, Thousand Oaks, 2016)
A.M. Allahverdiyev, K.V. Kon, E.S. Abamor, M. Bagirova, M. Rafailovich, Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti-infe. 9(11), 1035–1052 (2011). https://doi.org/10.1586/eri.11.121
W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano 4(7), 4317–4323 (2010). https://doi.org/10.1021/nn101097v
Y. Tu, M. Lv, P. Xiu, T. Huynh, M. Zhang et al., Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8(8), 594–601 (2013). https://doi.org/10.1038/nnano.2013.125
S. Liu, M. Hu, T.H. Zeng, R. Wu, R. Jiang, J. Wei, L. Wang, J. Kong, Y. Chen, Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28(33), 12364–12372 (2012). https://doi.org/10.1021/la3023908
M.-C. Wu, A.R. Deokar, J.-H. Liao, P.-Y. Shih, Y.-C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7(2), 1281–1290 (2013). https://doi.org/10.1021/nn304782d
S. Gurunathan, J. Woong Han, A. Abdal Daye, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901–5914 (2012). https://doi.org/10.2147/ijn.s37397
I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan, Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans. ACS Nano 7(10), 8972–8980 (2013). https://doi.org/10.1021/nn4034794
C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi, K. Wang, D. Cui, The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34(15), 3882–3890 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.001
Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan, Y. Ouyang, Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloid Surfaces B 107, 107–114 (2013). https://doi.org/10.1016/j.colsurfb.2013.01.073
N. Hussain, A. Gogoi, R.K. Sarma, P. Sharma, A. Barras, R. Boukherroub, R. Saikia, P. Sengupta, M.R. Das, Reduced graphene oxide nanosheets decorated with au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79(12), 1774–1784 (2014). https://doi.org/10.1002/cplu.201402240
O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 113(47), 20214–20220 (2009). https://doi.org/10.1021/jp906325q
Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces. 6(4), 2791–2798 (2014). https://doi.org/10.1021/am4053317
I.E. Mejías Carpio, C.M. Santos, X. Wei, D.F. Rodrigues, Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4(15), 4746–4756 (2012). https://doi.org/10.1039/c2nr30774j
S. Some, S.-M. Ho, P. Dua, E. Hwang, Y.H. Shin, H. Yoo, J.-S. Kang, D.-K. Lee, H. Lee, Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 6(8), 7151–7161 (2012). https://doi.org/10.1021/nn302215y
J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, R. Peng, Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces. 5(9), 3867–3874 (2013). https://doi.org/10.1021/am4005495
Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, S. Yang, A novel wound dressing based on ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 24(25), 3933–3943 (2014). https://doi.org/10.1002/adfm.201304202
B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, E. Xie, Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9), 2978–2982 (2012). https://doi.org/10.1039/c2nr11958g
S.R. Shin, Y.-C. Li, H.L. Jang, P. Khoshakhlagh, M. Akbari, A. Nasajpour, Y.S. Zhang, A. Tamayol, A. Khademhosseini, Graphene-based materials for tissue engineering. Adv. Drug Deliver. Rev. 105, 255–274 (2016). https://doi.org/10.1016/j.addr.2016.03.007
O. Akhavan, Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B 4(19), 3169–3190 (2016). https://doi.org/10.1039/c6tb00152a
A.L. Rutz, K.E. Hyland, A.E. Jakus, W.R. Burghardt, R.N. Shah, A multimaterial bioink method for 3d printing tunable, cell-compatible hydrogels. Adv. Mater. 27(9), 1607–1614 (2015). https://doi.org/10.1002/adma.201405076
S. Seethamraju, S. Kumar, K.B. Bharadwaj, G. Madras, S. Raghavan, P.C. Ramamurthy, Million-fold decrease in polymer moisture permeability by a graphene monolayer. ACS Nano 10(7), 6501–6509 (2016). https://doi.org/10.1021/acsnano.6b02588
S. Goenka, V. Sant, S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017
J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su et al., Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017). https://doi.org/10.1038/nnano.2017.21
H.M. Hegab, A. ElMekawy, L. Zou, D. Mulcahy, C.P. Saint, M. Ginic-Markovic, The controversial antibacterial activity of graphene-based materials. Carbon 105, 362–376 (2016). https://doi.org/10.1016/j.carbon.2016.04.046
H. Ji, H. Sun, X. Qu, Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv. Drug Deliver. Rev. 105, 176–189 (2016). https://doi.org/10.1016/j.addr.2016.04.009
J. Zhao, Z. Wang, J.C. White, B. Xing, Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 48(17), 9995–10009 (2014). https://doi.org/10.1021/es5022679
M.E. Foo, S.C.B. Gopinath, Feasibility of graphene in biomedical applications. Biomed. Pharmacother. 94, 354–361 (2017). https://doi.org/10.1016/j.biopha.2017.07.122
P. Wu, Y. Qian, P. Du, H. Zhang, C. Cai, Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 22(13), 6402–6412 (2012). https://doi.org/10.1039/c2jm16929k
X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25(4), 901–905 (2009). https://doi.org/10.1016/j.bios.2009.09.004
L. Jiang, Y. Liu, S. Liu, G. Zeng, X. Hu et al., Adsorption of estrogen contaminants by graphene nanomaterials under natural organic matter preloading: comparison to carbon nanotube, biochar, and activated carbon. Environ. Sci. Technol. 51(11), 6352–6359 (2017). https://doi.org/10.1021/acs.est.7b00073
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). https://doi.org/10.1002/adfm.200900377
D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012). https://doi.org/10.1021/cr300115g
D. Lin, J. Wu, H. Ju, F. Yan, Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens. Bioelectron. 52, 153–158 (2014). https://doi.org/10.1016/j.bios.2013.08.051
B. Liu, D. Tang, J. Tang, B. Su, Q. Li, G. Chen, A graphene-based au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Analyst 136(11), 2218–2220 (2011). https://doi.org/10.1039/c0an00921k
K.T. Nguyen, Y. Zhao, Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6(12), 6245–6266 (2014). https://doi.org/10.1039/c4nr00612g
J. Tian, T. Huang, P. Wang, J. Lu, God/hrp bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing. J. Electrochem. Soc. 162(12), B319–B325 (2015). https://doi.org/10.1149/2.0411512jes
C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 25(5), 1070–1074 (2010). https://doi.org/10.1016/j.bios.2009.09.024
P. Song, X. Zhang, M. Sun, X. Cui, Y. Lin, Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Nanoscale 4(5), 1800 (2012). https://doi.org/10.1039/c2nr11938b
X. Wu, S.-J. Ding, K. Lin, J. Su, A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J. Mater. Chem. B 5(17), 3084–3102 (2017). https://doi.org/10.1039/c6tb03067j
V. Poornima Parvathi, M. Umadevi, R. Bhaviya Raj, Improved waste water treatment by bio-synthesized graphene sand composite. J. Environ. Manag. 162, 299–305 (2015). https://doi.org/10.1016/j.jenvman.2015.07.055
A. El-Fiqi, J.H. Lee, E.-J. Lee, H.-W. Kim, Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 9(12), 9508–9521 (2013). https://doi.org/10.1016/j.actbio.2013.07.036
V. Rosa, Z. Zhang, R.H.M. Grande, J.E. Nör, Dental pulp tissue engineering in full-length human root canals. J. Dent. Res. 92(11), 970–975 (2013). https://doi.org/10.1177/0022034513505772
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
L. Wang, C. Lu, B. Zhang, B. Zhao, F. Wu, S. Guan, Fabrication and characterization of flexible silk fibroin films reinforced with graphene oxide for biomedical applications. RSC Adv. 4(76), 40312–40320 (2014). https://doi.org/10.1039/c4ra04529g
D. Li, T. Liu, X. Yu, D. Wu, Z. Su, Fabrication of graphene-biomacromolecule hybrid materials for tissue engineering application. Polym. Chem. 8(30), 4309–4321 (2017). https://doi.org/10.1039/C7PY00935F
T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae et al., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011). https://doi.org/10.1021/nn200500h
S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, S. Hong, Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36), H263–H267 (2011). https://doi.org/10.1002/adma.201101503
G. Nasim, G. Hamidreza, K. Mahshid, F. Mohammadhossein, A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication 9(2), 025008 (2017). https://doi.org/10.1088/1758-5090/aa68ed
M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81(14), 5603–5613 (2009). https://doi.org/10.1021/ac900136z
S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9(4), 1593–1597 (2009). https://doi.org/10.1021/nl803798y
A. Bianco, Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Edit. 52(19), 4986–4997 (2013). https://doi.org/10.1002/anie.201209099
C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, A. Pluen, Graphene in therapeutics delivery: problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 104, 235–250 (2016). https://doi.org/10.1016/j.ejpb.2016.04.015
E. Mahmoudi, L.Y. Ng, M.M. Ba-Abbad, A.W. Mohammad, Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J. 277, 1–10 (2015). https://doi.org/10.1016/j.cej.2015.04.107
V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25(1), 15–34 (2012). https://doi.org/10.1021/tx200339h
S. Syama, P.V. Mohanan, Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 86, 546–555 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.116
B. Zhang, P. Wei, Z. Zhou, T. Wei, Interactions of graphene with mammalian cells: molecular mechanisms and biomedical insights. Adv. Drug Deliver. Rev. 105, 145–162 (2016). https://doi.org/10.1016/j.addr.2016.08.009
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ. Sci. Technol. 47(12), 6288–6296 (2013). https://doi.org/10.1021/es400483k
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. Environ. Sci. Technol. 48(16), 9382–9390 (2014). https://doi.org/10.1021/es5020828
I. Chowdhury, W.-C. Hou, D. Goodwin, M. Henderson, R.G. Zepp, D. Bouchard, Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Res. 78, 37–46 (2015). https://doi.org/10.1016/j.watres.2015.04.001
L. Wu, L. Liu, B. Gao, R. Muñoz-Carpena, M. Zhang, H. Chen, Z. Zhou, H. Wang, Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 29(49), 15174–15181 (2013). https://doi.org/10.1021/la404134x
Z. Hua, Z. Tang, X. Bai, J. Zhang, L. Yu, H. Cheng, Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environ. Pollut. 205, 161–169 (2015). https://doi.org/10.1016/j.envpol.2015.05.039
F. Ahmed, D.F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J. Hazard. Mater. 256–257, 33–39 (2013). https://doi.org/10.1016/j.jhazmat.2013.03.064
Y. Deng, J. Li, M. Qiu, F. Yang, J. Zhang, C. Yuan, Deriving characterization factors on freshwater ecotoxicity of graphene oxide nanomaterial for life cycle impact assessment. Int. J. Life Cycle Ass. 22(2), 222–236 (2016). https://doi.org/10.1007/s11367-016-1151-4
M. Rethinasabapathy, S.-M. Kang, S.-C. Jang, Y.S. Huh, Three-dimensional porous graphene materials for environmental applications. Carbon lett 22, 1–13 (2017). https://doi.org/10.5714/cl.2017.22.001
X. Zou, L. Zhang, Z. Wang, Y. Luo, Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138(7), 2064–2077 (2016). https://doi.org/10.1002/chin.201622265
J. Wu, Y.-S. Wang, X.-Y. Yang, Y.-Y. Liu, J.-R. Yang, R. Yang, N. Zhang, Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology 23(35), 355101 (2012). https://doi.org/10.1088/0957-4484/23/35/355101
D. Ma, J. Lin, Y. Chen, W. Xue, L.-M. Zhang, In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8), 3001–3007 (2012). https://doi.org/10.1016/j.carbon.2012.02.083
U. Dembereldorj, M. Kim, S. Kim, E.-O. Ganbold, S.Y. Lee, S.-W. Joo, A spatiotemporal anticancer drug release platform of pegylated graphene oxide triggered by glutathione in vitro and in vivo. J. Mater. Chem. 22(45), 23845–23851 (2012). https://doi.org/10.1039/c2jm34853e
H. Wen, C. Dong, H. Dong, A. Shen, W. Xia et al., Engineered redox-responsive peg detachment mechanism in pegylated nano-graphene oxide for intracellular drug delivery. Small 8(5), 760–769 (2012). https://doi.org/10.1002/smll.201101613
T. Zhou, X. Zhou, D. Xing, Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 35(13), 4185–4194 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.044
C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.-M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Edit. 50(49), 11644–11648 (2011). https://doi.org/10.1002/anie.201105573
Y. Pan, H. Bao, N.G. Sahoo, T. Wu, L. Li, Water-soluble poly(n-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater. 21(14), 2754–2763 (2011). https://doi.org/10.1002/adfm.201100078
T. Kavitha, I.-K. Kang, S.-Y. Park, Poly(n-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloid Surfaces B 115, 37–45 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.022
N.G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H.K.F. Cheng, L. Li, L.P. Tan, Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. 47(18), 5235–5237 (2011). https://doi.org/10.1039/c1cc00075f
K. Liu, Y. Wang, H. Li, Y. Duan, A facile one-pot synthesis of starch functionalized graphene as nano-carrier for ph sensitive and starch-mediated drug delivery. Colloid Surfaces B 128, 86–93 (2015). https://doi.org/10.1016/j.colsurfb.2015.02.010
A. Angelopoulou, E. Voulgari, E.K. Diamanti, D. Gournis, K. Avgoustakis, Graphene oxide stabilized by pla–peg copolymers for the controlled delivery of paclitaxel. Eur. J. Pharm. Biopharm. 93, 18–26 (2015). https://doi.org/10.1016/j.ejpb.2015.03.022
J. Li, Z. Lyv, Y. Li, H. Liu, J. Wang, W. Zhan, H. Chen, H. Chen, X. Li, A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug. Biomaterials 51, 12–21 (2015). https://doi.org/10.1016/j.biomaterials.2015.01.074
J. An, Y. Gou, C. Yang, F. Hu, C. Wang, Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng., C 33(5), 2827–2837 (2013). https://doi.org/10.1016/j.msec.2013.03.008
J.-P. Chen, Y.-J. Lu, S.-C. Hung, J.-P. Chen, K.-C. Wei, Improving thermal stability and efficacy of bcnu in treating glioma cells using paa-functionalized graphene oxide. Int. J. Nanomed. 2012(7), 1737–1747 (2012). https://doi.org/10.2147/ijn.s29376
X. Fan, G. Jiao, W. Zhao, P. Jin, X. Li, Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for ph-activated release. Nanoscale 5(3), 1143–1152 (2013). https://doi.org/10.1039/c2nr33158f
X.T. Zheng, P. Chen, C.M. Li, Anticancer efficacy and subcellular site of action investigated by real-time monitoring of cellular responses to localized drug delivery in single cells. Small 8(17), 2670–2674 (2012). https://doi.org/10.1002/smll.201102636
M. Kakran, N.G. Sahoo, H. Bao, Y. Pan, L. Li, Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr. Med. Chem. 18(29), 4503–4512 (2011). https://doi.org/10.2174/092986711797287548
S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, M.-R. Park, D.-N. Kwon, J.-H. Kim, Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 19(4), 1280–1288 (2013). https://doi.org/10.1016/j.jiec.2012.12.029
S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9), 6971–6980 (2011). https://doi.org/10.1021/nn202451x
B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic et al., Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15), 4428–4435 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.014
D. Zhang, X. Liu, X. Wang, Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J. Inorg. Biochem. 105(9), 1181–1186 (2011). https://doi.org/10.1016/j.jinorgbio.2011.05.014
A.F. de Faria, D.S.T. Martinez, S.M.M. Meira, A.C.M. de Moraes, A. Brandelli, A.G.S. Filho, O.L. Alves, Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloid Surfaces B 113, 115–124 (2014). https://doi.org/10.1016/j.colsurfb.2013.08.006
S. Vijay Kumar, N.M. Huang, H.N. Lim, A.R. Marlinda, I. Harrison, C.H. Chia, One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chem. Eng. J. 219, 217–224 (2013). https://doi.org/10.1016/j.cej.2012.09.063
Z. Zhu, M. Su, L. Ma, L. Ma, D. Liu, Z. Wang, Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability. Talanta 117, 449–455 (2013). https://doi.org/10.1016/j.talanta.2013.09.017
M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke, P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloid Surfaces B 83(1), 16–22 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.033
M.R. Das, R.K. Sarma, S.C. Borah, R. Kumari, R. Saikia et al., The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloid Surfaces B 105, 128–136 (2013). https://doi.org/10.1016/j.colsurfb.2012.12.033
M.S. Haider, A.C. Badejo, G.N. Shao, S.M. Imran, N. Abbas, Y.G. Chai, M. Hussain, H.T. Kim, Sequential repetitive chemical reduction technique to study size-property relationships of graphene attached ag nanoparticle. Solid State Sci. 44, 1–9 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.03.024
V.H. Nguyen, B.-K. Kim, Y.-L. Jo, J.-J. Shim, Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites. J. Supercrit. Fluid. 72, 28–35 (2012). https://doi.org/10.1016/j.supflu.2012.08.005
Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J. Colloid Interface Sci. 360(2), 463–470 (2011). https://doi.org/10.1016/j.jcis.2011.05.009
J. Shen, T. Li, M. Shi, N. Li, M. Ye, Polyelectrolyte-assisted one-step hydrothermal synthesis of ag-reduced graphene oxide composite and its antibacterial properties. Mater. Sci. Eng., C 32(7), 2042–2047 (2012). https://doi.org/10.1016/j.msec.2012.05.017
X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, Z. Lin, X. Zhang, The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50(10), 3407–3415 (2012). https://doi.org/10.1016/j.carbon.2012.02.002
H. Zhou, Y. Liu, W. Chi, C. Yu, Y. Yu, Preparation and antibacterial properties of ag@polydopamine/graphene oxide sheet nanocomposite. Appl. Surf. Sci. 282, 181–185 (2013). https://doi.org/10.1016/j.apsusc.2013.05.099
Z. Tai, H. Ma, B. Liu, X. Yan, Q. Xue, Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications. Colloid Surfaces B 89, 147–151 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.006
B. Pant, P. Pokharel, A.P. Tiwari, P.S. Saud, M. Park, Z.K. Ghouri, S. Choi, S.-J. Park, H.-Y. Kim, Characterization and antibacterial properties of aminophenol grafted and ag nps decorated graphene nanocomposites. Ceram. Int. 41(4), 5656–5662 (2015). https://doi.org/10.1016/j.ceramint.2014.12.150
M.K. Joshi, H.R. Pant, H.J. Kim, J.H. Kim, C.S. Kim, One-pot synthesis of ag-iron oxide/reduced graphene oxide nanocomposite via hydrothermal treatment. Colloid Surf. A-Physicochem. Eng. Asp. 446, 102–108 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.058
L. Liu, H. Bai, J. Liu, D.D. Sun, Multifunctional graphene oxide-tio2-ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J. Hazard. Mater. 261, 214–223 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.034
C.-H. Deng, J.-L. Gong, G.-M. Zeng, C.-G. Niu, Q.-Y. Niu, W. Zhang, H.-Y. Liu, Inactivation performance and mechanism of escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites. J. Hazard. Mater. 276, 66–76 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.011
S. Bykkam, S. Narsingam, M. Ahmadipour, T. Dayakar, K. Venkateswara Rao, C. Shilpa Chakra, S. Kalakotla, Few layered graphene sheet decorated by zno nanoparticles for anti-bacterial application. Superlattices Microstruct. 83, 776–784 (2015). https://doi.org/10.1016/j.spmi.2015.03.063
T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50(8), 2994–3000 (2012). https://doi.org/10.1016/j.carbon.2012.02.082
S. Cao, C. Chen, J. Zhang, C. Zhang, W. Yu, B. Liang, Y. Tsang, Mnox quantum dots decorated reduced graphene oxide/TiO2 nanohybrids for enhanced activity by a UV pre-catalytic microwave method. Appl. Catal. B-Environ. 176–177, 500–512 (2015). https://doi.org/10.1016/j.apcatb.2015.04.041
S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshi, M. Saranya et al., Solvothermal synthesis of MnFe2O4–graphene composite—investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015). https://doi.org/10.1016/j.apsusc.2014.11.096
Y.-N. Chang, X.-M. Ou, G.-M. Zeng, J.-L. Gong, C.-H. Deng et al., Synthesis of magnetic graphene oxide–TiO2 and their antibacterial properties under solar irradiation. Appl. Surf. Sci. 343, 1–10 (2015). https://doi.org/10.1016/j.apsusc.2015.03.082
C. Chen, S. Cao, W. Yu, X. Xie, Q. Liu, Y. Tsang, Y. Xiao, Adsorption, photocatalytic and sunlight-driven antibacterial activity of bi2wo6/graphene oxide nanoflakes. Vacuum 116, 48–53 (2015). https://doi.org/10.1016/j.vacuum.2015.02.031
T. Li, J. Shen, N. Li, M. Ye, Facile in situ synthesis of hydrophilic rgo–cd–ag supramolecular hybrid and its enhanced antibacterial properties. Mater. Sci. Eng., C 39, 352–358 (2014). https://doi.org/10.1016/j.msec.2014.03.027
C.-H. Deng, J.-L. Gong, G.-M. Zeng, Y. Jiang, C. Zhang, H.-Y. Liu, S.-Y. Huan, Graphene–cds nanocomposite inactivation performance toward escherichia coli in the presence of humic acid under visible light irradiation. Chem. Eng. J. 284, 41–53 (2016). https://doi.org/10.1016/j.cej.2015.08.106
P. Li, S. Sun, A. Dong, Y. Hao, S. Shi, Z. Sun, G. Gao, Y. Chen, Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Appl. Surf. Sci. 355, 446–452 (2015). https://doi.org/10.1016/j.apsusc.2015.07.148
H.N. Lim, N.M. Huang, C.H. Loo, Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties. J. Non Cryst. Solids 358(3), 525–530 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.11.007
M. Haniff Wahid, U.H. Stroeher, E. Eroglu, X. Chen, K. Vimalanathan, C.L. Raston, R.A. Boulos, Aqueous based synthesis of antimicrobial-decorated graphene. J. Colloid Interface Sci. 443, 88–96 (2015). https://doi.org/10.1016/j.jcis.2014.11.043
A. Soroush, W. Ma, M. Cyr, M.S. Rahaman, B. Asadishad, N. Tufenkji, In situ silver decoration on graphene oxide-treated thin film composite forward osmosis membranes: biocidal properties and regeneration potential. Environ. Sci. Technol. Lett. 3(1), 13–18 (2015). https://doi.org/10.1021/acs.estlett.5b00304
V. Vatanpour, A. Shockravi, H. Zarrabi, Z. Nikjavan, A. Javadi, Fabrication and characterization of anti-fouling and anti-bacterial ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. J. Ind. Eng. Chem. 30, 342–352 (2015). https://doi.org/10.1016/j.jiec.2015.06.004
X.-F. Sun, J. Qin, P.-F. Xia, B.-B. Guo, C.-M. Yang, C. Song, S.-G. Wang, Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J. 281, 53–59 (2015). https://doi.org/10.1016/j.cej.2015.06.059
M. Mazaheri, O. Akhavan, A. Simchi, Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 301, 456–462 (2014). https://doi.org/10.1016/j.apsusc.2014.02.099
Y. Liu, M. Park, H.K. Shin, B. Pant, J. Choi, Y.W. Park, J.Y. Lee, S.-J. Park, H.-Y. Kim, Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J. Ind. Eng. Chem. 20(6), 4415–4420 (2014). https://doi.org/10.1016/j.jiec.2014.02.009
L. Duan, Y. Wang, Y. Zhang, J. Liu, Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl. Surf. Sci. 355, 436–445 (2015). https://doi.org/10.1016/j.apsusc.2015.07.127
F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1(1), 71–76 (2013). https://doi.org/10.1021/ez4001356
L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W. Gao, L. Kong, Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365, 126–135 (2015). https://doi.org/10.1016/j.desal.2015.02.032
Z.-B. Zhang, J.-J. Wu, Y. Su, J. Zhou, Y. Gao, H.-Y. Yu, J.-S. Gu, Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl. Surf. Sci. 332, 300–307 (2015). https://doi.org/10.1016/j.apsusc.2015.01.193
R. Major, M. Sanak, A. Mzyk, L. Lipinska, M. Kot, P. Lacki, F. Bruckert, B. Major, Graphene based porous coatings with antibacterial and antithrombogenous function—materials and design. Arch. Civ. Mech. Eng. 14(4), 540–549 (2014). https://doi.org/10.1016/j.acme.2014.04.012
C. Bora, P. Bharali, S. Baglari, S.K. Dolui, B.K. Konwar, Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos. Sci. Technol 87, 1–7 (2013). https://doi.org/10.1016/j.compscitech.2013.07.025
H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide: performance patterns and biofouling propensity. ACS Appl. Mater. Interfaces. 7(32), 18004–18016 (2015). https://doi.org/10.1021/acsami.5b04818
L. Yu, Y. Zhang, B. Zhang, J. Liu, H. Zhang, C. Song, Preparation and characterization of hpei-go/pes ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 447, 452–462 (2013). https://doi.org/10.1016/j.memsci.2013.07.042
A. Nourmohammadi, R. Rahighi, O. Akhavan, A. Moshfegh, Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloys Compd. 612, 380–385 (2014). https://doi.org/10.1016/j.jallcom.2014.05.195
O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010). https://doi.org/10.1021/nn101390x
A. Janković, S. Eraković, M. Vukašinović-Sekulić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog. Org. Coat. 83, 1–10 (2015). https://doi.org/10.1016/j.porgcoat.2015.01.019
L. Dellieu, E. Lawarée, N. Reckinger, C. Didembourg, J.J. Letesson, M. Sarrazin, O. Deparis, J.Y. Matroule, J.F. Colomer, Do CVD grown graphene films have antibacterial activity on metallic substrates? Carbon 84, 310–316 (2015). https://doi.org/10.1016/j.carbon.2014.12.025
X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, X. Yuan, H. Xiong, Z. Guo, A facile one-pot method to two kinds of graphene oxide-based hydrogels with broad-spectrum antimicrobial properties. Chem. Eng. J. 260, 331–337 (2015). https://doi.org/10.1016/j.cej.2014.08.102
Y. Wang, P. Zhang, C.F. Liu, C.Z. Huang, A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification. RSC Adv. 3(24), 9240–9246 (2013). https://doi.org/10.1039/c3ra22687e
R. Surudžić, A. Janković, N. Bibić, M. Vukašinović-Sekulić, A. Perić-Grujić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Physico–chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos. Part B-Eng. 85, 102–112 (2016). https://doi.org/10.1016/j.compositesb.2015.09.029
Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13(6), 2436–2441 (2013). https://doi.org/10.1021/nl400368v
Z. Sun, P. Huang, G. Tong, J. Lin, A. Jin et al., Vegf-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale 5(15), 6857–6866 (2013). https://doi.org/10.1039/c3nr01573d
K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010). https://doi.org/10.1021/nl100996u
Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, B. Yang, Graphene oxide based surface-enhanced raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 15(8), 2961–2966 (2013). https://doi.org/10.1039/c2cp43715e
X. Ma, Q. Qu, Y. Zhao, Z. Luo, Y. Zhao, K.W. Ng, Y. Zhao, Graphene oxide wrapped gold nanoparticles for intracellular raman imaging and drug delivery. J. Mater. Chem. B 1(47), 6495–6500 (2013). https://doi.org/10.1039/c3tb21385d
Y. Wang, L. Polavarapu, L.M. Liz-Marzán, Reduced graphene oxide-supported gold nanostars for improved sers sensing and drug delivery. ACS Appl. Mater. Interfaces. 6(24), 21798–21805 (2014). https://doi.org/10.1021/am501382y
J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in sers and catalysis. Nanoscale 2(12), 2733–2738 (2010). https://doi.org/10.1039/c0nr00473a
J. Huang, C. Zong, H. Shen, M. Liu, B. Chen, B. Ren, Z. Zhang, Mechanism of cellular uptake of graphene oxide studied by surface-enhanced Raman spectroscopy. Small 8(16), 2577–2584 (2012). https://doi.org/10.1002/smll.201102743
Z.-L. Song, Z. Chen, X. Bian, L.-Y. Zhou, D. Ding et al., Alkyne-functionalized superstable graphitic silver nanoparticles for raman imaging. J. Am. Chem. Soc. 136(39), 13558–13561 (2014). https://doi.org/10.1021/ja507368z
H. Hong, K. Yang, Y. Zhang, J.W. Engle, L. Feng et al., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6(3), 2361–2370 (2012). https://doi.org/10.1021/nn204625e
H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles, T.E. Barnhart, W. Cai, In vivo targeting and positron emission tomography imaging of tumor vasculature with 66ga-labeled nano-graphene. Biomaterials 33(16), 4147–4156 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.031
Y. Fazaeli, O. Akhavan, R. Rahighi, M.R. Aboudzadeh, E. Karimi, H. Afarideh, In vivo spect imaging of tumors by 198,199au-labeled graphene oxide nanostructures. Mater. Sci. Eng., C 45, 196–204 (2014). https://doi.org/10.1016/j.msec.2014.09.019
H.-W. Yang, C.-Y. Huang, C.-W. Lin, H.-L. Liu, C.-W. Huang et al., Gadolinium-functionalized nanographene oxide for combined drug and microrna delivery and magnetic resonance imaging. Biomaterials 35(24), 6534–6542 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.057
K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24(14), 1867 (2012). https://doi.org/10.1002/adma.201290077
Y.H. Hu, The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. Small 10(8), 1451–1452 (2013). https://doi.org/10.1002/smll.201303644
G. Lalwani, X. Cai, L. Nie, L.V. Wang, B. Sitharaman, Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 1(3–4), 62–67 (2013). https://doi.org/10.1016/j.pacs.2013.10.001
Y.-W. Wang, Y.-Y. Fu, Q. Peng, S.-S. Guo, G. Liu, J. Li, H.-H. Yang, G.-N. Chen, Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J. Mater. Chem. B 1(42), 5762–5767 (2013). https://doi.org/10.1039/c3tb20986e
Z. Sheng, L. Song, J. Zheng, D. Hu, M. He et al., Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34(21), 5236–5243 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.090
J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C. Zhang, Z. Zhang, A tumor-targeting near-infrared laser-triggered drug delivery system based on go@ag nanoparticles for chemo-photothermal therapy and x-ray imaging. Biomaterials 35(22), 5847–5861 (2014). https://doi.org/10.1016/j.biomaterials.2014.03.042
H. Zhang, H. Wu, J. Wang, Y. Yang, D. Wu, Y. Zhang, Y. Zhang, Z. Zhou, S. Yang, Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials 42, 66–77 (2015). https://doi.org/10.1016/j.biomaterials.2014.11.055
X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20), 4786–4793 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.023
H. Zhou, K. Zhao, W. Li, N. Yang, Y. Liu, C. Chen, T. Wei, The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via tlr- and nf-κb-related signaling pathways. Biomaterials 33(29), 6933–6942 (2012). https://doi.org/10.1016/j.biomaterials.2012.06.064
Y. Li, Y. Liu, Y. Fu, T. Wei, L. Le Guyader, G. Gao, R.-S. Liu, Y.-Z. Chang, C. Chen, The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2), 402–411 (2012). https://doi.org/10.1016/j.biomaterials.2011.09.091
A. Sasidharan, L.S. Panchakarla, A.R. Sadanandan, A. Ashokan, P. Chandran et al., Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8(8), 1251–1263 (2012). https://doi.org/10.1002/smll.201102393
Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R.H. Hurt, A.B. Kane, H. Gao, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. U.S.A. 110(30), 12295–12300 (2013). https://doi.org/10.1073/pnas.1222276110
H. Mao, W. Chen, S. Laurent, C. Thirifays, C. Burtea, F. Rezaee, M. Mahmoudi, Hard corona composition and cellular toxicities of the graphene sheets. Colloid Surfaces B 109, 212–218 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.049
Y. Qin, Z.-W. Zhou, S.-T. Pan, Z.-X. He, X. Zhang, J.-X. Qiu, W. Duan, T. Yang, S.-F. Zhou, Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κb mediated signaling pathways in activated thp-1 macrophages. Toxicology 327, 62–76 (2015). https://doi.org/10.1016/j.tox.2014.10.011
M.C. Duch, G.R.S. Budinger, Y.T. Liang, S. Soberanes, D. Urich et al., Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11(12), 5201–5207 (2011). https://doi.org/10.1021/nl202515a
H. Zhou, B. Zhang, J. Zheng, M. Yu, T. Zhou et al., The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 35(5), 1597–1607 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.020
T. Lammel, P. Boisseaux, M.-L. Fernández-Cruz, J.M. Navas, Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line hep g2. Part. Fibre Toxicol. 10(1), 27 (2013). https://doi.org/10.1186/1743-8977-10-27
N. Chatterjee, H.-J. Eom, J. Choi, A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials 35(4), 1109–1127 (2014). https://doi.org/10.1016/j.biomaterials.2013.09.108
Y. Li, Q. Wu, Y. Zhao, Y. Bai, P. Chen, T. Xia, D. Wang, Response of micrornas to in vitro treatment with graphene oxide. ACS Nano 8(3), 2100–2110 (2014). https://doi.org/10.1021/nn4065378
M.-C. Matesanz, M. Vila, M.-J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P.-A.A.P. Marques, M.-T. Portolés, The effects of graphene oxide nanosheets localized on f-actin filaments on cell-cycle alterations. Biomaterials 34(5), 1562–1569 (2013). https://doi.org/10.1016/j.biomaterials.2012.11.001
Y. Li, Z. Lu, Z. Li, G. Nie, Y. Fang, Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. J. Nanopart. Res. 16(5), 2384 (2014). https://doi.org/10.1007/s11051-014-2384-4
K.-H. Liao, Y.-S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces. 3(7), 2607–2615 (2011). https://doi.org/10.1021/am200428v
W. Zhang, L. Yan, M. Li, R. Zhao, X. Yang et al., Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol. Lett. 237(2), 61–71 (2015). https://doi.org/10.1016/j.toxlet.2015.05.021
K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6, 8 (2010). https://doi.org/10.1007/s11671-010-9751-6
M. Papi, M.C. Lauriola, V. Palmieri, G. Ciasca, G. Maulucci, M. De Spirito, Plasma protein corona reduces the haemolytic activity of graphene oxide nano and micro flakes. RSC Adv. 5(99), 81638–81641 (2015). https://doi.org/10.1039/c5ra15083c
W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5), 3693–3700 (2011). https://doi.org/10.1021/nn200021j
H. Yue, W. Wei, Z. Yue, B. Wang, N. Luo, Y. Gao, D. Ma, G. Ma, Z. Su, The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials 33(16), 4013–4021 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.021
G. Qu, S. Liu, S. Zhang, L. Wang, X. Wang et al., Graphene oxide induces toll-like receptor 4 (tlr4)-dependent necrosis in macrophages. ACS Nano 7(7), 5732–5745 (2013). https://doi.org/10.1021/nn402330b
J. Russier, E. Treossi, A. Scarsi, F. Perrozzi, H. Dumortier, L. Ottaviano, M. Meneghetti, V. Palermo, A. Bianco, Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale 5(22), 11234–11247 (2013). https://doi.org/10.1039/c3nr03543c
X. Zhi, H. Fang, C. Bao, G. Shen, J. Zhang, K. Wang, S. Guo, T. Wan, D. Cui, The immunotoxicity of graphene oxides and the effect of pvp-coating. Biomaterials 34(21), 5254–5261 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.024
C. Jin, F. Wang, Y. Tang, X. Zhang, J. Wang, Y. Yang, Distribution of graphene oxide and TiO2–graphene oxide composite in a549 cells. Biol. Trace Elem. Res. 159(1–3), 393–398 (2014). https://doi.org/10.1007/s12011-014-0027-3
Z. Yang, C. Ge, J. Liu, Y. Chong, Z. Gu, C.A. Jimenez-Cruz, Z. Chai, R. Zhou, Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Nanoscale 7(44), 18725–18737 (2015). https://doi.org/10.1039/c5nr01172h
J. Park, B. Kim, J. Han, J. Oh, S. Park et al., Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 9(5), 4987–4999 (2015). https://doi.org/10.1021/nn507149w
J. Linares, M.C. Matesanz, M. Vila, M.J. Feito, G. Gonçalves, M. Vallet-Regí, P.A.A.P. Marques, M.T. Portolés, Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces. 6(16), 13697–13706 (2014). https://doi.org/10.1021/am5031598
Q. Mu, G. Su, L. Li, B.O. Gilbertson, L.H. Yu, Q. Zhang, Y.-P. Sun, B. Yan, Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces. 4(4), 2259–2266 (2012). https://doi.org/10.1021/am300253c
T. Zhou, B. Zhang, P. Wei, Y. Du, H. Zhou et al., Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 35(37), 9833–9843 (2014). https://doi.org/10.1016/j.biomaterials.2014.08.033
Z. Liu, J.T. Robinson, X. Sun, H. Dai, Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008). https://doi.org/10.1021/ja8