Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay
Corresponding Author: Kseniya Serebrennikova
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 24
Abstract
Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5–10 ng mL−1 with the limit of detection of 0.1 ng mL−1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).
Highlights:
1 New types of nanogold labels were evaluated for their improved sensitivity in procalcitonin lateral flow immunoassay (LFIA).
2 Gold nanostars and nanopopcorns were applied as a label in a sandwich-format LFIA.
3 The use of gold nanopopcorns as a label demonstrated a fivefold increase in sensitivity compared to that associated with the conventional LFIA based on 20-nm gold nanospheres.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wang, Y. Quan, N. Lee, I.R. Kennedy, Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J. Agric. Food Chem. 54(7), 2491–2495 (2006). https://doi.org/10.1021/jf0530401
- J. Zhu, N. Zou, D. Zhu, J. Wang, Q. Jin, J. Zhao, H. Mao, Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: proof of principle. Clin. Chem. 57(12), 1732–1738 (2011). https://doi.org/10.1373/clinchem.2011.171694
- Y.-Y. Lin, J. Wang, G. Liu, H. Wu, C.M. Wai, Y. Lin, A Nanop label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 23(11), 1659–1665 (2008). https://doi.org/10.1016/j.bios.2008.01.037
- C. Chen, J. Wu, A fast and sensitive quantitative lateral flow immunoassay for cry1Ab based on novel signal amplification conjugate. Sensors 12(9), 11684–11696 (2012). https://doi.org/10.3390/s120911684
- N.V. Zaytseva, R.A. Montagna, E.M. Lee, A.J. Baeumner, Multi-analyte single-membrane biosensor for the serotype-specific detection of dengue virus. Anal. Bioanal. Chem. 380(1), 46–53 (2004). https://doi.org/10.1007/s00216-004-2724-9
- S.J. Yeo, D.T. Huong, N.N. Hong, C.-Y. Li, K. Choi et al., Rapid and quantitative detection of zoonotic influenza a virus infection utilizing coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT). Theranostics 4(12), 1239–1249 (2014). https://doi.org/10.7150/thno.10255
- D. Tang, J.C. Sauceda, Z. Lin, S. Ott, E. Basova et al., Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens. Bioelectron. 25(2), 514–518 (2009). https://doi.org/10.1016/j.bios.2009.07.030
- K. Zhang, J. Wu, Y. Li, Y. Wu, T. Huang, D. Tang, Hollow nanogold microsphere-signalized lateral flow immunodipstick for the sensitive determination of the neurotoxin brevetoxin B. Microchim. Acta 181(11), 1447–1454 (2014). https://doi.org/10.1007/s00604-014-1291-9
- Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, X. Xia, Platinum-decorated gold nanops with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 17(9), 5572–5579 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
- J. Chandler, T. Gurmin, N. Robinson, The place of gold in rapid tests. IVD Technol. 6(2), 37–49 (2000)
- J. Aveyard, M. Mehrabi, A. Cossins, H. Braven, R. Wilson, One step visual detection of PCR products with gold nanops and a nucleic acid lateral flow (NALF) device. Chem. Commun. 41(41), 4251–4253 (2007). https://doi.org/10.1039/b708859k
- I. Safenkova, A. Zherdev, B. Dzantiev, Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal. Bioanal. Chem. 403(6), 1595–1605 (2012). https://doi.org/10.1007/s00216-012-5985-8
- B. Khlebtsov, N. Khlebtsov, Enhanced solid-phase immunoassay using gold nanoshells: effect of nanop optical properties. Nanotechnology 19(43), 435703 (2008). https://doi.org/10.1088/0957-4484/19/43/435703
- K. Omidfar, S. Kia, S. Kashanian, M. Paknejad, A. Besharatie, S. Kashanian, B. Larijani, Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Appl. Biochem. Biotechnol. 160(3), 843–855 (2010). https://doi.org/10.1007/s12010-009-8535-x
- L. Dykman, N. Khlebtsov, Gold nanops in biology and medicine: Recent advances and prospects. Acta Nat. 3(2), 34–55 (2011). http://pubmedcentralcanada.ca/pmcc/s/PMC3347577/
- L.-X. Chen, J.-J. Lv, A.-J. Wang, H. Huang, J.-J. Feng, One-step wet-chemical synthesis of gold nanoflower chains as highly active surface-enhanced Raman scattering substrates. Sens. Actuators B 222, 937–944 (2016). https://doi.org/10.1016/j.snb.2015.09.010
- P. Truong, B. Kima, S. Sim, Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 12(6), 1102–1109 (2012). https://doi.org/10.1039/c2lc20588b
- J. Li, J. Wu, X. Zhang, Y. Liu, D. Zhou, H. Sun, H. Zhang, B. Yang, Controllable synthesis of stable urchin-like gold nanops using hydroquinone to tune the reactivity of gold chloride. J. Phys. Chem. C 115(9), 3630–3637 (2011). https://doi.org/10.1021/jp1119074
- E. Hao, R. Bailey, G. Schatz, J. Hupp, S. Li, Synthesis and optical properties of branched gold nanocrystals. Nano Lett. 4(2), 327–330 (2004). https://doi.org/10.1021/nl0351542
- H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7), 1–14 (2012). https://doi.org/10.1088/0957-4484/23/7/075102
- Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, H. Yang, Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B 241, 1008–1013 (2017). https://doi.org/10.1016/j.snb.2016.11.021
- C. Parolo, A. de la Escosura-Muñiz, A. Merkoçi, Enhanced lateral flow immunoassay using gold nanops loaded with enzymes. Biosens. Bioelectron. 40(1), 412–416 (2013). https://doi.org/10.1016/j.bios.2012.06.049
- D.H. Choi, S.K. Lee, Y.K. Oh, B.W. Bae, S.D. Lee, S. Kim, Y.B. Shin, M.G. Kim, A dual gold nanop conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 25(8), 1999–2002 (2010). https://doi.org/10.1016/j.bios.2010.01.019
- Z. Ma, S.F. Sui, Naked-eye sensitive detection of immunoglobulin G by enlargement of Au nanops in vitro. Angew. Chem. Int. Ed. Engl. 41(12), 2176–2179 (2002). https://doi.org/10.1002/1521-3773(20020617)41:12<2176:AID-ANIE2176>3.0.CO;2-X
- L. Rivas, A. de la Escosura-Muñiz, L. Serrano, L. Altet, O. Francino, A. Sánchez, A. Merkoçi, Triple lines gold nanop-based lateral flow assay for enhanced and simultaneous detection of leishmania DNA and endogenous control. Nano Res. 8(11), 3704–3714 (2015). https://doi.org/10.1007/s12274-015-0870-3
- R. Liu, Y. Zhang, S. Zhang, W. Qiu, Y. Gao, Silver enhancement of gold nanops for biosensing: from qualitative to quantitative. App. Spectr. Rev. 49(2), 121–138 (2014). https://doi.org/10.1080/05704928.2013.807817
- E.M. Linares, L.T. Kubota, J. Michaelis, S. Thalhammer, Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J. Immunol. Met. 375(1–2), 264–270 (2012). https://doi.org/10.1016/j.jim.2011.11.003
- L. Anfossi, C. Giovannoli, G. Giraudi, F. Biagioli, C. Passini, C. Baggiani, A lateral flow immunoassay for the rapid detection of ochratoxin a in wine and grape must. J. Agric. Food Chem. 60(46), 11491–11497 (2012). https://doi.org/10.1021/jf3031666
- G. Frens, Controlled nucleation for the regulation of the p size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973). https://doi.org/10.1038/physci241020a0
- D. Kumar, I. Mutreja, P. Sykes, Seed mediated synthesis of highly monodispersed gold nanops in the presence of hydroquinone. Nanotechnology 27, 355601 (2006). https://doi.org/10.1088/0957-4484/27/35/355601
- S.D. Perrault, C.W. Chan, Synthesis and surface modification of highly monodispersed, spherical gold nanops of 50–200 nm. J. Am. Chem. Soc. 131(47), 17042–17043 (2009). https://doi.org/10.1021/ja907069u
- C. Kim, H.-M. Song, X. Cai, J. Yao, A. Wei, L.V. Wang, In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J. Mater. Chem. 21(9), 2841–2844 (2011). https://doi.org/10.1039/c0jm04194g
- B. Van de Broek, N. Devoogdt, A. D’Hollander, H.-L. Gijs, K. Jans, L. Lagae, S. Muyldermans, G. Maes, G. Borghs, Specific cell targeting with nanobody conjugated branched gold nanops for photothermal therapy. ACS Nano 5(6), 4319–4328 (2011). https://doi.org/10.1021/nn1023363
- S.K. Dondapati, T.K. Sau, C. Hrelescu, T.A. Klar, F.D. Stefani, J. Feldmann, Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4(11), 6318–6322 (2010). https://doi.org/10.1021/nn100760f
- M.O. Rodriguez, L.B. Covian, A.C. Garcia, M.C. Blanco-Lopez, Silver and gold enhancement methods for lateral flow immunoassays. Talanta 148, 272–278 (2015). https://doi.org/10.1016/j.talanta.2015.10.068
References
S. Wang, Y. Quan, N. Lee, I.R. Kennedy, Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J. Agric. Food Chem. 54(7), 2491–2495 (2006). https://doi.org/10.1021/jf0530401
J. Zhu, N. Zou, D. Zhu, J. Wang, Q. Jin, J. Zhao, H. Mao, Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: proof of principle. Clin. Chem. 57(12), 1732–1738 (2011). https://doi.org/10.1373/clinchem.2011.171694
Y.-Y. Lin, J. Wang, G. Liu, H. Wu, C.M. Wai, Y. Lin, A Nanop label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 23(11), 1659–1665 (2008). https://doi.org/10.1016/j.bios.2008.01.037
C. Chen, J. Wu, A fast and sensitive quantitative lateral flow immunoassay for cry1Ab based on novel signal amplification conjugate. Sensors 12(9), 11684–11696 (2012). https://doi.org/10.3390/s120911684
N.V. Zaytseva, R.A. Montagna, E.M. Lee, A.J. Baeumner, Multi-analyte single-membrane biosensor for the serotype-specific detection of dengue virus. Anal. Bioanal. Chem. 380(1), 46–53 (2004). https://doi.org/10.1007/s00216-004-2724-9
S.J. Yeo, D.T. Huong, N.N. Hong, C.-Y. Li, K. Choi et al., Rapid and quantitative detection of zoonotic influenza a virus infection utilizing coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT). Theranostics 4(12), 1239–1249 (2014). https://doi.org/10.7150/thno.10255
D. Tang, J.C. Sauceda, Z. Lin, S. Ott, E. Basova et al., Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens. Bioelectron. 25(2), 514–518 (2009). https://doi.org/10.1016/j.bios.2009.07.030
K. Zhang, J. Wu, Y. Li, Y. Wu, T. Huang, D. Tang, Hollow nanogold microsphere-signalized lateral flow immunodipstick for the sensitive determination of the neurotoxin brevetoxin B. Microchim. Acta 181(11), 1447–1454 (2014). https://doi.org/10.1007/s00604-014-1291-9
Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, X. Xia, Platinum-decorated gold nanops with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 17(9), 5572–5579 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
J. Chandler, T. Gurmin, N. Robinson, The place of gold in rapid tests. IVD Technol. 6(2), 37–49 (2000)
J. Aveyard, M. Mehrabi, A. Cossins, H. Braven, R. Wilson, One step visual detection of PCR products with gold nanops and a nucleic acid lateral flow (NALF) device. Chem. Commun. 41(41), 4251–4253 (2007). https://doi.org/10.1039/b708859k
I. Safenkova, A. Zherdev, B. Dzantiev, Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal. Bioanal. Chem. 403(6), 1595–1605 (2012). https://doi.org/10.1007/s00216-012-5985-8
B. Khlebtsov, N. Khlebtsov, Enhanced solid-phase immunoassay using gold nanoshells: effect of nanop optical properties. Nanotechnology 19(43), 435703 (2008). https://doi.org/10.1088/0957-4484/19/43/435703
K. Omidfar, S. Kia, S. Kashanian, M. Paknejad, A. Besharatie, S. Kashanian, B. Larijani, Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Appl. Biochem. Biotechnol. 160(3), 843–855 (2010). https://doi.org/10.1007/s12010-009-8535-x
L. Dykman, N. Khlebtsov, Gold nanops in biology and medicine: Recent advances and prospects. Acta Nat. 3(2), 34–55 (2011). http://pubmedcentralcanada.ca/pmcc/s/PMC3347577/
L.-X. Chen, J.-J. Lv, A.-J. Wang, H. Huang, J.-J. Feng, One-step wet-chemical synthesis of gold nanoflower chains as highly active surface-enhanced Raman scattering substrates. Sens. Actuators B 222, 937–944 (2016). https://doi.org/10.1016/j.snb.2015.09.010
P. Truong, B. Kima, S. Sim, Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 12(6), 1102–1109 (2012). https://doi.org/10.1039/c2lc20588b
J. Li, J. Wu, X. Zhang, Y. Liu, D. Zhou, H. Sun, H. Zhang, B. Yang, Controllable synthesis of stable urchin-like gold nanops using hydroquinone to tune the reactivity of gold chloride. J. Phys. Chem. C 115(9), 3630–3637 (2011). https://doi.org/10.1021/jp1119074
E. Hao, R. Bailey, G. Schatz, J. Hupp, S. Li, Synthesis and optical properties of branched gold nanocrystals. Nano Lett. 4(2), 327–330 (2004). https://doi.org/10.1021/nl0351542
H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7), 1–14 (2012). https://doi.org/10.1088/0957-4484/23/7/075102
Q. Xu, X. Guo, L. Xu, Y. Ying, Y. Wu, Y. Wen, H. Yang, Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens. Actuators B 241, 1008–1013 (2017). https://doi.org/10.1016/j.snb.2016.11.021
C. Parolo, A. de la Escosura-Muñiz, A. Merkoçi, Enhanced lateral flow immunoassay using gold nanops loaded with enzymes. Biosens. Bioelectron. 40(1), 412–416 (2013). https://doi.org/10.1016/j.bios.2012.06.049
D.H. Choi, S.K. Lee, Y.K. Oh, B.W. Bae, S.D. Lee, S. Kim, Y.B. Shin, M.G. Kim, A dual gold nanop conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 25(8), 1999–2002 (2010). https://doi.org/10.1016/j.bios.2010.01.019
Z. Ma, S.F. Sui, Naked-eye sensitive detection of immunoglobulin G by enlargement of Au nanops in vitro. Angew. Chem. Int. Ed. Engl. 41(12), 2176–2179 (2002). https://doi.org/10.1002/1521-3773(20020617)41:12<2176:AID-ANIE2176>3.0.CO;2-X
L. Rivas, A. de la Escosura-Muñiz, L. Serrano, L. Altet, O. Francino, A. Sánchez, A. Merkoçi, Triple lines gold nanop-based lateral flow assay for enhanced and simultaneous detection of leishmania DNA and endogenous control. Nano Res. 8(11), 3704–3714 (2015). https://doi.org/10.1007/s12274-015-0870-3
R. Liu, Y. Zhang, S. Zhang, W. Qiu, Y. Gao, Silver enhancement of gold nanops for biosensing: from qualitative to quantitative. App. Spectr. Rev. 49(2), 121–138 (2014). https://doi.org/10.1080/05704928.2013.807817
E.M. Linares, L.T. Kubota, J. Michaelis, S. Thalhammer, Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J. Immunol. Met. 375(1–2), 264–270 (2012). https://doi.org/10.1016/j.jim.2011.11.003
L. Anfossi, C. Giovannoli, G. Giraudi, F. Biagioli, C. Passini, C. Baggiani, A lateral flow immunoassay for the rapid detection of ochratoxin a in wine and grape must. J. Agric. Food Chem. 60(46), 11491–11497 (2012). https://doi.org/10.1021/jf3031666
G. Frens, Controlled nucleation for the regulation of the p size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973). https://doi.org/10.1038/physci241020a0
D. Kumar, I. Mutreja, P. Sykes, Seed mediated synthesis of highly monodispersed gold nanops in the presence of hydroquinone. Nanotechnology 27, 355601 (2006). https://doi.org/10.1088/0957-4484/27/35/355601
S.D. Perrault, C.W. Chan, Synthesis and surface modification of highly monodispersed, spherical gold nanops of 50–200 nm. J. Am. Chem. Soc. 131(47), 17042–17043 (2009). https://doi.org/10.1021/ja907069u
C. Kim, H.-M. Song, X. Cai, J. Yao, A. Wei, L.V. Wang, In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J. Mater. Chem. 21(9), 2841–2844 (2011). https://doi.org/10.1039/c0jm04194g
B. Van de Broek, N. Devoogdt, A. D’Hollander, H.-L. Gijs, K. Jans, L. Lagae, S. Muyldermans, G. Maes, G. Borghs, Specific cell targeting with nanobody conjugated branched gold nanops for photothermal therapy. ACS Nano 5(6), 4319–4328 (2011). https://doi.org/10.1021/nn1023363
S.K. Dondapati, T.K. Sau, C. Hrelescu, T.A. Klar, F.D. Stefani, J. Feldmann, Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 4(11), 6318–6322 (2010). https://doi.org/10.1021/nn100760f
M.O. Rodriguez, L.B. Covian, A.C. Garcia, M.C. Blanco-Lopez, Silver and gold enhancement methods for lateral flow immunoassays. Talanta 148, 272–278 (2015). https://doi.org/10.1016/j.talanta.2015.10.068