A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
Corresponding Author: A. Ravi Sankar
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 35
Abstract
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.
Highlights:
1 A critical review on the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors is presented.
2 Specifics of evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to SU-8 polymers are detailed.
3 The interdependence of the material selection, geometrical design parameters, and fabrication process of cantilever sensors is explained.
4 Challenges which limit the use of SU-8 cantilevers as a universal sensing platform are presented with potential solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9(3), 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
- D. Thuau, C. Ayela, E. Lemaire, S. Heinrich, P. Poulin, I. Dufour, Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators. Mater. Horiz. 2(1), 106–112 (2015). https://doi.org/10.1039/C4MH00165F
- J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9(3), 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
- Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
- S. Stassi, E. Fantino, R. Calmo, A. Chiappone, M. Gillono et al., Polymeric 3D printed functional microcantilevers for biosensing applications. ACS Appl. Mater. Interfaces 9(22), 19193–19201 (2017). https://doi.org/10.1021/acsami.7b04030
- A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
- R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
- J. Yin, V.J. Santos, J.D. Posner, Bioinspired flexible microfluidic shear force sensor skin. Sens. Actuator A-Phys. 264, 289–297 (2017). https://doi.org/10.1016/j.sna.2017.08.001
- A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanops: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x
- W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating. ACS Nano 9(4), 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626
- P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
- J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011). https://doi.org/10.1038/nnano.2011.44
- L.A. Pinnaduwage, T. Thundat, A. Gehl, S.D. Wilson, D.L. Hedden, R.T. Lareau, Deposition characteristics of uncoated silicon micro-cantilever surfaces for explosive and common non-explosive vapors. Ultramicroscopy 100(3–4), 211–216 (2004). https://doi.org/10.1016/j.ultramic.2003.11.006
- M. Alvarez, A. Calle, J. Tamayo, L.M. Lechuga, A. Abad, A. Montoya, Development of nanomechanical biosensors for detection of pesticides DDT. Biosens. Bioelectron. 18(5), 649–653 (2003). https://doi.org/10.1016/S0956-5663(03)00035-6
- H.J. Pandya, W. Chen, L.A. Goodell, D.J. Foran, J.P. Desai, Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissue. Lab Chip 14(23), 4523–4532 (2014). https://doi.org/10.1039/C4LC00594E
- R. Raiteri, G. Nelles, H.J. Butt, W. Knoll, P. Skladal, Sensing of biological substances based on the bending of microfabricated cantilevers. Sens. Actuator B-Chem. 61(1–3), 213–217 (1999). https://doi.org/10.1016/S0925-4005(99)00260-9
- S. Cherian, R.K. Gupta, B.C. Mullin, T. Thundat, Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19(5), 411–416 (2003). https://doi.org/10.1016/S0956-5663(03)00226-4
- J. Pei, F. Tain, T. Thundat, Glucose biosensors based on the microcantilever. Anal. Chem. 26(2), 292–297 (2004). https://doi.org/10.1021/ac035048k
- M. Calleja, M. Nordstom, M. Alvarez, J. Tamayo, L.M. Lechuga, A. Boisen, Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105(1), 215–222 (2005). https://doi.org/10.1016/j.ultramic.2005.06.039
- J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange et al., Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1(3), 214–220 (2006). https://doi.org/10.1038/nnano.2006.134
- Y. Arntz, J.D. Seeling, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, C.H. Gerber, Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1), 86–90 (2003). https://doi.org/10.1088/0957-4484/14/1/319
- N. Bajwa, C.J. Maldonado, T. Thundat, A. Passian, Piezoresistive measurement of swine H1N1 hemagglutinin peptide binding with microcantilever arrays. AIP Adv. 4(3), 037118 (2014). https://doi.org/10.1063/1.4869636
- H.P. Lang, M.K. Baller, R. Berger, C. Gerber, J.K. Gimzewski et al., An artificial nose based on a micromechanical cantilever array. Anal. Chim. Acta 393(1), 59–65 (1999). https://doi.org/10.1016/S0003-2670(99)00283-4
- S. Xu, R. Mutharasan, Rapid and sensitive detection of giardia lamblia using a piezoelectric cantilever biosensor in finished and source waters. Environ. Sci. Technol. 44(5), 1736–1741 (2010). https://doi.org/10.1021/es9033843
- L.S. Haung, Y. Pheanpanitporn, Y.K. Yen, K.F. Chang, L.Y. Lin, D.M. Lai, Detection of the antiepileptic drug phenytoin using a single free-standing piezoresistive cantilever for therapeutic drug monitoring. Biosens. Bioelectron. 59, 233–238 (2014). https://doi.org/10.1016/j.bios.2014.03.047
- J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol, F.P. Murano, Micro/nanomechanical resonators for distributed mass sensing with capacitive detection. Microelectron. Eng. 83(4), 1216–1220 (2006). https://doi.org/10.1016/j.mee.2006.01.177
- R. Lopez, J.M. Aguirregabiria, M. Tijero, M. Arroyo, J. Elizalde, J. Berganzo, K. Mayora, F.J. Blanco, A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip. Sens. Actuator B-Chem. 114(1), 542–551 (2006). https://doi.org/10.1016/j.snb.2005.05.011
- J.A. Harley, T.W. Kenny, 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J. Microelectromech. Syst. 9(2), 226–235 (2000). https://doi.org/10.1109/84.846703
- S.M. Yang, T.I. Yin, C. Chang, A biosensor chip by CMOS process for surface stress measurement in bioanalyte. Sens. Actuator B-Chem. 123(2), 707–714 (2007). https://doi.org/10.1016/j.snb.2006.10.008
- Y. Yang, Y. Chen, P. Xu, X. Li, Quad-cantilever microsensors with a low cost single -sided micro-machining technique for trace chemical vapor detection. Microelectron. Eng. 87(11), 2317–2322 (2010). https://doi.org/10.1016/j.mee.2010.03.010
- H.J. Pandya, H.T. Kim, R. Roy, J.P. Desai, MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater. Sci. Semicond. Process. 19, 163–173 (2014). https://doi.org/10.1016/j.mssp.2013.12.016
- R. Yang, X. Huang, Z. Wang, Y. Zhou, L. Liu, A chemisorption-based microcantilever chemical sensor for the detection of trimethylamine. Sens. Actuator B-Chem. 145(1), 474–479 (2010). https://doi.org/10.1016/j.snb.2009.12.050
- R.E. Fernandez, S. Stolyarova, A. Chadha, E. Bhattacharya, Y. Nemirovsky, MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sens. J. 9(12), 1660–1666 (2009). https://doi.org/10.1109/JSEN.2009.2030643
- Y. Zhou, Z. Wang, C. Wang, W. Ruan, L. Liu, Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J. Micromech. Microeng. 19(6), 065026 (2009). https://doi.org/10.1088/0960-1317/19/6/065026
- A. Loui, F.T. Goericke, T.V. Ratto, J. Lee, B.R. Hart, W.P. King, The effect of piezoresistive microcantilever geometry on the cantilever sensitivity during surface stress chemical sensing. Sens. Actuator A-Phys. 147(2), 516–521 (2008). https://doi.org/10.1016/j.sna.2008.06.016
- Y. Kim, J.Y. Cha, H. Ham, H. Huh, D.S. So, I. Kang, Preparation of piezoresistive nano smart hybrid material based on graphene. Curr. Appl. Phys. 11(1), 350–352 (2011). https://doi.org/10.1016/j.cap.2010.11.022
- R. Lakhmi, H. Debeda, I. Dufour, C. Lucat, Force sensors based on screen-printed cantilevers. IEEE Sens. J. 10(6), 1133–1137 (2010). https://doi.org/10.1109/JSEN.2010.2040387
- P. Alpuim, V. Chu, J.P. Conde, Piezoresistive sensors on plastic substrates using doped microcrystalline silicon. IEEE Sens. J. 2(4), 336–341 (2002). https://doi.org/10.1109/JSEN.2002.804037
- R. Katragadda, Z. Wang, W. Khalid, Y. Li, Y. Xu, Parylene cantilevers integrated with polycrystalline silicon piezoresistors for surface stress sensing. Appl. Phys. Lett. 91(8), 083505 (2007). https://doi.org/10.1063/1.2772189
- K.R. Buchapudi, X. Huang, X. Ji, H.F. Yang, T. Thundat, Microcantilever biosensors for chemicals and bioorganisms. Analyst 136(8), 1539–1556 (2011). https://doi.org/10.1039/c0an01007c
- K.M. Goeders, J.S. Colton, L.A. Bottomley, Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev. 108(2), 522–542 (2008). https://doi.org/10.1021/cr0681041
- A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74(3), 036101 (2011). https://doi.org/10.1088/0034-4885/74/3/036101
- S. Sang, Y. Zhao, W. Zhang, P. Li, J. Hu, G. Li, Surface stress-based biosensors. Biosens. Bioelectron. 51, 124–135 (2014). https://doi.org/10.1016/j.bios.2013.07.033
- M. Calleja, P.M. Kosaka, A.S. Paulo, J. Tamayo, Challenges for nanomechanical sensors in biological detection. Nanoscale 4(16), 4925–4938 (2012). https://doi.org/10.1039/c2nr31102j
- D.W. Lee, X. Li, Integrated microcantilevers for high-resolution sensing and probing. Meas. Sci. Technol. 23(2), 022001 (2012). https://doi.org/10.1088/0957-0233/23/2/022001
- J. Bausells, Piezoresistive cantilevers for nanomechanical sensing. Microelectron. Eng. 145, 9–20 (2015). https://doi.org/10.1016/j.mee.2015.02.010
- H.F. Ji, B.D. Armon, Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Anal. Chem. 82(5), 1634–1642 (2010). https://doi.org/10.1021/ac901955d
- A. Sassolas, L.J. Blum, B.D.L. Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30(3), 489–511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
- P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014). https://doi.org/10.3390/molecules190914139
- J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). https://doi.org/10.1021/cr0300789
- B.J. Kim, E. Meng, Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2015). https://doi.org/10.1088/0960-1317/26/1/013001
- C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007). https://doi.org/10.1002/adma.200701709
- M. Nordstrom, S. Keller, M. Lillemose, A. Johansson, S. Dohn, D. Haefliger, G. Blagoi, M.H. Jakobsen, A. Boisen, SU-8 cantilevers for bio/chemical Sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8(3), 1595–1612 (2008). https://doi.org/10.3390/s8031595
- V. Seena, P. Ray, P. Kovur, M. Kandpal, V.R. Rao, Polymer MEMS sensors, in Advanced biomaterials and biodevices, ed. by A. Tiwari, A.N. Nordin (Wiley, Hoboken, 2014). https://doi.org/10.1002/9781118774052.ch4
- H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Handheld personal airborne nanop detector based on microelectromechanical silicon resonant cantilever. Microelectron. Eng. 145, 96–103 (2015). https://doi.org/10.1016/j.mee.2015.03.037
- H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Partially integrated cantilever-based airborne nanop detector for continuous carbon aerosol mass concentration monitoring. J. Sens. 4(1), 111–123 (2015). https://doi.org/10.5194/jsss-4-111-2015
- H.S. Wasisto, Q. Zhang, S. Merzsch, A. Waag, E. Peiner, A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsyst. Technol. 20(4–5), 559–569 (2014). https://doi.org/10.1007/s00542-013-1991-9
- H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Airborne engineered nanop mass sensor based on a silicon resonant cantilever. Sens. Actuator B-Chem. 180, 77–89 (2013). https://doi.org/10.1016/j.snb.2012.04.003
- H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Evaluation of photoresist-based nanop removal method for recycling silicon cantilever mass sensors. Sens. Actuator A-Phys. 202, 90–99 (2013). https://doi.org/10.1016/j.sna.2012.12.016
- H.S. Wasisto, K. Huang, S. Merzsch, A. Stranz, A. Waag, E. Peiner, Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanop mass sensing applications. Microsyst. Technol. 20(4–5), 571–584 (2014). https://doi.org/10.1007/s00542-013-1992-8
- S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, A. Waag, Production of vertical nanowire resonators by cryogenic-ICP–DRIE. Microsyst. Technol. 20(4–5), 759–767 (2014). https://doi.org/10.1007/s00542-013-2032-4
- H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Femtogram aerosol nanop mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett. 8(10), 554–558 (2013). https://doi.org/10.1049/mnl.2013.0208
- H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanop mass detection. Sens. Actuator B-Chem. 189, 146–156 (2013). https://doi.org/10.1016/j.snb.2013.02.053
- H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon nanowire resonators: aerosol nanop mass sensing in the workplace. IEEE Nanotechnol. Mag. 7(2), 18–23 (2013). https://doi.org/10.1109/MNANO.2013.2260462
- H.S. Wasisto, S. Merzsch, F. Steib, A. Waag, E. Peiner, Vertical silicon nanowire array-patterned microcantilever resonators for enhanced detection of cigarette smoke aerosols. Micro Nano Lett. 9(10), 676–679 (2014). https://doi.org/10.1049/mnl.2014.0249
- S. Keller, D. Haefliger, A. Boisen, Fabrication of thin SU-8 cantilevers: initial bending, release and time-stability. J. Micromech. Microeng. 20(4), 045024 (2010). https://doi.org/10.1088/0960-1317/20/4/045024
- V. Seena, A. Fernandes, P. Pant, S. Mukherji, V.R. Rao, Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22(29), 295501 (2011). https://doi.org/10.1088/0957-4484/22/29/295501
- A. Johansson, M. Calleja, P.A. Rasmussen, A. Boisen, SU-8 cantilever sensor system with integrated readout. Sens. Actuator A-Phys. 123–124, 111–115 (2005). https://doi.org/10.1016/j.sna.2005.03.025
- A. Boisen, T. Thundat, Design & fabrication of cantilever array biosensors. Mater. Today 12, 32–38 (2009). https://doi.org/10.1016/S1369-7021(09)70249-4
- J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-8517-9
- N.A. Gilda, S. Nag, S. Patil, M.S. Baghini, D.K. Sharma, V.R. Rao, Current excitation method for ΔDelta R measurement in piezo-resistive sensors with a 0.3-ppm resolution. IEEE Trans. Instrum. Meas. 61(3), 767–774 (2012). https://doi.org/10.1109/TIM.2011.2172118
- K.F. Anderson, The new current loop: an instrumentation and measurement circuit topology. IEEE Trans. Instrum. Meas. 46(5), 1061–1067 (1997). https://doi.org/10.1109/19.676711
- Z. Wang, R. Yue, R. Zhang, L. Liu, Design and optimization of laminated piezoresistive microcantilever sensors. Sens. Actuator A-Phys. 120(2), 325–336 (2005). https://doi.org/10.1016/j.sna.2004.12.006
- J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301–304 (2012). https://doi.org/10.1038/nnano.2012.42
- J. Tamayo, A.D.L. Humphris, A.M. Malloy, M.J. Miles, Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86(1), 167–173 (2001). https://doi.org/10.1016/S0304-3991(00)00082-6
- G. Dubourg, I. Dufour, C. Pellet, C. Ayela, Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuator B-Chem. 169, 320–326 (2012). https://doi.org/10.1016/j.snb.2012.04.088
- S. Schmid, P. Senn, C. Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sens. Actuator A-Phys. 145–146, 442–448 (2008). https://doi.org/10.1016/j.sna.2008.01.010
- K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing microcantilever. Biosens. Bioelectron. 20(10), 1932–1938 (2005). https://doi.org/10.1016/j.bios.2004.09.023
- D. Lee, S. Kim, N. Jung, T. Thundat, S. Jeon, Effect of gold patterning on the bending profile and frequency response of a microcantilever. J. Appl. Phys. 106(2), 024310 (2009). https://doi.org/10.1063/1.3177326
- J. Tamayo, D. Ramos, J. Mertens, M. Calleja, Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89(22), 224104 (2006). https://doi.org/10.1063/1.2388925
- D. Ramos, M.A. Hernandez, E.G. Santos, H.D. Tong, C.V. Rijn, M. Calleja, J. Tamayo, Arrays of dual nanomechanical resonators for selective biological detection. Anal. Chem. 81(6), 2274–2279 (2009). https://doi.org/10.1021/ac8024152
- G.G. Stoney, The tension of metallic film deposited by electrolysis. Proc. R. Soc. A-. Phys. Eng. 82(553), 172–175 (1909). https://doi.org/10.1098/rspa.1909.0021
- J.E. Sader, Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001). https://doi.org/10.1063/1.1342018
- M. Godin, C.V. Tabard, P. Grutter, P. Williams, Quantitative surface stress measurements using a microcantilever. Appl. Phys. Lett. 79(4), 551 (2001). https://doi.org/10.1063/1.1387262
- J. Tamayo, J.J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012). https://doi.org/10.1088/0957-4484/23/47/475702
- J. Zang, F. Liu, Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology 18(40), 405501 (2007). https://doi.org/10.1088/0957-4484/18/40/405501
- J. Thaysen, A.D. Yalcinkaya, P. Vettiger, A. Menon, J. Thaysen, Polymer-based stress sensor with integrated readout. J. Phys. D-Appl. Phys. 35(21), 2698–2703 (2002). https://doi.org/10.1088/0022-3727/35/21/302
- J. Fritz, M.K. Baller, H.P. Lang, H. Routhuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski, Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000). https://doi.org/10.1126/science.288.5464.316
- M.Z. Ansari, C. Cho, U. Gerald, Stepped piezoresistive microcantilever designs for biosensors. J. Phys. D-Appl. Phys. 45(21), 215401 (2012). https://doi.org/10.1088/0022-3727/45/21/215401
- R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, R. Gomez, On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10(4), 483–491 (2000). https://doi.org/10.1088/0960-1317/10/4/301
- K.A.A. Wahid, H.W. Lee, M.A. Shazni, I.A. Azid, Investigation on the effect of different design of SCR on the change of resistance in piezoresistive micro cantilever. Microsyst. Technol. 20(6), 1079–1083 (2014). https://doi.org/10.1007/s00542-013-1784-1
- M.Z. Ansari, C. Cho, W. Choi, M. Lee, S. Lee, J. Kim, Improving sensitivity of piezoresistive microcantilever biosensors using stress concentration region designs. J. Phys. D-Appl. Phys. 46(50), 505501 (2013). https://doi.org/10.1088/0022-3727/46/50/505501
- J.W. Gibbs, The scientific papers of J. Willard Gibbs, vol. 1 (Green and Company, Longmans, 1906), p. 55
- G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, A. Majumdar, Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 98(4), 1560–1564 (2001). https://doi.org/10.1073/pnas.98.4.1560
- R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner et al., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. USA 99(15), 9783–9788 (2002). https://doi.org/10.1073/pnas.152330199
- M. Watari, J. Galbraith, H.P. Lang, M. Sousa, M. Hegner, C. Gerber, M.A. Horton, R.A. McKendry, Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129(3), 601–609 (2007). https://doi.org/10.1021/ja065222x
- J.C. Stachowiak, M. Yue, K. Castelino, A. Chakraborty, A. Majumdar, Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22(1), 263–268 (2006). https://doi.org/10.1021/la0521645
- J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.M.G. Angel, C. Briones, J. Tamayo, Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotechnol. 3(5), 301–307 (2008). https://doi.org/10.1038/nnano.2008.91
- M. Godin, T.C. Vincent, Y. Miyahara, T. Monga, P.J. Williams, L.Y. Beaulieu, R.B. Lennox, P. Grutter, Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology 21(7), 075501 (2010). https://doi.org/10.1088/0957-4484/21/7/075501
- T. Yang, X. Li, Y. Chen, D.W. Lee, G. Zuo, Adsorption induced surface-stress sensing signal originating from both vertical interface effects and intermolecular lateral interactions. Analyst 136(24), 5261–5269 (2011). https://doi.org/10.1039/c1an15695k
- M. Joshi, R. Pinto, V.R. Rao, S. Mukherji, Silanization and antibody immobilization on SU-8. Appl. Surf. Sci. 253(6), 3127–3132 (2007). https://doi.org/10.1016/j.apsusc.2006.07.017
- A. Deepu, V.V.R. Sai, S. Mukherji, Simple surface modification techniques for immobilization of biomolecules on SU-8. J. Mater. Sci.-Mater. Med. 20(1), 25–28 (2009). https://doi.org/10.1007/s10856-008-3471-9
- S.L. Tao, C.P. Ketul, J.J. Norman, T.A. Desai, Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 24(6), 2631–2636 (2008). https://doi.org/10.1021/la703066z
- N. Iranpoor, P. Salehi, Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols. Tetrahedron 51(3), 909–912 (1995). https://doi.org/10.1016/0040-4020(94)00979-5
- Y. Wang, J.H. Pai, H.H. Lai, C.E. Sims, M. Bachman, G.P. Li, N.L. Allbritton, Surface graft polymerization of SU-8 for bio-MEMS applications. J. Micromech. Microeng. 17(7), 1371–1380 (2007). https://doi.org/10.1088/0960-1317/17/7/020
- R. Marie, S. Schmid, A. Johansson, L. Ejsing, M. Nordström, D. Häfliger, C.B. Christensen, A. Boisen, M. Dufva, Immobilisation of DNA to polymerised SU-8 photoresist. Biosens. Bioelectron. 21(7), 1327–1332 (2006). https://doi.org/10.1016/j.bios.2005.03.004
- A.A. Meyer-Plath, K. Schröder, B. Finke, A. Ohl, Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71(3), 391–406 (2003). https://doi.org/10.1016/S0042-207X(02)00766-2
- Z. Gao, D.B. Henthorn, C.S. Kim, Surface modification of SU-8 by photografting of functional polymers for lab-on-a-chip applications, in IEEE Conference on Sensors (2007), pp. 121–123. https://doi.org/10.1109/ICSENS.2007.355733
- M. Joshi, N. Kale, R. Lal, V.R. Rao, S. Mukherji, A novel dry method for surface modification of SU-8 for immobilization of biomolecules in bio-MEMS. Biosens. Bioelectron. 22(11), 2429–2435 (2007). https://doi.org/10.1016/j.bios.2006.08.045
- G. Blagoi, S. Keller, A. Johansson, A. Boisen, M. Dufva, Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl. Surf. Sci. 255(5), 2896–2902 (2008). https://doi.org/10.1016/j.apsusc.2008.08.089
- C. Cao, S.W. Birtwell, J. Høgberg, A. Wolff, H. Morgan, D.D. Bang, Surface modification of photoresist SU8 for low autofluorescence and bioanalytical applications, in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Seattle, Washington, USA, 2011), pp. 1161–1163. (http://eprints.soton.ac.uk/id/eprint/356607
- R. Raiteri, M. Grattarola, H.J. Butt, P. Skládal, P, Micromechanical cantilever-based biosensors. Sens. Actuator B-Chem. 79(2), 115–126 (2001). https://doi.org/10.1016/S0925-4005(01)00856-5
- W. Ruan, Y. Li, Z. Tan, L. Liu, K. Jiang, Z. Wang, In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuator B-Chem. 176, 141–148 (2013). https://doi.org/10.1016/j.snb.2012.10.026
- G. Binning, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986). https://doi.org/10.1103/PhysRevLett.56.930
- T. Thundat, R.J. Warmack, D.P. Allison, L.A. Bottomley, A.J. Lourenco, T.L. Ferrell, Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: the effect of humidity on apparent width and image contrast. J. Vac. Sci. Technol. A 10, 630–635 (1992). https://doi.org/10.1116/1.577700
- T. Thundat, D.P. Allison, R.J. Warmack, T.L. Ferrell, Imaging isolated strands of DNA molecules by atomic force microscopy. Ultramicroscopy 42–44, 1101–1106 (1992). https://doi.org/10.1016/0304-3991(92)90409-D
- L.A. Bottomley, J.N. Haseltine, D.P. Allison, R.J. Warmack, T. Thundat et al., Scanning tunneling microscopy of DNA: the chemical modification of gold surfaces for immobilization of DNA. J. Vac. Sci. Technol. A 10, 591–595 (1992). https://doi.org/10.1116/1.577735
- D.P. Allison, L.A. Bottomley, T. Thundat, G.M. Brown, R.P. Woychik, J.J. Schrick, K. Bruce Jacobson, R.J. Warmack, Immobilization of DNA for scanning probe microscopy. Proc. Natl. Acad. Sci. USA 89(21), 10129–10133 (1992). https://doi.org/10.1073/pnas.89.21.10129
- T. Thundat, D.P. Allison, R.J. Warmack, M.J. Doktycz, K. Bruce Jacobson, G.M. Brown, Atomic force microscopy of single-and double-stranded deoxyribonucleic acid. J. Vac. Sci. Technol. A 11(4), 824–828 (1993). https://doi.org/10.1116/1.578312
- J.K. Gimzewski, Ch. Gerber, E. Meyer, R.R. Schlittler, Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217(5–6), 589–594 (1994). https://doi.org/10.1016/0009-2614(93)E1419-H
- J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O’shea, M.E. Welland, T. Rayment, J.K. Gimzewski, Ch. Gerber, A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum. 65(12), 3793–3798 (1994). https://doi.org/10.1063/1.1144509
- T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison, Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl. Phys. Lett. 64(21), 2894–2896 (1994). https://doi.org/10.1063/1.111407
- T. Thundat, E.A. Wachter, S.L. Sharp, R.J. Warmack, Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66(13), 1695–1697 (1995). https://doi.org/10.1063/1.113896
- R. Raiteri, H.J. Butt, Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 99(43), 15728–15732 (1995). https://doi.org/10.1021/j100043a008
- H.J. Butt, A sensitive method to measure changes in the surface stress of solids. J. Colloid Interface Sci. 180(1), 251–260 (1996). https://doi.org/10.1006/jcis.1996.0297
- G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate, Atomic resolution with atomic force microscope. Surf. Sci. 189–190, 1–6 (1987). https://doi.org/10.1016/S0039-6028(87)80407-7
- G.Y. Chen, T. Thundat, E.A. Wachter, R.J. Warmack, Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995). https://doi.org/10.1063/1.359562
- M. Tortonese, H. Yamada, R.C. Barrett, C.F. Quate, Atomic force microscopy using a piezoresistive cantilever, in Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91 (1991), pp. 448–451. https://doi.org/10.1109/SENSOR.1991.148908
- S.J. Kim, T. Ono, M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit. Appl. Phys. Lett. 88, 053116 (2006). https://doi.org/10.1063/1.2171650
- J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, T.S. Kim, Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20(10), 2157–2162 (2005). https://doi.org/10.1016/j.bios.2004.09.024
- D.V. Scheible, A. Erbe, R.H. Blick, Tunable coupled nanomechanical resonators for single-electron transport. New J. Phys. 4(1), 86 (2002). https://doi.org/10.1088/1367-2630/4/1/386
- M. Nordström, D.A. Zauner, M. Calleja, J. Hübner, A. Boisen, Integrated optical readout for miniaturization of cantilever-based sensor system. Appl. Phys. Lett. 91(10), 103512 (2007). https://doi.org/10.1063/1.2779851
- R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer, H.J. Güntherodt, Micromechanical thermogravimetry. Chem. Phys. Lett. 294(4), 363–369 (1998). https://doi.org/10.1016/S0009-2614(98)00817-3
- H. Jensenius, J. Thaysen, A.A. Rasmussen, L.H. Veje, O. Hansen, A. Boisen, A microcantilever-based alcohol vapor sensor-application and response model. Appl. Phys. Lett. 76(18), 2615–2617 (2000). https://doi.org/10.1063/1.126426
- A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82(1), 11–16 (2000). https://doi.org/10.1016/S0304-3991(99)00148-5
- A.G. Hansen, M.W. Mortensen, J.E.T. Andersen, J. Ulstrup, A. Kühle, J. Garnæs, A. Boisen, Stress formation during self-assembly of alkanethiols on differently pre-treated gold surfaces. Probe Microscopy 2(2), 139–149 (2001)
- G. Villanueva, J.A. Plaza, J. Montserrat, F.P. Murano, J. Bausells, Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces. Microelectron. Eng. 86(5–6), 1120–1123 (2008). https://doi.org/10.1016/j.mee.2008.01.082
- J.C. Doll, S.J. Park, B.L. Pruitt, Design optimization of piezoresistive cantilevers for force sensing in air and water. J. Appl. Phys. 106(6), 064310 (2009). https://doi.org/10.1063/1.3224965
- S.J. Park, J.C. Doll, B.L. Pruitt, Piezoresistive cantilever performance—part I: analytical model for sensitivity. J. Microelectromech. Syst. 19(1), 137–148 (2010). https://doi.org/10.1109/JMEMS.2009.2036581
- S.J. Park, J.C. Doll, A. Rastegar, B.L. Pruitt, Piezoresistive cantilever performance—part II: optimization. J. Microelectromech. Syst. 19(1), 149–161 (2010). https://doi.org/10.1109/JMEMS.2009.2036582
- G. Tosolini, G. Villanueva, F.P. Murano, J. Bausells, Silicon microcantilevers with MOSFET detection. Microelectron. Eng. 87(5), 1245–1247 (2010). https://doi.org/10.1016/j.mee.2009.11.125
- B. Komati, J. Agnus, C. Clévy, P. Lutz, Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications. J. Micromech. Microeng. 24(3), 035018 (2014). https://doi.org/10.1088/0960-1317/24/3/035018
- S.J. Hyun, H.S. Kim, Y.J. Kim, H.I. Jung, Mechanical detection of liposomes using piezoresistive cantilever. Sens. Actuator B-Chem. 117(2), 415–419 (2006). https://doi.org/10.1016/j.snb.2005.11.054
- P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, A. Boisen, Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97(1), 371–376 (2003). https://doi.org/10.1016/S0304-3991(03)00063-9
- A. Venkatasubramanian, J.H. Lee, V. Stavila, A. Robinson, M.D. Allendorf, P.J. Hesketh, MOF@ MEMS: design optimization for high sensitivity chemical detection. Sens. Actuator B-Chem. 168, 256–262 (2012). https://doi.org/10.1016/j.snb.2012.04.019
- C.P. Cheney, B. Srijanto, D.L. Hedden, A. Gehl, T.L. Ferrell, J. Schultz, E.A. Engleman, W.J. McBride, S. O’Connor, In vivo wireless ethanol vapor detection in the Wistar rat. Sens. Actuator B-Chem. 138(1), 264–269 (2009). https://doi.org/10.1016/j.snb.2009.01.052
- M.Z. Ansari, C. Cho, A conduction–convection model for self-heating in piezoresistive microcantilever biosensors. Sens. Actuator A-Phys. 175, 19–27 (2012). https://doi.org/10.1016/j.sna.2011.12.014
- G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng, S. Feng, Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Anal. Chim. Acta 580(2), 123–127 (2006). https://doi.org/10.1016/j.aca.2006.07.071
- S.M. Yang, T.I. Yin, Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor. Sens. Actuator B-Chem. 120(2), 736–744 (2007). https://doi.org/10.1016/j.snb.2006.03.053
- S.M. Yang, C. Chang, T.I. Yin, P.L. Kuo, DNA hybridization measurement by self-sensing piezoresistive microcantilevers in CMOS biosensor. Sens. Actuator B-Chem. 130(2), 674–681 (2008). https://doi.org/10.1016/j.snb.2007.10.072
- C.W. Huang, H.T. Hsueh, Y.J. Huang, H.H. Liao, H.H. Tsai, Y.Z. Juang, T.H. Lin, S.S. Lu, C.T. Lin, A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sens. Actuator B-Chem. 181, 867–873 (2013). https://doi.org/10.1016/j.snb.2013.02.061
- Y. Chen, P. Xu, M. Liu, X. Li, Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors. Microelectron. Eng. 87(12), 2468–2474 (2010). https://doi.org/10.1016/j.mee.2010.05.001
- M.Z. Ansari, C. Cho, On self-heating in piezoresistive microcantilevers with short piezoresistor. J. Phys. D-Appl. Phys. 44(28), 285402 (2011). https://doi.org/10.1088/0022-3727/44/28/285402
- R. Pechmann, J.M. Kohler, W. Fritzsche, A. Schaper, T.M. Jovin, The Novolever: a new cantilever for scanning force microscopy microfabricated from polymeric materials. Rev. Sci. Instrum. 65(12), 3702–3706 (1994). https://doi.org/10.1063/1.1144495
- T.J. Yao, X. Yang, Y.C. Tai, Br F3 dry release technology for large freestanding parylene microstructures and electrostatic actuators. Sens. Actuator A-Phys. 97–98, 771–775 (2002). https://doi.org/10.1016/S0924-4247(02)00019-5
- A.W. McFarland, J.S. Colton, Chemical sensing with micromolded plastic microcantilevers. J. Microelectromech. Syst. 14(6), 1375–1385 (2005). https://doi.org/10.1109/JMEMS.2005.851853
- L.P. Lee, S.A. Berger, D. Liepmann, B.L. Pruitt, High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography. Sens. Actuator A-Phys. 71(1), 144–149 (1998). https://doi.org/10.1016/S0924-4247(98)00177-0
- M. Calleja, J. Tamayo, M. Nordstrom, A. Boisen, Low-noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 88(11), 113901 (2006). https://doi.org/10.1063/1.2187437
- X.R. Zhang, X. Xu, Development of a biosensor based on laser-fabricated polymer microcantilevers. Appl. Phys. Lett. 85(12), 2423–2425 (2004). https://doi.org/10.1063/1.1791731
- A. Gaitas, Y.B. Gianchandani, An experimental study of the contact mode AFM scanning capability of polyimide cantilever probes. Ultramicroscopy 106(8), 874–880 (2006). https://doi.org/10.1016/j.ultramic.2005.12.021
- A. Greve, S. Keller, A.L. Vig, A. Kristensen, D. Larsson et al., Thermoplastic microcantilevers fabricated by nanoimprint lithography. J. Micromech. Microeng. 20(1), 015009 (2010). https://doi.org/10.1088/0960-1317/20/1/015009
- A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers. Nanotechnology 15(11), 1628–1632 (2004). https://doi.org/10.1088/0957-4484/15/11/044
- G. Firpo, E. Angeli, L. Repetto, U. Valbusa, Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 481, 1–8 (2015). https://doi.org/10.1016/j.memsci.2014.12.043
- R. Zhu, T. Hoshi, Y. Chishima, Y. Muroga, T. Hagiwara, S. Yano, T. Sawaguchi, Microstructure and mechanical properties of polypropylene/poly (methyl methacrylate) nanocomposite prepared using supercritical carbon dioxide. Macromolecules 44(15), 6103–6112 (2011). https://doi.org/10.1021/ma2001965
- P.J. Chen, D.C. Rodger, M.S. Humayun, Y.C. Tai, Floating-disk parylene microvalves for self-pressure-regulating flow controls. J. Microelectromech. Syst. 17(6), 1352–1361 (2008). https://doi.org/10.1109/JMEMS.2008.2004947
- Y.S. Suzuki, Y.C. Tai, Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. J. Microelectromech. Syst. 15(5), 1364–1370 (2006). https://doi.org/10.1109/JMEMS.2006.879706
- J. Xie, J. Shih, Q. Lin, B. Yang, Y.C. Tai, Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4(5), 495–501 (2004). https://doi.org/10.1039/b403906h
- A.A. Gómez, E. Tomas, Air-coupled piezoelectric transducers with active polypropylene foam matching layers. Sensors 13(5), 5996–6013 (2013). https://doi.org/10.3390/s130505996
- J. Hillenbrand, G.M. Sessler, DC-Biased piezoelectret film transducers for airborne ultrasound. Ferroelectrics 472(1), 77–89 (2014). https://doi.org/10.1080/00150193.2014.964598
- C.E. Garner, S.B. Gabriel, Y.S. Kuo, Directed ion beam sputter etching of polytetrafluoroethylene (Teflon) using an argon ion source. Thin Solid Films 95(4), 351–362 (1982). https://doi.org/10.1016/0040-6090(82)90041-4
- E. Sahlin, A.T. Beisler, S.J. Woltman, S.G. Weber, Fabrication of microchannel structures in fluorinated ethylene propylene. Anal. Chem. 74(17), 4566–4569 (2002). https://doi.org/10.1021/ac025622c
- K.Y. Kwon, X. Bi, W. Li, Droplet backside exposure for making slanted SU-8 microneedles, in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 767–770 https://doi.org/10.1109/EMBC.2013.6609613
- P.C. Wang, S.J. Paik, S. Chen, S. Rajaraman, S.H. Kim, M.G. Allen, Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J. Microelectromech. Syst. 22(5), 1041–1053 (2013). https://doi.org/10.1109/JMEMS.2013.2262587
- M.W. Royal, N.M. Jokerst, R.B. Fair, Droplet-based sensing: optical microresonator sensors embedded in digital electrowetting microfluidics systems. IEEE Sens. J. 13(12), 4733–4742 (2013). https://doi.org/10.1109/JSEN.2013.2273828
- M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, J. Brugger, Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28(8), 735–742 (2005). https://doi.org/10.1111/j.1460-2695.2005.00873.x
- P. Liu, L. Liu, K. Jiang, S. Fan, Carbon- nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7(6), 732–736 (2011). https://doi.org/10.1002/smll.201001662
- J. Kim, X. Xu, Excimer laser fabrication of polymer microfluidic devices. J. Laser Appl. 15(4), 255–260 (2003). https://doi.org/10.2351/1.1585085
- R. Kilaru, Z.Ç. Butler, D.P. Butler, I.E. Gönenli, NiCr MEMS tactile sensors embedded in polyimide toward smart skin. J. Microelectromech. Syst. 22(2), 349–355 (2013). https://doi.org/10.1109/JMEMS.2012.2222867
- J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13(3), 359–366 (2003). https://doi.org/10.1088/0960-1317/13/3/302
- K.S. Choi, D.S. Kim, H.J. Yang, M.S. Ryu, S.P. Chang, A highly sensitive humidity sensor with a novel hole array structure using a polyimide sensing layer. RSC Adv. 4(61), 32075–32080 (2014). https://doi.org/10.1039/C4RA02692F
- S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 19(10), 1309–1318 (2004). https://doi.org/10.1016/j.bios.2003.11.021
- M. Dan, Johansen, Investigation of Topas ® for Use in Optical Components (Master’s thesis, Technical University of Denmark, DTU, Denmark, 2005)
- R.K. Jena, C.Y. Yue, Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6(1), 012822 (2012). https://doi.org/10.1063/1.3682098
- N. Klejwa, R.G. Hennessy, J.W. Chen, R.T. Howe, A reel-to-reel compatible printed accelerometer, in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 699–702. https://doi.org/10.1109/TRANSDUCERS.2011.5969203
- T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002). https://doi.org/10.1126/science.1076996
- M. Khoo, C. Liu, Micro magnetic silicone elastomer membrane actuator. Sens. Actuator A-Phys. 89(3), 259–266 (2001). https://doi.org/10.1016/S0924-4247(00)00559-8
- K. Hosokawa, K. Hanada, R. Maeda, A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J. Micromech. Microeng. 12(1), 1–6 (2001). https://doi.org/10.1088/0960-1317/12/1/301
- N. Sundararajan, M.S. Pio, L.P. Lee, A.A. Berlin, Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J. Microelectromech. Syst. 13(4), 559–567 (2004). https://doi.org/10.1109/JMEMS.2004.832196
- G.B. Lee, S.H. Chen, G.R. Huang, W.C. Sung, Y.H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuator B-Chem. 75(1), 142–148 (2001). https://doi.org/10.1016/S0925-4005(00)00745-0
- H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuator A-Phys. 83(1), 130–135 (2000). https://doi.org/10.1016/S0924-4247(00)00296-X
- L.J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron. Eng. 54(3), 229–245 (2000). https://doi.org/10.1016/S0167-9317(00)00414-7
- V. Seena, A. Rajorya, P. Pant, S. Mukherji, V.R. Rao, Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection. Solid State Sci. 11(9), 1606–1611 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.009
- R. ew, A.R. Sankar, Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J. Phys. D-Appl. Phys. 48(20), 205402 (2015). https://doi.org/10.1088/0022-3727/48/20/205402
- M. Joshi, P.S. Gandhi, R. Lal, V.R. Rao, S. Mukherji, Modelling, simulation and design guidelines for piezoresistive affinity cantilevers. J. Microelectromech. Syst. 20(3), 774–784 (2011). https://doi.org/10.1109/JMEMS.2011.2140353
- P. Ray, S. Pandey, V.R. Rao, Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications. J. Appl. Phys. 116(12), 124902 (2014). https://doi.org/10.1063/1.4896255
- J.D. Adams, B.W. Erickson, J. Grossenbacher, J. Brugger, A. Nievergelt, G.E. Fantner, Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat. Nanotechnol. 11(2), 147–151 (2016). https://doi.org/10.1038/nnano.2015.254
- N. Mishra, B. Krishna, R. Singh, K. Das, Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method. J. Nanomater. 2017, 1924651 (2017). https://doi.org/10.1155/2017/1924651
- M. Vinchurkar, A. Joshi, V.R. Rao, Carbon black nanocomposite piezoresistive microcantilevers with reduced percolation threshold, in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2015), pp. 689–692. https://doi.org/10.1109/EDSSC.2015.7285210
- Y.C. Lim, A.Z. Kouzani, A. Kaynak, X.J. Dai, G. Littlefair, W. Duan, A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor. Microsyst. Technol. 21(2), 371–380 (2015). https://doi.org/10.1007/s00542-013-2019-1
- Z. Mao, K. Yoshida, J.W. Kim, Study on the fabrication of a SU-8 cantilever vertically-allocated in a closed fluidic microchannel. Microsyst. Technol. 1–11 (2017). https://doi.org/10.1007/s00542-017-3611-6
- C.D. Gerardo, E. Cretu, R. Rohling, Fabrication of circuits on flexible substrates using conductive SU-8 for sensing applications. Sensors 17(6), 1420 (2017). https://doi.org/10.3390/s17061420
- C. Ge, E. Cretu, MEMS transducers low-cost fabrication using SU-8 in a sacrificial layer-free process. J. Micromech. Microeng. 27(4), 045002 (2017). https://doi.org/10.1088/1361-6439/aa5dfb
- T.R. Naik, S. Pandey, V. Palaparthy, R. Shelar, V.R. Rao, M. Ravikanth, Vapor-phase self-assembled monolayer on SU-8 cantilever for explosive sensing, in Nanoelectronics Conference (INEC) (2016), pp. 1–2. https://doi.org/10.1109/INEC.2016.7589293
- M. Bisen, M.Z. Ansari, Phenomenological modelling sensitivity of SU8/CB nanocomposite conducting polymer microcantilever biosensor. Mater. Today 4(9), 10395–10399 (2017). https://doi.org/10.1016/j.matpr.2017.06.387
- G. Sapra, P. Sharma, Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana-J. Phys. 89(1), 10 (2017). https://doi.org/10.1007/s12043-017-1398-8
- K.G. Girija, I. Tushir, R.K. Vatsa, A. Topkar, Design, simulation and fabrication of piezoresistive microcantilevers using standard multi user MEMS process. ISSS J. Micro Smart Syst. 6(1), 83–89 (2017). https://doi.org/10.1007/s41683-017-0008-9
- G. Sapra, M. Sharma, P. Sharma, S. Prasad, Design of MEMS based MWCNT/epoxy strain sensor using ANSYS, in 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp.1–3. https://doi.org/10.1109/RAECS.2015.7453383
- A. Toor, H. So, A.P. Pisano, Dielectric properties of ligand-modified gold nanop/SU-8 photopolymer based nanocomposites. Appl. Surf. Sci. 414, 373–379 (2017). https://doi.org/10.1016/j.apsusc.2017.04.096
- N. Tiwary, M. Vinchurkar, M. Patel, R. Nathawat, S. Pandey, V.R. Rao, Fabrication, characterization and application of ZnO nanostructure-based micro-preconcentrator for TNT sensing. J. Microelectromech. Syst. 25(5), 968–975 (2016). https://doi.org/10.1109/JMEMS.2016.2600631
- S. Nayak, S.K. Behura, B.P. Singh, S. Bhattacharjee, Flexible polymer-multiwall carbon nanotubes composite developed by in situ polymerization technique. Polym. Compos. 37(9), 2860–2870 (2016). https://doi.org/10.1002/pc.23483
- L.H. Tam, C.L. Chow, D. Lau, Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach. Nanotechnology 29(2), 024001 (2017). https://doi.org/10.1088/1361-6528/aa9537
- N. Maheshwari, G. Chatterjee, M. Vinchurkar, G. Gupta, H. Kshirsagar, K.L. Narsimhan, V.R. Rao, Parylene-C encapsulation for polymeric cantilever stability, in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (2015), pp.1–5. https://doi.org/10.1109/DTIP.2015.7161032
- R. ew, A.R. Sankar, In-silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv. 7, 035108 (2017). https://doi.org/10.1063/1.4977827
- R. ew, A.R. Sankar, Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J. Nanosci. Nanotechnol. 18(5), 3387–3397 (2018). https://doi.org/10.1166/jnn.2018.14642
- R. Feng, R. Farris, Influence of processing conditions on the thermal and mechanical properties of SU-8 negative photoresist coating. J. Micromech. Microeng. 13(1), 80–88 (2003). https://doi.org/10.1088/0960-1317/13/1/312
- J.A.V. Kan, P.G. Shao, K. Ansari, A.A. Bettiol, T. Osipowicz, F. Watt, Proton beam writing: a tool for high-aspect ratio mask production. Microsyst. Technol. 13(5–6), 431–434 (2007). https://doi.org/10.1007/s00542-006-0192-1
- S. Keller, Fabrication of an Autonomous Surface Stress Sensor with the Polymer SU-8 (Ph. D. thesis, 2008)
- M. Lillemose, Piezoresistive Polymer Composites for Cantilever Readout (Ph. D. thesis, 2008). http://orbit.dtu.dk/files/5253544/Lillemose.pdf
- N.T. Nguyen, T.Q. Truong, A fully polymeric micropump with piezoelectric actuator. Sens. Actuator B-Chem. 97(1), 137–143 (2004). https://doi.org/10.1016/S0925-4005(03)00521-5
- V. Seidemann, S. Bütefisch, S. Büttgenbach, Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sens. Actuator A-Phys. 97, 457–461 (2002). https://doi.org/10.1016/S0924-4247(01)00829-9
- H. Lorenz, M. Laudon, P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng. 41, 371–374 (1998). https://doi.org/10.1016/S0167-9317(98)00086-0
- H. Lorenz, M. Despont, P. Vettiger, P. Renaud, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist. Microsyst. Technol. 4(3), 143–146 (1998). https://doi.org/10.1007/s005420050118
- R. Yang, S.A. Soper, W. Wang, Fabrication of out-of-plane refractive concave and convex microlens arrays. Proc. SPIE 5717, 134–141 (2005). https://doi.org/10.1117/12.601832
- T. Sikanen, S. Tuomikoski, R.A. Ketola, R. Kostiainen, S. Franssila, T. Kotiaho, Characterization of SU-8 for electrokinetic microfluidic applications. Lab Chip 5(8), 888–896 (2005). https://doi.org/10.1039/b503016a
- J.C. Doll, N. Harjee, N. Klejwa, R. Kwon, S.M. Coulthard, B. Petzold, M.B. Goodman, B.L. Pruitt, SU-8 force sensing pillar arrays for biological measurements. Lab Chip 9(10), 1449–1454 (2009). https://doi.org/10.1039/b818622g
- A. Johansson, G. Blagoi, A. Boisen, Polymeric cantilever-based biosensors with integrated readout. Appl. Phys. Lett. 89, 173505 (2006). https://doi.org/10.1063/1.2364843
- S.J. Patil, A. Adhikari, M.S. Baghini, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection. Sens. Actuator B-Chem. 203, 165–173 (2014). https://doi.org/10.1016/j.snb.2014.06.110
- L. Gammelgaard, P.A. Rasmussen, M. Calleja, P. Vettigen, A. Boisen, Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor. Appl. Phys. Lett. 88(11), 113508 (2006). https://doi.org/10.1063/1.2186396
- A. Johansson, O. Hansen, J. Hales, A. Boisen, Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips. J. Micromech. Microeng. 16(12), 2564–2569 (2006). https://doi.org/10.1088/0960-1317/16/12/007
- N.S. Kale, S. Nag, R. Pinto, V. Ramgopal Rao, Fabrication and characterization of polymeric microcantilever with encapsulated hotwire CVD polysilicon piezoresistor. J. Microelectromech. Syst. 18(1), 79–87 (2009). https://doi.org/10.1109/JMEMS.2008.2008577
- A. Shokuhfar, P. Heydari, M.R. Aliahmadi, M. Mohtashamifar, S. Ebrahimi-Nejad, M. Zahedinejad, Low-cost polymeric microcantilever sensor with titanium as piezoresistive material. Microelectron. Eng. 98, 338–342 (2012). https://doi.org/10.1016/j.mee.2012.07.067
- C.V.B. Reddy, M.A. Khderbad, S. Gandhi, M. Kandpal, S. Patil et al., Piezoresistive SU-8 cantilever with Fe(III) porphyrin coating for CO sensing. IEEE Trans. Nanotechnol. 11(4), 701–706 (2012). https://doi.org/10.1109/TNANO.2012.2190619
- S.J. Patil, N. Duragkar, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sens. Actuator B-Chem. 192, 444–451 (2014). https://doi.org/10.1016/j.snb.2013.10.111
- M. Vinchurkar, A. Joshi, S. Pandey, V.R. Rao, Polymeric piezoresistive microcantilevers with reduced electrical variability. J. Microelectromech. Syst. 24(4), 1111–1116 (2015). https://doi.org/10.1109/JMEMS.2014.2384481
- A. Adamia, F. Borghettia, N. Massaria, M. Decarlia, C. Collinia, D. Stoppaa, L. Lorenzellia, Design of a cantilever-based system for genomic applications. Procedia Eng. 25, 339–401 (2011). https://doi.org/10.1016/j.proeng.2011.12.099
- K. Rajanna, S. Mohan, Studies on meandering path thin-film strain gauge. Sens. Actuators 15(3), 297–303 (1988). https://doi.org/10.1016/0250-6874(88)87018-5
- S. Sampath, K.V. Ramanaiah, Behaviour of Bi–Sb alloy thin films as strain gauges. Thin Solid Films 137(2), 199–205 (1986). https://doi.org/10.1016/0040-6090(86)90020-9
- J. Gouault, M. Hubin, G. Richon, B. Eudeline, 3.2 The electromechanical behaviour of a full component (dielectric and Cu/Ni constantan alloy) for thin film strain gauge deposited upon steel-substrate. Vacuum 27(4), 362–365 (1977). https://doi.org/10.1016/0042-207X(77)90024-0
- A.G. Alonso, J. Garcia, E. Castano, I. Obieta, F.J. Gracia, Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors. Sens. Actuator A-Phys. 37–38, 784–789 (1993). https://doi.org/10.1016/0924-4247(93)80132-Z
- P. Kayser, J.C. Godefroy, L. Leca, High-temperature thin-film strain gauges. Sens. Actuator A-Phys. 37–38, 328–332 (1993). https://doi.org/10.1016/0924-4247(93)80055-L
- P. Schmid, C. Zarfl, G. Balogh, U. Schmid, Gauge factor of titanium/platinum thin films up to 350 & #xB0;C. Procedia Eng. 87, 172–175 (2014). https://doi.org/10.1016/j.proeng.2014.11.611
- K. Rajanna, S. Mohan, Strain-sensitive property of vacuum evaporated manganese films. Thin Solid Films 172(1), 45–50 (1989). https://doi.org/10.1016/0040-6090(89)90116-8
- H. Chiriac, M. Urse, F. Rusu, C. Hison, M. Neagu, Ni–Ag thin films as strain-sensitive materials for piezoresistive sensors. Sens. Actuator A-Phys. 76(1–3), 376–380 (1999). https://doi.org/10.1016/S0924-4247(99)00027-8
- S.M. Mohanasundaram, R. Pratap, A. Ghosh, Tuning the sensitivity of a metal-based piezoresistive sensor using electromigration. J. Microelectromech. Syst. 21(6), 1276–1278 (2012). https://doi.org/10.1109/JMEMS.2012.2211579
- J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra, Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuator A-Phys. 83(1), 47–53 (2000). https://doi.org/10.1016/S0924-4247(00)00299-5
- N.S. Kale, R.G. Rao, Design and fabrication issues in affinity cantilevers for bioMEMS applications. J. Microelectromech. Syst. 15(6), 1789–1794 (2006). https://doi.org/10.1109/JMEMS.2006.886031
- M. Bao, Analysis and Design Principles of MEMS Devices, 1st edn. (Elsevier, 2005). Chapter 6, p. 275
- F.J. French, Polysilicon: a versatile material for microsystems. Sens. Actuator A-Phys. 99(1), 3–12 (2002). https://doi.org/10.1016/S0924-4247(01)00876-7
- Y. Zhou, Z. Wang, Q. Zhang, W. Ruan, L. Liu, A front-side released single crystalline silicon piezoresistive microcantilever sensor. IEEE Sens. J. 9(3), 246–254 (2009). https://doi.org/10.1109/JSEN.2008.2012197
- A. Katada, Y.F. Buys, Y. Tominaga, S. Asai, M. Sumita, Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colliod Polym. Sci. 283(4), 367–374 (2005). https://doi.org/10.1007/s00396-004-1149-5
- S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, SU-8 silver photosensitive nanocomposite. Adv. Eng. Mater. 6(9), 719–724 (2004). https://doi.org/10.1002/adem.200400068
- D.W. Marshall, Copper-based conductive polymers: a new concept in conductive resins. J. Adhes. 74(1–4), 301–315 (2000). https://doi.org/10.1080/00218460008034533
- N. Zhang, J. Xie, M. Guers, V.K. Varadan, Chemical bonding multiwalled carbon nanotube to SU-8 via ultrasonic irradiation. Smart Mater. Struct. 12(2), 260–263 (2003). https://doi.org/10.1088/0964-1726/12/2/314
- H.C. Chiamori, J.W. Brown, E.V. Adhiprakasha, E.T. Hantsoo, J.B. Straalsund, N.A. Melosh, B.L. Pruitt, Suspension of nanops in SU-8: processing and characterization of nanocomposite polymers. Microelectron. J. 39(2), 228–236 (2008). https://doi.org/10.1016/j.mejo.2007.05.012
- E.K. Sichel, J.I. Gittleman, P. Sheng, Electrical properties of carbon-polymer composites. J. Electron. Mater. 11(4), 699–747 (1982). https://doi.org/10.1007/BF02672392
- K.H. Muller, J. Herrmann, B. Raguse, G. Baxter, T. Reda, Percolation model for electron conduction in films of metal nanops linked by organic molecules. Phys. Rev. B 66(7), 075417 (2002). https://doi.org/10.1103/PhysRevB.66.075417
- D. Toker, D. Azulay, N. Shimoni, I. Balberg, O. Millo, Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 68(4), 041403 (2003). https://doi.org/10.1103/PhysRevB.68.041403
- D. He, N.N. Ekere, Effect of p size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D-Appl. Phys. 37(13), 1848–1852 (2004). https://doi.org/10.1088/0022-3727/37/13/019
- I. Balberg, D. Azulay, D. Toker, O. Millo, Percolation and tunneling in composite materials. Int. J. Mod. Phys. B 18(15), 2091 (2004). https://doi.org/10.1142/S0217979204025336
- J. Thaysen, Cantilever for Biochemical Sensing Integrated in a Microliquid Handling System (Ph. D. thesis, 2001). http://orbit.dtu.dk/files/4681389/Jacob_Thaysen.pdf
- S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, A. Boisen, Processing of thin SU-8 films. J. Micromech. Microeng. 18(12), 125020 (2008). https://doi.org/10.1088/0960-1317/18/12/125020
- T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hubner, Effect of soft bake temperature on the polymerization of SU-8 photoresist. J. Micromech. Microeng. 16(9), 1819–1824 (2006). https://doi.org/10.1088/0960-1317/16/9/009
- J. Zhang, K.L. Tan, G.D. Hong, L.J. Yang, H.Q. Gong, Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11(1), 20–26 (2001). https://doi.org/10.1088/0960-1317/11/1/304
- J. Zhang, M.B. Chan-Park, S.R. Conner, Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip 4(6), 646–653 (2004). https://doi.org/10.1039/b403304c
- M. Lillemose, M. Spieser, N.O. Christiansen, A. Christensen, A. Boisen, Intrinsically conductive polymer thin film piezoresistors. Microelectron. Eng. 85(5), 969–971 (2008). https://doi.org/10.1016/j.mee.2007.12.020
- A.R. Sankar, S. Das, Experimental analysis of galvanic corrosion of a thin metal film in a multilayer stack for MEMS applications. Mater. Sci. Semicond. Process. 16(2), 449–453 (2013). https://doi.org/10.1016/j.mssp.2012.08.003
- D. Haefliger, M. Nordstrom, P.A. Rasmussen, A. Boisen, Dry release of all-polymer structures. Microelectron. Eng. 78–79, 88–92 (2005). https://doi.org/10.1016/j.mee.2004.12.013
- D. Haefliger, O. Hansen, A. Boisen, Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation. Adv. Mater. 18(2), 238–241 (2006). https://doi.org/10.1002/adma.200501687
- R.E.I. Schropp, Frontiers in HWCVD. Thin Solid Film 517(12), 3415–3419 (2009). https://doi.org/10.1016/j.tsf.2009.01.038
- K. Wouters, R. Puers, Diffusing and swelling in SU-8: insight in material properties and processing. J. Micromech. Microeng. 20(9), 095013 (2010). https://doi.org/10.1088/0960-1317/20/9/095013
- C. Liu, Y. Liu, M. Sokuler, D. Fell, S. Keller, A. Boisen, H. Butt, G.K. Auernhammer, E. Bonaccurso, Diffusion of water into SU-8 microcantilevers. Phys. Chem. Chem. Phys. 12(35), 10577–10583 (2010). https://doi.org/10.1039/c002478c
- M. Tenje, S. Keller, S. Dohn, Z.J. Davis, A. Boisen, Drift study of SU8 cantilevers in liquid and gaseous environments. Ultramicroscopy 110(6), 596–598 (2010). https://doi.org/10.1016/j.ultramic.2010.02.017
- S. Schmid, S. Kuhne, C. Hierold, Influence of air humidity on polymeric microresonators. J. Micromech. Microeng. 19(6), 065018 (2009). https://doi.org/10.1088/0960-1317/19/6/065018
- C. Martin, A. Llobera, G. Villanueva, A. Voigt, G. Gruetzner, J. Brugger, F. Perez-Murano, Stress and aging minimization in photoplastic AFM probes. Microelectron. Eng. 86(4), 1226–1229 (2009). https://doi.org/10.1016/j.mee.2008.12.033
References
Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9(3), 25 (2017). https://doi.org/10.1007/s40820-017-0128-6
D. Thuau, C. Ayela, E. Lemaire, S. Heinrich, P. Poulin, I. Dufour, Advanced thermo-mechanical characterization of organic materials by piezoresistive organic resonators. Mater. Horiz. 2(1), 106–112 (2015). https://doi.org/10.1039/C4MH00165F
J. Zhang, X. Yang, H. Deng, K. Qiao, U. Farooq et al., Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett. 9(3), 36 (2017). https://doi.org/10.1007/s40820-017-0137-5
Z. Wen, Q. Shen, X. Sun, Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 9(4), 45 (2017). https://doi.org/10.1007/s40820-017-0146-4
S. Stassi, E. Fantino, R. Calmo, A. Chiappone, M. Gillono et al., Polymeric 3D printed functional microcantilevers for biosensing applications. ACS Appl. Mater. Interfaces 9(22), 19193–19201 (2017). https://doi.org/10.1021/acsami.7b04030
A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40820-017-0148-2
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7(2), 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3
J. Yin, V.J. Santos, J.D. Posner, Bioinspired flexible microfluidic shear force sensor skin. Sens. Actuator A-Phys. 264, 289–297 (2017). https://doi.org/10.1016/j.sna.2017.08.001
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanops: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x
W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li, X. Zhang, Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating. ACS Nano 9(4), 4244–4251 (2015). https://doi.org/10.1021/acsnano.5b00626
P. Singh, S.K. Pandey, J. Singh, S. Srivastava, S. Sachan, S.K. Singh, Biomedical perspective of electrochemical nanobiosensor. Nano-Micro Lett. 8(3), 193–203 (2016). https://doi.org/10.1007/s40820-015-0077-x
J.L. Arlett, E.B. Myers, M.L. Roukes, Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6(4), 203–215 (2011). https://doi.org/10.1038/nnano.2011.44
L.A. Pinnaduwage, T. Thundat, A. Gehl, S.D. Wilson, D.L. Hedden, R.T. Lareau, Deposition characteristics of uncoated silicon micro-cantilever surfaces for explosive and common non-explosive vapors. Ultramicroscopy 100(3–4), 211–216 (2004). https://doi.org/10.1016/j.ultramic.2003.11.006
M. Alvarez, A. Calle, J. Tamayo, L.M. Lechuga, A. Abad, A. Montoya, Development of nanomechanical biosensors for detection of pesticides DDT. Biosens. Bioelectron. 18(5), 649–653 (2003). https://doi.org/10.1016/S0956-5663(03)00035-6
H.J. Pandya, W. Chen, L.A. Goodell, D.J. Foran, J.P. Desai, Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissue. Lab Chip 14(23), 4523–4532 (2014). https://doi.org/10.1039/C4LC00594E
R. Raiteri, G. Nelles, H.J. Butt, W. Knoll, P. Skladal, Sensing of biological substances based on the bending of microfabricated cantilevers. Sens. Actuator B-Chem. 61(1–3), 213–217 (1999). https://doi.org/10.1016/S0925-4005(99)00260-9
S. Cherian, R.K. Gupta, B.C. Mullin, T. Thundat, Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19(5), 411–416 (2003). https://doi.org/10.1016/S0956-5663(03)00226-4
J. Pei, F. Tain, T. Thundat, Glucose biosensors based on the microcantilever. Anal. Chem. 26(2), 292–297 (2004). https://doi.org/10.1021/ac035048k
M. Calleja, M. Nordstom, M. Alvarez, J. Tamayo, L.M. Lechuga, A. Boisen, Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105(1), 215–222 (2005). https://doi.org/10.1016/j.ultramic.2005.06.039
J. Zhang, H.P. Lang, F. Huber, A. Bietsch, W. Grange et al., Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1(3), 214–220 (2006). https://doi.org/10.1038/nnano.2006.134
Y. Arntz, J.D. Seeling, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, C.H. Gerber, Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1), 86–90 (2003). https://doi.org/10.1088/0957-4484/14/1/319
N. Bajwa, C.J. Maldonado, T. Thundat, A. Passian, Piezoresistive measurement of swine H1N1 hemagglutinin peptide binding with microcantilever arrays. AIP Adv. 4(3), 037118 (2014). https://doi.org/10.1063/1.4869636
H.P. Lang, M.K. Baller, R. Berger, C. Gerber, J.K. Gimzewski et al., An artificial nose based on a micromechanical cantilever array. Anal. Chim. Acta 393(1), 59–65 (1999). https://doi.org/10.1016/S0003-2670(99)00283-4
S. Xu, R. Mutharasan, Rapid and sensitive detection of giardia lamblia using a piezoelectric cantilever biosensor in finished and source waters. Environ. Sci. Technol. 44(5), 1736–1741 (2010). https://doi.org/10.1021/es9033843
L.S. Haung, Y. Pheanpanitporn, Y.K. Yen, K.F. Chang, L.Y. Lin, D.M. Lai, Detection of the antiepileptic drug phenytoin using a single free-standing piezoresistive cantilever for therapeutic drug monitoring. Biosens. Bioelectron. 59, 233–238 (2014). https://doi.org/10.1016/j.bios.2014.03.047
J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol, F.P. Murano, Micro/nanomechanical resonators for distributed mass sensing with capacitive detection. Microelectron. Eng. 83(4), 1216–1220 (2006). https://doi.org/10.1016/j.mee.2006.01.177
R. Lopez, J.M. Aguirregabiria, M. Tijero, M. Arroyo, J. Elizalde, J. Berganzo, K. Mayora, F.J. Blanco, A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip. Sens. Actuator B-Chem. 114(1), 542–551 (2006). https://doi.org/10.1016/j.snb.2005.05.011
J.A. Harley, T.W. Kenny, 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J. Microelectromech. Syst. 9(2), 226–235 (2000). https://doi.org/10.1109/84.846703
S.M. Yang, T.I. Yin, C. Chang, A biosensor chip by CMOS process for surface stress measurement in bioanalyte. Sens. Actuator B-Chem. 123(2), 707–714 (2007). https://doi.org/10.1016/j.snb.2006.10.008
Y. Yang, Y. Chen, P. Xu, X. Li, Quad-cantilever microsensors with a low cost single -sided micro-machining technique for trace chemical vapor detection. Microelectron. Eng. 87(11), 2317–2322 (2010). https://doi.org/10.1016/j.mee.2010.03.010
H.J. Pandya, H.T. Kim, R. Roy, J.P. Desai, MEMS based low cost piezoresistive microcantilever force sensor and sensor module. Mater. Sci. Semicond. Process. 19, 163–173 (2014). https://doi.org/10.1016/j.mssp.2013.12.016
R. Yang, X. Huang, Z. Wang, Y. Zhou, L. Liu, A chemisorption-based microcantilever chemical sensor for the detection of trimethylamine. Sens. Actuator B-Chem. 145(1), 474–479 (2010). https://doi.org/10.1016/j.snb.2009.12.050
R.E. Fernandez, S. Stolyarova, A. Chadha, E. Bhattacharya, Y. Nemirovsky, MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sens. J. 9(12), 1660–1666 (2009). https://doi.org/10.1109/JSEN.2009.2030643
Y. Zhou, Z. Wang, C. Wang, W. Ruan, L. Liu, Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor. J. Micromech. Microeng. 19(6), 065026 (2009). https://doi.org/10.1088/0960-1317/19/6/065026
A. Loui, F.T. Goericke, T.V. Ratto, J. Lee, B.R. Hart, W.P. King, The effect of piezoresistive microcantilever geometry on the cantilever sensitivity during surface stress chemical sensing. Sens. Actuator A-Phys. 147(2), 516–521 (2008). https://doi.org/10.1016/j.sna.2008.06.016
Y. Kim, J.Y. Cha, H. Ham, H. Huh, D.S. So, I. Kang, Preparation of piezoresistive nano smart hybrid material based on graphene. Curr. Appl. Phys. 11(1), 350–352 (2011). https://doi.org/10.1016/j.cap.2010.11.022
R. Lakhmi, H. Debeda, I. Dufour, C. Lucat, Force sensors based on screen-printed cantilevers. IEEE Sens. J. 10(6), 1133–1137 (2010). https://doi.org/10.1109/JSEN.2010.2040387
P. Alpuim, V. Chu, J.P. Conde, Piezoresistive sensors on plastic substrates using doped microcrystalline silicon. IEEE Sens. J. 2(4), 336–341 (2002). https://doi.org/10.1109/JSEN.2002.804037
R. Katragadda, Z. Wang, W. Khalid, Y. Li, Y. Xu, Parylene cantilevers integrated with polycrystalline silicon piezoresistors for surface stress sensing. Appl. Phys. Lett. 91(8), 083505 (2007). https://doi.org/10.1063/1.2772189
K.R. Buchapudi, X. Huang, X. Ji, H.F. Yang, T. Thundat, Microcantilever biosensors for chemicals and bioorganisms. Analyst 136(8), 1539–1556 (2011). https://doi.org/10.1039/c0an01007c
K.M. Goeders, J.S. Colton, L.A. Bottomley, Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev. 108(2), 522–542 (2008). https://doi.org/10.1021/cr0681041
A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74(3), 036101 (2011). https://doi.org/10.1088/0034-4885/74/3/036101
S. Sang, Y. Zhao, W. Zhang, P. Li, J. Hu, G. Li, Surface stress-based biosensors. Biosens. Bioelectron. 51, 124–135 (2014). https://doi.org/10.1016/j.bios.2013.07.033
M. Calleja, P.M. Kosaka, A.S. Paulo, J. Tamayo, Challenges for nanomechanical sensors in biological detection. Nanoscale 4(16), 4925–4938 (2012). https://doi.org/10.1039/c2nr31102j
D.W. Lee, X. Li, Integrated microcantilevers for high-resolution sensing and probing. Meas. Sci. Technol. 23(2), 022001 (2012). https://doi.org/10.1088/0957-0233/23/2/022001
J. Bausells, Piezoresistive cantilevers for nanomechanical sensing. Microelectron. Eng. 145, 9–20 (2015). https://doi.org/10.1016/j.mee.2015.02.010
H.F. Ji, B.D. Armon, Approaches to increasing surface stress for improving signal-to-noise ratio of microcantilever sensors. Anal. Chem. 82(5), 1634–1642 (2010). https://doi.org/10.1021/ac901955d
A. Sassolas, L.J. Blum, B.D.L. Bouvier, Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30(3), 489–511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014). https://doi.org/10.3390/molecules190914139
J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005). https://doi.org/10.1021/cr0300789
B.J. Kim, E. Meng, Review of polymer MEMS micromachining. J. Micromech. Microeng. 26(1), 013001 (2015). https://doi.org/10.1088/0960-1317/26/1/013001
C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007). https://doi.org/10.1002/adma.200701709
M. Nordstrom, S. Keller, M. Lillemose, A. Johansson, S. Dohn, D. Haefliger, G. Blagoi, M.H. Jakobsen, A. Boisen, SU-8 cantilevers for bio/chemical Sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8(3), 1595–1612 (2008). https://doi.org/10.3390/s8031595
V. Seena, P. Ray, P. Kovur, M. Kandpal, V.R. Rao, Polymer MEMS sensors, in Advanced biomaterials and biodevices, ed. by A. Tiwari, A.N. Nordin (Wiley, Hoboken, 2014). https://doi.org/10.1002/9781118774052.ch4
H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Handheld personal airborne nanop detector based on microelectromechanical silicon resonant cantilever. Microelectron. Eng. 145, 96–103 (2015). https://doi.org/10.1016/j.mee.2015.03.037
H.S. Wasisto, S. Merzsch, E. Uhde, A. Waag, E. Peiner, Partially integrated cantilever-based airborne nanop detector for continuous carbon aerosol mass concentration monitoring. J. Sens. 4(1), 111–123 (2015). https://doi.org/10.5194/jsss-4-111-2015
H.S. Wasisto, Q. Zhang, S. Merzsch, A. Waag, E. Peiner, A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsyst. Technol. 20(4–5), 559–569 (2014). https://doi.org/10.1007/s00542-013-1991-9
H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Airborne engineered nanop mass sensor based on a silicon resonant cantilever. Sens. Actuator B-Chem. 180, 77–89 (2013). https://doi.org/10.1016/j.snb.2012.04.003
H.S. Wasisto, S. Merzsch, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Evaluation of photoresist-based nanop removal method for recycling silicon cantilever mass sensors. Sens. Actuator A-Phys. 202, 90–99 (2013). https://doi.org/10.1016/j.sna.2012.12.016
H.S. Wasisto, K. Huang, S. Merzsch, A. Stranz, A. Waag, E. Peiner, Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanop mass sensing applications. Microsyst. Technol. 20(4–5), 571–584 (2014). https://doi.org/10.1007/s00542-013-1992-8
S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, A. Waag, Production of vertical nanowire resonators by cryogenic-ICP–DRIE. Microsyst. Technol. 20(4–5), 759–767 (2014). https://doi.org/10.1007/s00542-013-2032-4
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Femtogram aerosol nanop mass sensing utilising vertical silicon nanowire resonators. Micro Nano Lett. 8(10), 554–558 (2013). https://doi.org/10.1049/mnl.2013.0208
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanop mass detection. Sens. Actuator B-Chem. 189, 146–156 (2013). https://doi.org/10.1016/j.snb.2013.02.053
H.S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, E. Peiner, Silicon nanowire resonators: aerosol nanop mass sensing in the workplace. IEEE Nanotechnol. Mag. 7(2), 18–23 (2013). https://doi.org/10.1109/MNANO.2013.2260462
H.S. Wasisto, S. Merzsch, F. Steib, A. Waag, E. Peiner, Vertical silicon nanowire array-patterned microcantilever resonators for enhanced detection of cigarette smoke aerosols. Micro Nano Lett. 9(10), 676–679 (2014). https://doi.org/10.1049/mnl.2014.0249
S. Keller, D. Haefliger, A. Boisen, Fabrication of thin SU-8 cantilevers: initial bending, release and time-stability. J. Micromech. Microeng. 20(4), 045024 (2010). https://doi.org/10.1088/0960-1317/20/4/045024
V. Seena, A. Fernandes, P. Pant, S. Mukherji, V.R. Rao, Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22(29), 295501 (2011). https://doi.org/10.1088/0957-4484/22/29/295501
A. Johansson, M. Calleja, P.A. Rasmussen, A. Boisen, SU-8 cantilever sensor system with integrated readout. Sens. Actuator A-Phys. 123–124, 111–115 (2005). https://doi.org/10.1016/j.sna.2005.03.025
A. Boisen, T. Thundat, Design & fabrication of cantilever array biosensors. Mater. Today 12, 32–38 (2009). https://doi.org/10.1016/S1369-7021(09)70249-4
J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-8517-9
N.A. Gilda, S. Nag, S. Patil, M.S. Baghini, D.K. Sharma, V.R. Rao, Current excitation method for ΔDelta R measurement in piezo-resistive sensors with a 0.3-ppm resolution. IEEE Trans. Instrum. Meas. 61(3), 767–774 (2012). https://doi.org/10.1109/TIM.2011.2172118
K.F. Anderson, The new current loop: an instrumentation and measurement circuit topology. IEEE Trans. Instrum. Meas. 46(5), 1061–1067 (1997). https://doi.org/10.1109/19.676711
Z. Wang, R. Yue, R. Zhang, L. Liu, Design and optimization of laminated piezoresistive microcantilever sensors. Sens. Actuator A-Phys. 120(2), 325–336 (2005). https://doi.org/10.1016/j.sna.2004.12.006
J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7(5), 301–304 (2012). https://doi.org/10.1038/nnano.2012.42
J. Tamayo, A.D.L. Humphris, A.M. Malloy, M.J. Miles, Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. Ultramicroscopy 86(1), 167–173 (2001). https://doi.org/10.1016/S0304-3991(00)00082-6
G. Dubourg, I. Dufour, C. Pellet, C. Ayela, Optimization of the performances of SU-8 organic microcantilever resonators by tuning the viscoelastic properties of the polymer. Sens. Actuator B-Chem. 169, 320–326 (2012). https://doi.org/10.1016/j.snb.2012.04.088
S. Schmid, P. Senn, C. Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment. Sens. Actuator A-Phys. 145–146, 442–448 (2008). https://doi.org/10.1016/j.sna.2008.01.010
K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing microcantilever. Biosens. Bioelectron. 20(10), 1932–1938 (2005). https://doi.org/10.1016/j.bios.2004.09.023
D. Lee, S. Kim, N. Jung, T. Thundat, S. Jeon, Effect of gold patterning on the bending profile and frequency response of a microcantilever. J. Appl. Phys. 106(2), 024310 (2009). https://doi.org/10.1063/1.3177326
J. Tamayo, D. Ramos, J. Mertens, M. Calleja, Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89(22), 224104 (2006). https://doi.org/10.1063/1.2388925
D. Ramos, M.A. Hernandez, E.G. Santos, H.D. Tong, C.V. Rijn, M. Calleja, J. Tamayo, Arrays of dual nanomechanical resonators for selective biological detection. Anal. Chem. 81(6), 2274–2279 (2009). https://doi.org/10.1021/ac8024152
G.G. Stoney, The tension of metallic film deposited by electrolysis. Proc. R. Soc. A-. Phys. Eng. 82(553), 172–175 (1909). https://doi.org/10.1098/rspa.1909.0021
J.E. Sader, Surface stress induced deflections of cantilever plates with applications to the atomic force microscope: rectangular plates. J. Appl. Phys. 89(5), 2911–2921 (2001). https://doi.org/10.1063/1.1342018
M. Godin, C.V. Tabard, P. Grutter, P. Williams, Quantitative surface stress measurements using a microcantilever. Appl. Phys. Lett. 79(4), 551 (2001). https://doi.org/10.1063/1.1387262
J. Tamayo, J.J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012). https://doi.org/10.1088/0957-4484/23/47/475702
J. Zang, F. Liu, Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology 18(40), 405501 (2007). https://doi.org/10.1088/0957-4484/18/40/405501
J. Thaysen, A.D. Yalcinkaya, P. Vettiger, A. Menon, J. Thaysen, Polymer-based stress sensor with integrated readout. J. Phys. D-Appl. Phys. 35(21), 2698–2703 (2002). https://doi.org/10.1088/0022-3727/35/21/302
J. Fritz, M.K. Baller, H.P. Lang, H. Routhuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski, Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000). https://doi.org/10.1126/science.288.5464.316
M.Z. Ansari, C. Cho, U. Gerald, Stepped piezoresistive microcantilever designs for biosensors. J. Phys. D-Appl. Phys. 45(21), 215401 (2012). https://doi.org/10.1088/0022-3727/45/21/215401
R. Bashir, A. Gupta, G.W. Neudeck, M. McElfresh, R. Gomez, On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J. Micromech. Microeng. 10(4), 483–491 (2000). https://doi.org/10.1088/0960-1317/10/4/301
K.A.A. Wahid, H.W. Lee, M.A. Shazni, I.A. Azid, Investigation on the effect of different design of SCR on the change of resistance in piezoresistive micro cantilever. Microsyst. Technol. 20(6), 1079–1083 (2014). https://doi.org/10.1007/s00542-013-1784-1
M.Z. Ansari, C. Cho, W. Choi, M. Lee, S. Lee, J. Kim, Improving sensitivity of piezoresistive microcantilever biosensors using stress concentration region designs. J. Phys. D-Appl. Phys. 46(50), 505501 (2013). https://doi.org/10.1088/0022-3727/46/50/505501
J.W. Gibbs, The scientific papers of J. Willard Gibbs, vol. 1 (Green and Company, Longmans, 1906), p. 55
G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M.F. Hagan, A.K. Chakraborty, A. Majumdar, Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 98(4), 1560–1564 (2001). https://doi.org/10.1073/pnas.98.4.1560
R. McKendry, J. Zhang, Y. Arntz, T. Strunz, M. Hegner et al., Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. USA 99(15), 9783–9788 (2002). https://doi.org/10.1073/pnas.152330199
M. Watari, J. Galbraith, H.P. Lang, M. Sousa, M. Hegner, C. Gerber, M.A. Horton, R.A. McKendry, Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129(3), 601–609 (2007). https://doi.org/10.1021/ja065222x
J.C. Stachowiak, M. Yue, K. Castelino, A. Chakraborty, A. Majumdar, Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22(1), 263–268 (2006). https://doi.org/10.1021/la0521645
J. Mertens, C. Rogero, M. Calleja, D. Ramos, J.M.G. Angel, C. Briones, J. Tamayo, Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotechnol. 3(5), 301–307 (2008). https://doi.org/10.1038/nnano.2008.91
M. Godin, T.C. Vincent, Y. Miyahara, T. Monga, P.J. Williams, L.Y. Beaulieu, R.B. Lennox, P. Grutter, Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology 21(7), 075501 (2010). https://doi.org/10.1088/0957-4484/21/7/075501
T. Yang, X. Li, Y. Chen, D.W. Lee, G. Zuo, Adsorption induced surface-stress sensing signal originating from both vertical interface effects and intermolecular lateral interactions. Analyst 136(24), 5261–5269 (2011). https://doi.org/10.1039/c1an15695k
M. Joshi, R. Pinto, V.R. Rao, S. Mukherji, Silanization and antibody immobilization on SU-8. Appl. Surf. Sci. 253(6), 3127–3132 (2007). https://doi.org/10.1016/j.apsusc.2006.07.017
A. Deepu, V.V.R. Sai, S. Mukherji, Simple surface modification techniques for immobilization of biomolecules on SU-8. J. Mater. Sci.-Mater. Med. 20(1), 25–28 (2009). https://doi.org/10.1007/s10856-008-3471-9
S.L. Tao, C.P. Ketul, J.J. Norman, T.A. Desai, Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 24(6), 2631–2636 (2008). https://doi.org/10.1021/la703066z
N. Iranpoor, P. Salehi, Ceric ammonium nitrate: a mild and efficient reagent for conversion of epoxides to β-nitrato alcohols. Tetrahedron 51(3), 909–912 (1995). https://doi.org/10.1016/0040-4020(94)00979-5
Y. Wang, J.H. Pai, H.H. Lai, C.E. Sims, M. Bachman, G.P. Li, N.L. Allbritton, Surface graft polymerization of SU-8 for bio-MEMS applications. J. Micromech. Microeng. 17(7), 1371–1380 (2007). https://doi.org/10.1088/0960-1317/17/7/020
R. Marie, S. Schmid, A. Johansson, L. Ejsing, M. Nordström, D. Häfliger, C.B. Christensen, A. Boisen, M. Dufva, Immobilisation of DNA to polymerised SU-8 photoresist. Biosens. Bioelectron. 21(7), 1327–1332 (2006). https://doi.org/10.1016/j.bios.2005.03.004
A.A. Meyer-Plath, K. Schröder, B. Finke, A. Ohl, Current trends in biomaterial surface functionalization—nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 71(3), 391–406 (2003). https://doi.org/10.1016/S0042-207X(02)00766-2
Z. Gao, D.B. Henthorn, C.S. Kim, Surface modification of SU-8 by photografting of functional polymers for lab-on-a-chip applications, in IEEE Conference on Sensors (2007), pp. 121–123. https://doi.org/10.1109/ICSENS.2007.355733
M. Joshi, N. Kale, R. Lal, V.R. Rao, S. Mukherji, A novel dry method for surface modification of SU-8 for immobilization of biomolecules in bio-MEMS. Biosens. Bioelectron. 22(11), 2429–2435 (2007). https://doi.org/10.1016/j.bios.2006.08.045
G. Blagoi, S. Keller, A. Johansson, A. Boisen, M. Dufva, Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl. Surf. Sci. 255(5), 2896–2902 (2008). https://doi.org/10.1016/j.apsusc.2008.08.089
C. Cao, S.W. Birtwell, J. Høgberg, A. Wolff, H. Morgan, D.D. Bang, Surface modification of photoresist SU8 for low autofluorescence and bioanalytical applications, in 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Seattle, Washington, USA, 2011), pp. 1161–1163. (http://eprints.soton.ac.uk/id/eprint/356607
R. Raiteri, M. Grattarola, H.J. Butt, P. Skládal, P, Micromechanical cantilever-based biosensors. Sens. Actuator B-Chem. 79(2), 115–126 (2001). https://doi.org/10.1016/S0925-4005(01)00856-5
W. Ruan, Y. Li, Z. Tan, L. Liu, K. Jiang, Z. Wang, In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens. Actuator B-Chem. 176, 141–148 (2013). https://doi.org/10.1016/j.snb.2012.10.026
G. Binning, C. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986). https://doi.org/10.1103/PhysRevLett.56.930
T. Thundat, R.J. Warmack, D.P. Allison, L.A. Bottomley, A.J. Lourenco, T.L. Ferrell, Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: the effect of humidity on apparent width and image contrast. J. Vac. Sci. Technol. A 10, 630–635 (1992). https://doi.org/10.1116/1.577700
T. Thundat, D.P. Allison, R.J. Warmack, T.L. Ferrell, Imaging isolated strands of DNA molecules by atomic force microscopy. Ultramicroscopy 42–44, 1101–1106 (1992). https://doi.org/10.1016/0304-3991(92)90409-D
L.A. Bottomley, J.N. Haseltine, D.P. Allison, R.J. Warmack, T. Thundat et al., Scanning tunneling microscopy of DNA: the chemical modification of gold surfaces for immobilization of DNA. J. Vac. Sci. Technol. A 10, 591–595 (1992). https://doi.org/10.1116/1.577735
D.P. Allison, L.A. Bottomley, T. Thundat, G.M. Brown, R.P. Woychik, J.J. Schrick, K. Bruce Jacobson, R.J. Warmack, Immobilization of DNA for scanning probe microscopy. Proc. Natl. Acad. Sci. USA 89(21), 10129–10133 (1992). https://doi.org/10.1073/pnas.89.21.10129
T. Thundat, D.P. Allison, R.J. Warmack, M.J. Doktycz, K. Bruce Jacobson, G.M. Brown, Atomic force microscopy of single-and double-stranded deoxyribonucleic acid. J. Vac. Sci. Technol. A 11(4), 824–828 (1993). https://doi.org/10.1116/1.578312
J.K. Gimzewski, Ch. Gerber, E. Meyer, R.R. Schlittler, Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217(5–6), 589–594 (1994). https://doi.org/10.1016/0009-2614(93)E1419-H
J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O’shea, M.E. Welland, T. Rayment, J.K. Gimzewski, Ch. Gerber, A femtojoule calorimeter using micromechanical sensors. Rev. Sci. Instrum. 65(12), 3793–3798 (1994). https://doi.org/10.1063/1.1144509
T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison, Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl. Phys. Lett. 64(21), 2894–2896 (1994). https://doi.org/10.1063/1.111407
T. Thundat, E.A. Wachter, S.L. Sharp, R.J. Warmack, Detection of mercury vapor using resonating microcantilevers. Appl. Phys. Lett. 66(13), 1695–1697 (1995). https://doi.org/10.1063/1.113896
R. Raiteri, H.J. Butt, Measuring electrochemically induced surface stress with an atomic force microscope. J. Phys. Chem. 99(43), 15728–15732 (1995). https://doi.org/10.1021/j100043a008
H.J. Butt, A sensitive method to measure changes in the surface stress of solids. J. Colloid Interface Sci. 180(1), 251–260 (1996). https://doi.org/10.1006/jcis.1996.0297
G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate, Atomic resolution with atomic force microscope. Surf. Sci. 189–190, 1–6 (1987). https://doi.org/10.1016/S0039-6028(87)80407-7
G.Y. Chen, T. Thundat, E.A. Wachter, R.J. Warmack, Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J. Appl. Phys. 77(8), 3618–3622 (1995). https://doi.org/10.1063/1.359562
M. Tortonese, H. Yamada, R.C. Barrett, C.F. Quate, Atomic force microscopy using a piezoresistive cantilever, in Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91 (1991), pp. 448–451. https://doi.org/10.1109/SENSOR.1991.148908
S.J. Kim, T. Ono, M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit. Appl. Phys. Lett. 88, 053116 (2006). https://doi.org/10.1063/1.2171650
J.H. Lee, K.S. Hwang, J. Park, K.H. Yoon, D.S. Yoon, T.S. Kim, Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens. Bioelectron. 20(10), 2157–2162 (2005). https://doi.org/10.1016/j.bios.2004.09.024
D.V. Scheible, A. Erbe, R.H. Blick, Tunable coupled nanomechanical resonators for single-electron transport. New J. Phys. 4(1), 86 (2002). https://doi.org/10.1088/1367-2630/4/1/386
M. Nordström, D.A. Zauner, M. Calleja, J. Hübner, A. Boisen, Integrated optical readout for miniaturization of cantilever-based sensor system. Appl. Phys. Lett. 91(10), 103512 (2007). https://doi.org/10.1063/1.2779851
R. Berger, H.P. Lang, C. Gerber, J.K. Gimzewski, J.H. Fabian, L. Scandella, E. Meyer, H.J. Güntherodt, Micromechanical thermogravimetry. Chem. Phys. Lett. 294(4), 363–369 (1998). https://doi.org/10.1016/S0009-2614(98)00817-3
H. Jensenius, J. Thaysen, A.A. Rasmussen, L.H. Veje, O. Hansen, A. Boisen, A microcantilever-based alcohol vapor sensor-application and response model. Appl. Phys. Lett. 76(18), 2615–2617 (2000). https://doi.org/10.1063/1.126426
A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82(1), 11–16 (2000). https://doi.org/10.1016/S0304-3991(99)00148-5
A.G. Hansen, M.W. Mortensen, J.E.T. Andersen, J. Ulstrup, A. Kühle, J. Garnæs, A. Boisen, Stress formation during self-assembly of alkanethiols on differently pre-treated gold surfaces. Probe Microscopy 2(2), 139–149 (2001)
G. Villanueva, J.A. Plaza, J. Montserrat, F.P. Murano, J. Bausells, Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces. Microelectron. Eng. 86(5–6), 1120–1123 (2008). https://doi.org/10.1016/j.mee.2008.01.082
J.C. Doll, S.J. Park, B.L. Pruitt, Design optimization of piezoresistive cantilevers for force sensing in air and water. J. Appl. Phys. 106(6), 064310 (2009). https://doi.org/10.1063/1.3224965
S.J. Park, J.C. Doll, B.L. Pruitt, Piezoresistive cantilever performance—part I: analytical model for sensitivity. J. Microelectromech. Syst. 19(1), 137–148 (2010). https://doi.org/10.1109/JMEMS.2009.2036581
S.J. Park, J.C. Doll, A. Rastegar, B.L. Pruitt, Piezoresistive cantilever performance—part II: optimization. J. Microelectromech. Syst. 19(1), 149–161 (2010). https://doi.org/10.1109/JMEMS.2009.2036582
G. Tosolini, G. Villanueva, F.P. Murano, J. Bausells, Silicon microcantilevers with MOSFET detection. Microelectron. Eng. 87(5), 1245–1247 (2010). https://doi.org/10.1016/j.mee.2009.11.125
B. Komati, J. Agnus, C. Clévy, P. Lutz, Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications. J. Micromech. Microeng. 24(3), 035018 (2014). https://doi.org/10.1088/0960-1317/24/3/035018
S.J. Hyun, H.S. Kim, Y.J. Kim, H.I. Jung, Mechanical detection of liposomes using piezoresistive cantilever. Sens. Actuator B-Chem. 117(2), 415–419 (2006). https://doi.org/10.1016/j.snb.2005.11.054
P.A. Rasmussen, J. Thaysen, O. Hansen, S.C. Eriksen, A. Boisen, Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97(1), 371–376 (2003). https://doi.org/10.1016/S0304-3991(03)00063-9
A. Venkatasubramanian, J.H. Lee, V. Stavila, A. Robinson, M.D. Allendorf, P.J. Hesketh, MOF@ MEMS: design optimization for high sensitivity chemical detection. Sens. Actuator B-Chem. 168, 256–262 (2012). https://doi.org/10.1016/j.snb.2012.04.019
C.P. Cheney, B. Srijanto, D.L. Hedden, A. Gehl, T.L. Ferrell, J. Schultz, E.A. Engleman, W.J. McBride, S. O’Connor, In vivo wireless ethanol vapor detection in the Wistar rat. Sens. Actuator B-Chem. 138(1), 264–269 (2009). https://doi.org/10.1016/j.snb.2009.01.052
M.Z. Ansari, C. Cho, A conduction–convection model for self-heating in piezoresistive microcantilever biosensors. Sens. Actuator A-Phys. 175, 19–27 (2012). https://doi.org/10.1016/j.sna.2011.12.014
G. Zuo, X. Li, P. Li, T. Yang, Y. Wang, Z. Cheng, S. Feng, Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Anal. Chim. Acta 580(2), 123–127 (2006). https://doi.org/10.1016/j.aca.2006.07.071
S.M. Yang, T.I. Yin, Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor. Sens. Actuator B-Chem. 120(2), 736–744 (2007). https://doi.org/10.1016/j.snb.2006.03.053
S.M. Yang, C. Chang, T.I. Yin, P.L. Kuo, DNA hybridization measurement by self-sensing piezoresistive microcantilevers in CMOS biosensor. Sens. Actuator B-Chem. 130(2), 674–681 (2008). https://doi.org/10.1016/j.snb.2007.10.072
C.W. Huang, H.T. Hsueh, Y.J. Huang, H.H. Liao, H.H. Tsai, Y.Z. Juang, T.H. Lin, S.S. Lu, C.T. Lin, A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sens. Actuator B-Chem. 181, 867–873 (2013). https://doi.org/10.1016/j.snb.2013.02.061
Y. Chen, P. Xu, M. Liu, X. Li, Bio/chemical detection in liquid with self-sensing Pr-Oxi-Lever (piezo-resistive SiO2 cantilever) sensors. Microelectron. Eng. 87(12), 2468–2474 (2010). https://doi.org/10.1016/j.mee.2010.05.001
M.Z. Ansari, C. Cho, On self-heating in piezoresistive microcantilevers with short piezoresistor. J. Phys. D-Appl. Phys. 44(28), 285402 (2011). https://doi.org/10.1088/0022-3727/44/28/285402
R. Pechmann, J.M. Kohler, W. Fritzsche, A. Schaper, T.M. Jovin, The Novolever: a new cantilever for scanning force microscopy microfabricated from polymeric materials. Rev. Sci. Instrum. 65(12), 3702–3706 (1994). https://doi.org/10.1063/1.1144495
T.J. Yao, X. Yang, Y.C. Tai, Br F3 dry release technology for large freestanding parylene microstructures and electrostatic actuators. Sens. Actuator A-Phys. 97–98, 771–775 (2002). https://doi.org/10.1016/S0924-4247(02)00019-5
A.W. McFarland, J.S. Colton, Chemical sensing with micromolded plastic microcantilevers. J. Microelectromech. Syst. 14(6), 1375–1385 (2005). https://doi.org/10.1109/JMEMS.2005.851853
L.P. Lee, S.A. Berger, D. Liepmann, B.L. Pruitt, High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography. Sens. Actuator A-Phys. 71(1), 144–149 (1998). https://doi.org/10.1016/S0924-4247(98)00177-0
M. Calleja, J. Tamayo, M. Nordstrom, A. Boisen, Low-noise polymeric nanomechanical biosensors. Appl. Phys. Lett. 88(11), 113901 (2006). https://doi.org/10.1063/1.2187437
X.R. Zhang, X. Xu, Development of a biosensor based on laser-fabricated polymer microcantilevers. Appl. Phys. Lett. 85(12), 2423–2425 (2004). https://doi.org/10.1063/1.1791731
A. Gaitas, Y.B. Gianchandani, An experimental study of the contact mode AFM scanning capability of polyimide cantilever probes. Ultramicroscopy 106(8), 874–880 (2006). https://doi.org/10.1016/j.ultramic.2005.12.021
A. Greve, S. Keller, A.L. Vig, A. Kristensen, D. Larsson et al., Thermoplastic microcantilevers fabricated by nanoimprint lithography. J. Micromech. Microeng. 20(1), 015009 (2010). https://doi.org/10.1088/0960-1317/20/1/015009
A.W. McFarland, M.A. Poggi, L.A. Bottomley, J.S. Colton, Injection moulding of high aspect ratio micron-scale thickness polymeric microcantilevers. Nanotechnology 15(11), 1628–1632 (2004). https://doi.org/10.1088/0957-4484/15/11/044
G. Firpo, E. Angeli, L. Repetto, U. Valbusa, Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 481, 1–8 (2015). https://doi.org/10.1016/j.memsci.2014.12.043
R. Zhu, T. Hoshi, Y. Chishima, Y. Muroga, T. Hagiwara, S. Yano, T. Sawaguchi, Microstructure and mechanical properties of polypropylene/poly (methyl methacrylate) nanocomposite prepared using supercritical carbon dioxide. Macromolecules 44(15), 6103–6112 (2011). https://doi.org/10.1021/ma2001965
P.J. Chen, D.C. Rodger, M.S. Humayun, Y.C. Tai, Floating-disk parylene microvalves for self-pressure-regulating flow controls. J. Microelectromech. Syst. 17(6), 1352–1361 (2008). https://doi.org/10.1109/JMEMS.2008.2004947
Y.S. Suzuki, Y.C. Tai, Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. J. Microelectromech. Syst. 15(5), 1364–1370 (2006). https://doi.org/10.1109/JMEMS.2006.879706
J. Xie, J. Shih, Q. Lin, B. Yang, Y.C. Tai, Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4(5), 495–501 (2004). https://doi.org/10.1039/b403906h
A.A. Gómez, E. Tomas, Air-coupled piezoelectric transducers with active polypropylene foam matching layers. Sensors 13(5), 5996–6013 (2013). https://doi.org/10.3390/s130505996
J. Hillenbrand, G.M. Sessler, DC-Biased piezoelectret film transducers for airborne ultrasound. Ferroelectrics 472(1), 77–89 (2014). https://doi.org/10.1080/00150193.2014.964598
C.E. Garner, S.B. Gabriel, Y.S. Kuo, Directed ion beam sputter etching of polytetrafluoroethylene (Teflon) using an argon ion source. Thin Solid Films 95(4), 351–362 (1982). https://doi.org/10.1016/0040-6090(82)90041-4
E. Sahlin, A.T. Beisler, S.J. Woltman, S.G. Weber, Fabrication of microchannel structures in fluorinated ethylene propylene. Anal. Chem. 74(17), 4566–4569 (2002). https://doi.org/10.1021/ac025622c
K.Y. Kwon, X. Bi, W. Li, Droplet backside exposure for making slanted SU-8 microneedles, in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 767–770 https://doi.org/10.1109/EMBC.2013.6609613
P.C. Wang, S.J. Paik, S. Chen, S. Rajaraman, S.H. Kim, M.G. Allen, Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J. Microelectromech. Syst. 22(5), 1041–1053 (2013). https://doi.org/10.1109/JMEMS.2013.2262587
M.W. Royal, N.M. Jokerst, R.B. Fair, Droplet-based sensing: optical microresonator sensors embedded in digital electrowetting microfluidics systems. IEEE Sens. J. 13(12), 4733–4742 (2013). https://doi.org/10.1109/JSEN.2013.2273828
M. Hopcroft, T. Kramer, G. Kim, K. Takashima, Y. Higo, D. Moore, J. Brugger, Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28(8), 735–742 (2005). https://doi.org/10.1111/j.1460-2695.2005.00873.x
P. Liu, L. Liu, K. Jiang, S. Fan, Carbon- nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 7(6), 732–736 (2011). https://doi.org/10.1002/smll.201001662
J. Kim, X. Xu, Excimer laser fabrication of polymer microfluidic devices. J. Laser Appl. 15(4), 255–260 (2003). https://doi.org/10.2351/1.1585085
R. Kilaru, Z.Ç. Butler, D.P. Butler, I.E. Gönenli, NiCr MEMS tactile sensors embedded in polyimide toward smart skin. J. Microelectromech. Syst. 22(2), 349–355 (2013). https://doi.org/10.1109/JMEMS.2012.2222867
J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13(3), 359–366 (2003). https://doi.org/10.1088/0960-1317/13/3/302
K.S. Choi, D.S. Kim, H.J. Yang, M.S. Ryu, S.P. Chang, A highly sensitive humidity sensor with a novel hole array structure using a polyimide sensing layer. RSC Adv. 4(61), 32075–32080 (2014). https://doi.org/10.1039/C4RA02692F
S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 19(10), 1309–1318 (2004). https://doi.org/10.1016/j.bios.2003.11.021
M. Dan, Johansen, Investigation of Topas ® for Use in Optical Components (Master’s thesis, Technical University of Denmark, DTU, Denmark, 2005)
R.K. Jena, C.Y. Yue, Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6(1), 012822 (2012). https://doi.org/10.1063/1.3682098
N. Klejwa, R.G. Hennessy, J.W. Chen, R.T. Howe, A reel-to-reel compatible printed accelerometer, in 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 699–702. https://doi.org/10.1109/TRANSDUCERS.2011.5969203
T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 298(5593), 580–584 (2002). https://doi.org/10.1126/science.1076996
M. Khoo, C. Liu, Micro magnetic silicone elastomer membrane actuator. Sens. Actuator A-Phys. 89(3), 259–266 (2001). https://doi.org/10.1016/S0924-4247(00)00559-8
K. Hosokawa, K. Hanada, R. Maeda, A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J. Micromech. Microeng. 12(1), 1–6 (2001). https://doi.org/10.1088/0960-1317/12/1/301
N. Sundararajan, M.S. Pio, L.P. Lee, A.A. Berlin, Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J. Microelectromech. Syst. 13(4), 559–567 (2004). https://doi.org/10.1109/JMEMS.2004.832196
G.B. Lee, S.H. Chen, G.R. Huang, W.C. Sung, Y.H. Lin, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuator B-Chem. 75(1), 142–148 (2001). https://doi.org/10.1016/S0925-4005(00)00745-0
H. Becker, U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuator A-Phys. 83(1), 130–135 (2000). https://doi.org/10.1016/S0924-4247(00)00296-X
L.J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron. Eng. 54(3), 229–245 (2000). https://doi.org/10.1016/S0167-9317(00)00414-7
V. Seena, A. Rajorya, P. Pant, S. Mukherji, V.R. Rao, Polymer microcantilever biochemical sensors with integrated polymer composites for electrical detection. Solid State Sci. 11(9), 1606–1611 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.06.009
R. ew, A.R. Sankar, Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J. Phys. D-Appl. Phys. 48(20), 205402 (2015). https://doi.org/10.1088/0022-3727/48/20/205402
M. Joshi, P.S. Gandhi, R. Lal, V.R. Rao, S. Mukherji, Modelling, simulation and design guidelines for piezoresistive affinity cantilevers. J. Microelectromech. Syst. 20(3), 774–784 (2011). https://doi.org/10.1109/JMEMS.2011.2140353
P. Ray, S. Pandey, V.R. Rao, Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications. J. Appl. Phys. 116(12), 124902 (2014). https://doi.org/10.1063/1.4896255
J.D. Adams, B.W. Erickson, J. Grossenbacher, J. Brugger, A. Nievergelt, G.E. Fantner, Harnessing the damping properties of materials for high-speed atomic force microscopy. Nat. Nanotechnol. 11(2), 147–151 (2016). https://doi.org/10.1038/nnano.2015.254
N. Mishra, B. Krishna, R. Singh, K. Das, Evaluation of effective elastic, piezoelectric, and dielectric properties of SU8/ZnO nanocomposite for vertically integrated nanogenerators using finite element method. J. Nanomater. 2017, 1924651 (2017). https://doi.org/10.1155/2017/1924651
M. Vinchurkar, A. Joshi, V.R. Rao, Carbon black nanocomposite piezoresistive microcantilevers with reduced percolation threshold, in 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2015), pp. 689–692. https://doi.org/10.1109/EDSSC.2015.7285210
Y.C. Lim, A.Z. Kouzani, A. Kaynak, X.J. Dai, G. Littlefair, W. Duan, A protocol for improving fabrication yield of thin SU-8 microcantilevers for use in an aptasensor. Microsyst. Technol. 21(2), 371–380 (2015). https://doi.org/10.1007/s00542-013-2019-1
Z. Mao, K. Yoshida, J.W. Kim, Study on the fabrication of a SU-8 cantilever vertically-allocated in a closed fluidic microchannel. Microsyst. Technol. 1–11 (2017). https://doi.org/10.1007/s00542-017-3611-6
C.D. Gerardo, E. Cretu, R. Rohling, Fabrication of circuits on flexible substrates using conductive SU-8 for sensing applications. Sensors 17(6), 1420 (2017). https://doi.org/10.3390/s17061420
C. Ge, E. Cretu, MEMS transducers low-cost fabrication using SU-8 in a sacrificial layer-free process. J. Micromech. Microeng. 27(4), 045002 (2017). https://doi.org/10.1088/1361-6439/aa5dfb
T.R. Naik, S. Pandey, V. Palaparthy, R. Shelar, V.R. Rao, M. Ravikanth, Vapor-phase self-assembled monolayer on SU-8 cantilever for explosive sensing, in Nanoelectronics Conference (INEC) (2016), pp. 1–2. https://doi.org/10.1109/INEC.2016.7589293
M. Bisen, M.Z. Ansari, Phenomenological modelling sensitivity of SU8/CB nanocomposite conducting polymer microcantilever biosensor. Mater. Today 4(9), 10395–10399 (2017). https://doi.org/10.1016/j.matpr.2017.06.387
G. Sapra, P. Sharma, Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana-J. Phys. 89(1), 10 (2017). https://doi.org/10.1007/s12043-017-1398-8
K.G. Girija, I. Tushir, R.K. Vatsa, A. Topkar, Design, simulation and fabrication of piezoresistive microcantilevers using standard multi user MEMS process. ISSS J. Micro Smart Syst. 6(1), 83–89 (2017). https://doi.org/10.1007/s41683-017-0008-9
G. Sapra, M. Sharma, P. Sharma, S. Prasad, Design of MEMS based MWCNT/epoxy strain sensor using ANSYS, in 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS) (2015), pp.1–3. https://doi.org/10.1109/RAECS.2015.7453383
A. Toor, H. So, A.P. Pisano, Dielectric properties of ligand-modified gold nanop/SU-8 photopolymer based nanocomposites. Appl. Surf. Sci. 414, 373–379 (2017). https://doi.org/10.1016/j.apsusc.2017.04.096
N. Tiwary, M. Vinchurkar, M. Patel, R. Nathawat, S. Pandey, V.R. Rao, Fabrication, characterization and application of ZnO nanostructure-based micro-preconcentrator for TNT sensing. J. Microelectromech. Syst. 25(5), 968–975 (2016). https://doi.org/10.1109/JMEMS.2016.2600631
S. Nayak, S.K. Behura, B.P. Singh, S. Bhattacharjee, Flexible polymer-multiwall carbon nanotubes composite developed by in situ polymerization technique. Polym. Compos. 37(9), 2860–2870 (2016). https://doi.org/10.1002/pc.23483
L.H. Tam, C.L. Chow, D. Lau, Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach. Nanotechnology 29(2), 024001 (2017). https://doi.org/10.1088/1361-6528/aa9537
N. Maheshwari, G. Chatterjee, M. Vinchurkar, G. Gupta, H. Kshirsagar, K.L. Narsimhan, V.R. Rao, Parylene-C encapsulation for polymeric cantilever stability, in Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (2015), pp.1–5. https://doi.org/10.1109/DTIP.2015.7161032
R. ew, A.R. Sankar, In-silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv. 7, 035108 (2017). https://doi.org/10.1063/1.4977827
R. ew, A.R. Sankar, Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J. Nanosci. Nanotechnol. 18(5), 3387–3397 (2018). https://doi.org/10.1166/jnn.2018.14642
R. Feng, R. Farris, Influence of processing conditions on the thermal and mechanical properties of SU-8 negative photoresist coating. J. Micromech. Microeng. 13(1), 80–88 (2003). https://doi.org/10.1088/0960-1317/13/1/312
J.A.V. Kan, P.G. Shao, K. Ansari, A.A. Bettiol, T. Osipowicz, F. Watt, Proton beam writing: a tool for high-aspect ratio mask production. Microsyst. Technol. 13(5–6), 431–434 (2007). https://doi.org/10.1007/s00542-006-0192-1
S. Keller, Fabrication of an Autonomous Surface Stress Sensor with the Polymer SU-8 (Ph. D. thesis, 2008)
M. Lillemose, Piezoresistive Polymer Composites for Cantilever Readout (Ph. D. thesis, 2008). http://orbit.dtu.dk/files/5253544/Lillemose.pdf
N.T. Nguyen, T.Q. Truong, A fully polymeric micropump with piezoelectric actuator. Sens. Actuator B-Chem. 97(1), 137–143 (2004). https://doi.org/10.1016/S0925-4005(03)00521-5
V. Seidemann, S. Bütefisch, S. Büttgenbach, Fabrication and investigation of in-plane compliant SU8 structures for MEMS and their application to micro valves and micro grippers. Sens. Actuator A-Phys. 97, 457–461 (2002). https://doi.org/10.1016/S0924-4247(01)00829-9
H. Lorenz, M. Laudon, P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron. Eng. 41, 371–374 (1998). https://doi.org/10.1016/S0167-9317(98)00086-0
H. Lorenz, M. Despont, P. Vettiger, P. Renaud, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist. Microsyst. Technol. 4(3), 143–146 (1998). https://doi.org/10.1007/s005420050118
R. Yang, S.A. Soper, W. Wang, Fabrication of out-of-plane refractive concave and convex microlens arrays. Proc. SPIE 5717, 134–141 (2005). https://doi.org/10.1117/12.601832
T. Sikanen, S. Tuomikoski, R.A. Ketola, R. Kostiainen, S. Franssila, T. Kotiaho, Characterization of SU-8 for electrokinetic microfluidic applications. Lab Chip 5(8), 888–896 (2005). https://doi.org/10.1039/b503016a
J.C. Doll, N. Harjee, N. Klejwa, R. Kwon, S.M. Coulthard, B. Petzold, M.B. Goodman, B.L. Pruitt, SU-8 force sensing pillar arrays for biological measurements. Lab Chip 9(10), 1449–1454 (2009). https://doi.org/10.1039/b818622g
A. Johansson, G. Blagoi, A. Boisen, Polymeric cantilever-based biosensors with integrated readout. Appl. Phys. Lett. 89, 173505 (2006). https://doi.org/10.1063/1.2364843
S.J. Patil, A. Adhikari, M.S. Baghini, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection. Sens. Actuator B-Chem. 203, 165–173 (2014). https://doi.org/10.1016/j.snb.2014.06.110
L. Gammelgaard, P.A. Rasmussen, M. Calleja, P. Vettigen, A. Boisen, Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor. Appl. Phys. Lett. 88(11), 113508 (2006). https://doi.org/10.1063/1.2186396
A. Johansson, O. Hansen, J. Hales, A. Boisen, Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips. J. Micromech. Microeng. 16(12), 2564–2569 (2006). https://doi.org/10.1088/0960-1317/16/12/007
N.S. Kale, S. Nag, R. Pinto, V. Ramgopal Rao, Fabrication and characterization of polymeric microcantilever with encapsulated hotwire CVD polysilicon piezoresistor. J. Microelectromech. Syst. 18(1), 79–87 (2009). https://doi.org/10.1109/JMEMS.2008.2008577
A. Shokuhfar, P. Heydari, M.R. Aliahmadi, M. Mohtashamifar, S. Ebrahimi-Nejad, M. Zahedinejad, Low-cost polymeric microcantilever sensor with titanium as piezoresistive material. Microelectron. Eng. 98, 338–342 (2012). https://doi.org/10.1016/j.mee.2012.07.067
C.V.B. Reddy, M.A. Khderbad, S. Gandhi, M. Kandpal, S. Patil et al., Piezoresistive SU-8 cantilever with Fe(III) porphyrin coating for CO sensing. IEEE Trans. Nanotechnol. 11(4), 701–706 (2012). https://doi.org/10.1109/TNANO.2012.2190619
S.J. Patil, N. Duragkar, V.R. Rao, An ultra-sensitive piezoresistive polymer nano-composite microcantilever sensor electronic nose platform for explosive vapor detection. Sens. Actuator B-Chem. 192, 444–451 (2014). https://doi.org/10.1016/j.snb.2013.10.111
M. Vinchurkar, A. Joshi, S. Pandey, V.R. Rao, Polymeric piezoresistive microcantilevers with reduced electrical variability. J. Microelectromech. Syst. 24(4), 1111–1116 (2015). https://doi.org/10.1109/JMEMS.2014.2384481
A. Adamia, F. Borghettia, N. Massaria, M. Decarlia, C. Collinia, D. Stoppaa, L. Lorenzellia, Design of a cantilever-based system for genomic applications. Procedia Eng. 25, 339–401 (2011). https://doi.org/10.1016/j.proeng.2011.12.099
K. Rajanna, S. Mohan, Studies on meandering path thin-film strain gauge. Sens. Actuators 15(3), 297–303 (1988). https://doi.org/10.1016/0250-6874(88)87018-5
S. Sampath, K.V. Ramanaiah, Behaviour of Bi–Sb alloy thin films as strain gauges. Thin Solid Films 137(2), 199–205 (1986). https://doi.org/10.1016/0040-6090(86)90020-9
J. Gouault, M. Hubin, G. Richon, B. Eudeline, 3.2 The electromechanical behaviour of a full component (dielectric and Cu/Ni constantan alloy) for thin film strain gauge deposited upon steel-substrate. Vacuum 27(4), 362–365 (1977). https://doi.org/10.1016/0042-207X(77)90024-0
A.G. Alonso, J. Garcia, E. Castano, I. Obieta, F.J. Gracia, Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors. Sens. Actuator A-Phys. 37–38, 784–789 (1993). https://doi.org/10.1016/0924-4247(93)80132-Z
P. Kayser, J.C. Godefroy, L. Leca, High-temperature thin-film strain gauges. Sens. Actuator A-Phys. 37–38, 328–332 (1993). https://doi.org/10.1016/0924-4247(93)80055-L
P. Schmid, C. Zarfl, G. Balogh, U. Schmid, Gauge factor of titanium/platinum thin films up to 350 & #xB0;C. Procedia Eng. 87, 172–175 (2014). https://doi.org/10.1016/j.proeng.2014.11.611
K. Rajanna, S. Mohan, Strain-sensitive property of vacuum evaporated manganese films. Thin Solid Films 172(1), 45–50 (1989). https://doi.org/10.1016/0040-6090(89)90116-8
H. Chiriac, M. Urse, F. Rusu, C. Hison, M. Neagu, Ni–Ag thin films as strain-sensitive materials for piezoresistive sensors. Sens. Actuator A-Phys. 76(1–3), 376–380 (1999). https://doi.org/10.1016/S0924-4247(99)00027-8
S.M. Mohanasundaram, R. Pratap, A. Ghosh, Tuning the sensitivity of a metal-based piezoresistive sensor using electromigration. J. Microelectromech. Syst. 21(6), 1276–1278 (2012). https://doi.org/10.1109/JMEMS.2012.2211579
J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra, Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuator A-Phys. 83(1), 47–53 (2000). https://doi.org/10.1016/S0924-4247(00)00299-5
N.S. Kale, R.G. Rao, Design and fabrication issues in affinity cantilevers for bioMEMS applications. J. Microelectromech. Syst. 15(6), 1789–1794 (2006). https://doi.org/10.1109/JMEMS.2006.886031
M. Bao, Analysis and Design Principles of MEMS Devices, 1st edn. (Elsevier, 2005). Chapter 6, p. 275
F.J. French, Polysilicon: a versatile material for microsystems. Sens. Actuator A-Phys. 99(1), 3–12 (2002). https://doi.org/10.1016/S0924-4247(01)00876-7
Y. Zhou, Z. Wang, Q. Zhang, W. Ruan, L. Liu, A front-side released single crystalline silicon piezoresistive microcantilever sensor. IEEE Sens. J. 9(3), 246–254 (2009). https://doi.org/10.1109/JSEN.2008.2012197
A. Katada, Y.F. Buys, Y. Tominaga, S. Asai, M. Sumita, Resistivity control in the semiconductive region for carbon-black-filled polymer composites. Colliod Polym. Sci. 283(4), 367–374 (2005). https://doi.org/10.1007/s00396-004-1149-5
S. Jiguet, A. Bertsch, H. Hofmann, P. Renaud, SU-8 silver photosensitive nanocomposite. Adv. Eng. Mater. 6(9), 719–724 (2004). https://doi.org/10.1002/adem.200400068
D.W. Marshall, Copper-based conductive polymers: a new concept in conductive resins. J. Adhes. 74(1–4), 301–315 (2000). https://doi.org/10.1080/00218460008034533
N. Zhang, J. Xie, M. Guers, V.K. Varadan, Chemical bonding multiwalled carbon nanotube to SU-8 via ultrasonic irradiation. Smart Mater. Struct. 12(2), 260–263 (2003). https://doi.org/10.1088/0964-1726/12/2/314
H.C. Chiamori, J.W. Brown, E.V. Adhiprakasha, E.T. Hantsoo, J.B. Straalsund, N.A. Melosh, B.L. Pruitt, Suspension of nanops in SU-8: processing and characterization of nanocomposite polymers. Microelectron. J. 39(2), 228–236 (2008). https://doi.org/10.1016/j.mejo.2007.05.012
E.K. Sichel, J.I. Gittleman, P. Sheng, Electrical properties of carbon-polymer composites. J. Electron. Mater. 11(4), 699–747 (1982). https://doi.org/10.1007/BF02672392
K.H. Muller, J. Herrmann, B. Raguse, G. Baxter, T. Reda, Percolation model for electron conduction in films of metal nanops linked by organic molecules. Phys. Rev. B 66(7), 075417 (2002). https://doi.org/10.1103/PhysRevB.66.075417
D. Toker, D. Azulay, N. Shimoni, I. Balberg, O. Millo, Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 68(4), 041403 (2003). https://doi.org/10.1103/PhysRevB.68.041403
D. He, N.N. Ekere, Effect of p size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D-Appl. Phys. 37(13), 1848–1852 (2004). https://doi.org/10.1088/0022-3727/37/13/019
I. Balberg, D. Azulay, D. Toker, O. Millo, Percolation and tunneling in composite materials. Int. J. Mod. Phys. B 18(15), 2091 (2004). https://doi.org/10.1142/S0217979204025336
J. Thaysen, Cantilever for Biochemical Sensing Integrated in a Microliquid Handling System (Ph. D. thesis, 2001). http://orbit.dtu.dk/files/4681389/Jacob_Thaysen.pdf
S. Keller, G. Blagoi, M. Lillemose, D. Haefliger, A. Boisen, Processing of thin SU-8 films. J. Micromech. Microeng. 18(12), 125020 (2008). https://doi.org/10.1088/0960-1317/18/12/125020
T.A. Anhoj, A.M. Jorgensen, D.A. Zauner, J. Hubner, Effect of soft bake temperature on the polymerization of SU-8 photoresist. J. Micromech. Microeng. 16(9), 1819–1824 (2006). https://doi.org/10.1088/0960-1317/16/9/009
J. Zhang, K.L. Tan, G.D. Hong, L.J. Yang, H.Q. Gong, Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11(1), 20–26 (2001). https://doi.org/10.1088/0960-1317/11/1/304
J. Zhang, M.B. Chan-Park, S.R. Conner, Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip 4(6), 646–653 (2004). https://doi.org/10.1039/b403304c
M. Lillemose, M. Spieser, N.O. Christiansen, A. Christensen, A. Boisen, Intrinsically conductive polymer thin film piezoresistors. Microelectron. Eng. 85(5), 969–971 (2008). https://doi.org/10.1016/j.mee.2007.12.020
A.R. Sankar, S. Das, Experimental analysis of galvanic corrosion of a thin metal film in a multilayer stack for MEMS applications. Mater. Sci. Semicond. Process. 16(2), 449–453 (2013). https://doi.org/10.1016/j.mssp.2012.08.003
D. Haefliger, M. Nordstrom, P.A. Rasmussen, A. Boisen, Dry release of all-polymer structures. Microelectron. Eng. 78–79, 88–92 (2005). https://doi.org/10.1016/j.mee.2004.12.013
D. Haefliger, O. Hansen, A. Boisen, Self-positioning of polymer membranes driven by thermomechanically induced plastic deformation. Adv. Mater. 18(2), 238–241 (2006). https://doi.org/10.1002/adma.200501687
R.E.I. Schropp, Frontiers in HWCVD. Thin Solid Film 517(12), 3415–3419 (2009). https://doi.org/10.1016/j.tsf.2009.01.038
K. Wouters, R. Puers, Diffusing and swelling in SU-8: insight in material properties and processing. J. Micromech. Microeng. 20(9), 095013 (2010). https://doi.org/10.1088/0960-1317/20/9/095013
C. Liu, Y. Liu, M. Sokuler, D. Fell, S. Keller, A. Boisen, H. Butt, G.K. Auernhammer, E. Bonaccurso, Diffusion of water into SU-8 microcantilevers. Phys. Chem. Chem. Phys. 12(35), 10577–10583 (2010). https://doi.org/10.1039/c002478c
M. Tenje, S. Keller, S. Dohn, Z.J. Davis, A. Boisen, Drift study of SU8 cantilevers in liquid and gaseous environments. Ultramicroscopy 110(6), 596–598 (2010). https://doi.org/10.1016/j.ultramic.2010.02.017
S. Schmid, S. Kuhne, C. Hierold, Influence of air humidity on polymeric microresonators. J. Micromech. Microeng. 19(6), 065018 (2009). https://doi.org/10.1088/0960-1317/19/6/065018
C. Martin, A. Llobera, G. Villanueva, A. Voigt, G. Gruetzner, J. Brugger, F. Perez-Murano, Stress and aging minimization in photoplastic AFM probes. Microelectron. Eng. 86(4), 1226–1229 (2009). https://doi.org/10.1016/j.mee.2008.12.033