Recent Advances of Graphitic Carbon Nitride-Based Structures and Applications in Catalyst, Sensing, Imaging, and LEDs
Corresponding Author: Yucheng Lan
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 47
Abstract
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are “earth-abundant.” This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Highlights:
1 The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are “earth-abundant.”
2 Recent progress of g-C3N4-based nanostructures in catalyst, sensing, imaging and LEDs have been discussed in details.
3 An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Von, Liebig, Uber einige stickstoff-verbindungen. Eur. J. Organic Chem. 10(1), 1–47 (1834). doi:10.1002/jlac.18340100102
- A.Y. Liu, M.L. Cohen, Prediction of new low compressibility solids. Science 245(4920), 841–842 (1989). doi:10.1126/science.245.4920.841
- F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. Chem. Commun. 43, 4530–4532 (2006). doi:10.1039/B608532F
- D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides. Science 271(5245), 53–55 (1996). doi:10.1126/science.271.5245.53
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). doi:10.1038/NMAT2317
- Y.S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 21(42), 4270–4274 (2009). doi:10.1002/adma.200803500
- E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26(5), 508–512 (2002). doi:10.1039/b111062b
- A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/238037a0
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). doi:10.1002/adma.201102752
- Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev. 8(2), 59–63 (2015). doi:10.1080/17518253.2015.1075069
- C. Wang, A.W. Wang, J. Feng, Z. Li, B. Chen, Q.-H. Wu, J. Jiang, J. Lu, Y.Y. Li, Hydrothermal preparation of hierarchical MoS2-reduced graphene oxide nanocomposites towards remarkable enhanced visible-light photocatalytic activity. Ceram. Int. 43(2), 2384–2388 (2017). doi:10.1016/j.matlet.2014.12.021
- L. Fu, W. Cai, A. Wang, Y. Zheng, Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mater. Lett. 142, 201–203 (2015). doi:10.1016/j.matlet.2014.12.021
- Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 16(4), 2268–2277 (2016). doi:10.1021/acs.nanolett.5b04496
- Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, Thylakoid-inspired multi-shell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1), 1103–1112 (2017). doi:10.1021/acsnano.6b08251
- G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015). doi:10.1038/ncomms8258
- C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 27(4), 1604328 (2016). doi:10.1002/adfm.201604328
- X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). doi:10.1038/natrevmats.2016.64
- Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). doi:10.1038/ncomms4783
- Q. Guo, Y. Zhang, J. Qiu, G. Dong, Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. J. Mater. Chem. C 4(28), 6839–6847 (2016). doi:10.1039/c6tc01831a
- F. He, G. Chen, Y. Yu, Y. Zhou, Y. Zheng, S. Hao, The synthesis of condensed C-PDA-C3N4 composites with superior photocatalytic performance. Chem. Commun. 51(31), 6824–6827 (2015). doi:10.1039/c5cc01013f
- Y. Li, S. Ouyang, H. Xu, X. Wang, Y. Bi, Y. Zhang, J. Ye, Constructing solid–gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc. 138(40), 13289–13297 (2016). doi:10.1021/jacs.6b07272
- S. Kumar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. 117(49), 26135–26143 (2013). doi:10.1021/jp409651g
- J. Zhang, M. Zhang, L. Lin, X. Wang, Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angew. Chem. Int. Ed. 54(21), 6297–6301 (2015). doi:10.1002/anie.201501001
- J. Bian, Q. Li, C. Huang, J. Li, Y. Guo, M. Zaw, R.-Q. Zhang, Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications. Nano Energy 15, 353–361 (2015). doi:10.1016/j.nanoen.2015.04.012
- Y. Feng, J. Shen, Q. Cai, H. Yang, Q. Shen, The preparation and properties of a gC3N4/AgBr nanocomposite photocatalyst based on protonation pretreatment. New J. Chem. 39(2), 1132–1138 (2015). doi:10.1039/C4NJ01433B
- M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, M. Antonietti, Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 126(14), 3728–3732 (2014). doi:10.1002/ange.201309415
- P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014). doi:10.1039/c4ta04100c
- K. Srinivasu, B. Modak, S.K. Ghosh, Porous graphitic carbon nitride: a possible metal-free photocatalyst for water splitting. J. Phys. Chem. C 118(46), 26479–26484 (2014). doi:10.1021/jp506538d
- J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9(1), 931–940 (2015). doi:10.1021/nn506701x
- M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood et al., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6(2), 1258–1265 (2013). doi:10.1021/am405076b
- Y. Guo, F. Kong, C. Wang, S. Chu, J. Yang, Y. Wang, Z. Zou, Molecule-induced gradient electronic potential distribution on a polymeric photocatalyst surface and improved photocatalytic performance. J. Mater. Chem. A 1(16), 5142–5147 (2013). doi:10.1039/c3ta10528h
- J. Liu, H. Wang, Z.P. Chen, H. Moehwald, S. Fiechter, R. van de Krol, L. Wen, L. Jiang, M. Antonietti, Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 27(4), 712–718 (2015). doi:10.1002/adma.201404543
- Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7(30), 16850–16856 (2015). doi:10.1021/acsami.5b04947
- Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27(31), 4572–4577 (2015). doi:10.1002/adma.201501939
- Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). doi:10.1021/cs401208c
- Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 6(16), 14405–14414 (2014). doi:10.1021/am503674e
- F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, An advanced semimetal–organic bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 49(20), 12432–12440 (2015). doi:10.1021/acs.est.5b03758
- J. Wang, Z. Guan, J. Huang, Q. Li, J. Yang, Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite. J. Mater. Chem. A 2(21), 7960–7966 (2014). doi:10.1039/c4ta00275j
- A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893–4908 (2008). doi:10.1039/b800274f
- W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). doi:10.1021/acs.chemrev.6b00075
- Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1), 15–37 (2015). doi:10.1039/C4NR03008G
- J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6(19), 16449–16465 (2014). doi:10.1021/am502925j
- L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6(19), 7002–7023 (2016). doi:10.1039/C6CY01195K
- Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54(44), 12868–12884 (2015). doi:10.1002/anie.201501788
- X.H. Li, M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 42(16), 6593–6604 (2013). doi:10.1039/c3cs60067j
- J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A Graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). doi:10.1021/acs.nanolett.5b01919
- G.S. Li, Z.C. Lian, W.C. Wang, D.Q. Zhang, H.X. Li, Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 19, 446–454 (2016). doi:10.1016/j.nanoen.2015.10.011
- L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25(33), 5360–5367 (2015). doi:10.1002/adfm.201502253
- J.W. Fang, H.Q. Fan, M.M. Li, C.B. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 3(26), 13819–13826 (2015). doi:10.1039/c5ta02257f
- G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). doi:10.1002/adma.201303611
- Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2015). doi:10.1002/adfm.201503221
- T.Y. Ma, Y. Tang, S. Dai, S.Z. Qiao, Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10(12), 2382–2389 (2014). doi:10.1002/smll.201303827
- G. Liu, T. Wang, H. Zhang, X. Meng, D. Hao, K. Chang, P. Li, T. Kako, J. Ye, Nature-inspired environmental phosphorylation boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem. Int. Ed. 127(46), 13765–13769 (2015). doi:10.1002/ange.201505802
- X.D. Sun, Y.Y. Li, J. Zhou, C. Hai Ma, Y. Wang, J.H. Zhu, Facile synthesis of high photocatalytic active porous g-C3N4 with ZnCl2 template. J. Colloid Interface Sci. 451, 108–116 (2015). doi:10.1016/j.jcis.2015.03.059
- J. Zhu, Y. Wei, W. Chen, Z. Zhao, A. Thomas, Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46(37), 6965–6967 (2010). doi:10.1039/c0cc01432j
- Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5(5), 3058–3066 (2015). doi:10.1021/acscatal.5b00408
- J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl. Catal. B 183, 417–425 (2016). doi:10.1016/j.apcatb.2015.11.010
- K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B 176, 44–52 (2015). doi:10.1016/j.apcatb.2015.03.045
- J. Xu, H.T. Wu, X. Wang, B. Xue, Y.X. Li, Y. Cao, A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 15(13), 4510–4517 (2013). doi:10.1039/c3cp44402c
- Y.J. Chung, B.I. Lee, J.W. Ko, C.B. Park, Photoactive g-C3N4 nanosheets for light-induced suppression of alzheimer’s beta-amyloid aggregation and toxicity. Adv. Healthc. Mater. 5(13), 1560–1565 (2016). doi:10.1002/adhm.201500964
- W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 188, 1–12 (2016). doi:10.1016/j.apcatb.2016.01.058
- M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014). doi:10.1039/c3ee43525c
- C.Y. Liu, Y.H. Zhang, F. Dong, X. Du, H.W. Huang, Easily and synchronously ameliorating charge separation and band energy level in porous g-C3N4 for boosting photooxidation and photoreduction ability. J. Phys. Chem. C 120(19), 10381–10389 (2016). doi:10.1021/acs.jpcc.6b01705
- S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50(25), 3363–3366 (2014). doi:10.1039/c3cc47620k
- X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). doi:10.1021/ja308249k
- K. Chen, Z. Chai, C. Li, L. Shi, M. Liu, Q. Xie, Y. Zhang, D. Xu, A. Manivannan, Z. Liu, Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C(3)N(4) composite for hydrocarbon oxidation. ACS Nano 10(3), 3665–3673 (2016). doi:10.1021/acsnano.6b00113
- X. Yuan, C. Zhou, Y. Jin, Q. Jing, Y. Yang, X. Shen, Q. Tang, Y. Mu, A.K. Du, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. J. Colloid Interface Sci. 468, 211–219 (2016). doi:10.1016/j.jcis.2016.01.048
- J.S. Zhang, Y. Chen, X.C. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). doi:10.1039/c5ee01895a
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
- C. Wang, Y. Zhou, L. He, T.W. Ng, G. Hong, Q.H. Wu, F. Gao, C.S. Lee, W. Zhang, In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale 5(2), 600–605 (2013). doi:10.1039/c2nr32897f
- C.D. Wang, Y.S. Chui, R.G. Ma, T.L. Wong, J.G. Ren, Q.H. Wu, X.F. Chen, W.J. Zhang, A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J. Mater. Chem. A 1(35), 10092–10098 (2013). doi:10.1039/c3ta11740e
- C.D. Wang, J.L. Xu, M.F. Yuen, J. Zhang, Y.Y. Li, X.F. Chen, W.J. Zhang, Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 24(40), 6372–6380 (2014). doi:10.1002/adfm.201401216
- Q. Han, F. Zhao, C. Hu, L. Lv, Z. Zhang, N. Chen, L. Qu, Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 8(5), 1718–1728 (2015). doi:10.1007/s12274-014-0675-9
- N. Cheng, P. Jiang, Q. Liu, J. Tian, A.M. Asiri, X. Sun, Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139(20), 5065–5068 (2014). doi:10.1039/c4an00914b
- P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). doi:10.1002/adfm.201200922
- K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136(5), 1730–1733 (2014). doi:10.1021/ja411321s
- J.S. Zhang, J.H. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X.Z. Fu, X.C. Wang, Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4(3), 675–678 (2011). doi:10.1039/c0ee00418a
- S. Yang, X. Feng, X. Wang, K. Mullen, Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50(23), 5339–5343 (2011). doi:10.1002/anie.201100170
- S. Wang, C. Li, T. Wang, P. Zhang, A. Li, J. Gong, Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2(9), 2885–2890 (2014). doi:10.1039/c3ta14576j
- Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. 53(44), 11926–11930 (2014). doi:10.1002/anie.201407319
- J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 6(11), 8434–8440 (2014). doi:10.1021/am501319v
- X.-H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3(6), 2170–2174 (2012). doi:10.1039/c2sc20289a
- F. He, G. Chen, J. Miao, Z. Wang, D. Su et al., Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution. ACS Energy Lett. 1(5), 969–975 (2016). doi:10.1021/acsenergylett.6b00398
- S. Panneri, M. Thomas, P. Ganguly, B.N. Nair, A.M. Peer, K.G.K. Warrier, H.U.N. Saraswathy, C3N4 anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catal. Sci. Technol. 7, 2118–2128 (2017). doi:10.1039/C7CY00348J
- Z. Tong, D. Yang, Y. Sun, Y. Nan, Z. Jiang, Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 12(30), 4093–4101 (2016). doi:10.1002/smll.201601660
- W. Wang, C.Y. Jimmy, Z. Shen, D.K. Chan, T. Gu, g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 50(70), 10148–10150 (2014). doi:10.1039/c4cc02543a
- X.D. Zhang, H.X. Wang, H. Wang, Q. Zhang, J.F. Xie, Y.P. Tian, J. Wang, Y. Xie, Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 26(26), 4438–4443 (2014). doi:10.1002/adma.201400111
- J. Wu, S. Yang, J. Li, Y. Yang, G. Wang et al., Electron injection of phosphorus doped g-C3N4 quantum dots: controllable photoluminescence emission wavelength in the whole visible light range with high quantum yield. Adv. Opt. Mater. 4(12), 2095–2101 (2016). doi:10.1002/adom.201600570
- X. Cao, J. Ma, Y. Lin, B. Yao, F. Li, W. Weng, X. Lin, A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta A 151, 875–880 (2015). doi:10.1016/j.saa.2015.07.034
- Y.-C. Lu, J. Chen, A.-J. Wang, N. Bao, J.-J. Feng, W. Wang, L. Shao, Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury (II) detection and bioimaging. J. Mater. Chem. C 3(1), 73–78 (2015). doi:10.1039/c4tc02111h
- P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 26(47), 8046–8052 (2014). doi:10.1002/adma.201404057
- J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B 165, 661–667 (2015). doi:10.1016/j.apcatb.2014.10.072
- A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A.K. Pathak, A. Ali, B. Sreedhar, S.L. Jain, A [Fe(bpy)(3)](2 +) grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chem. 18(8), 2514–2521 (2016). doi:10.1039/c5gc02090e
- P. Sharma, Y. Sasson, A photoactive catalyst Ru–g-C3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem. 19, 844–852 (2017). doi:10.1039/c6gc02949c
- H. Wang, S. Jiang, S. Chen, D. Li, X. Zhang et al., Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 28(32), 6940–6945 (2016). doi:10.1002/adma.201601413
- M. Zhang, X. Wang, Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 7(6), 1902–1906 (2014). doi:10.1039/C3EE44189J
- J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). doi:10.1126/science.aaa3145
- K. Dai, L. Lu, Q. Liu, G. Zhu, X. Wei, J. Bai, L. Xuan, H. Wang, Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans. 43(17), 6295–6299 (2014). doi:10.1039/c3dt53106f
- Z. Ma, R. Sa, Q. Li, K. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: insights into high efficiency for photocatalytic solar water splitting. Phys. Chem. Chem. Phys. 18(2), 1050–1058 (2016). doi:10.1039/c5cp05847c
- L. Gu, J. Wang, Z. Zou, X. Han, Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV-and visible-light photocatalytic activity. J. Hazard. Mater. 268, 216–223 (2014). doi:10.1016/j.jhazmat.2014.01.021
- Z. Li, B. Li, S. Peng, D. Li, S. Yang, Y. Fang, Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Adv. 4(66), 35144–35148 (2014). doi:10.1039/c4ra05749j
- S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). doi:10.1002/anie.201300519
- J. Tian, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+). Anal. Chem. 85(11), 5595–5599 (2013). doi:10.1021/ac400924j
- A. Wang, L. Fu, T. Rao, W. Cai, M.-F. Yuen, J. Zhong, Effect of metal ions on the quenching of photoluminescent CdTe QDs and their recovery. Opt. Mater. 42, 548–552 (2015). doi:10.1016/j.optmat.2015.01.010
- S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6(8), 4157–4162 (2014). doi:10.1039/C3NR06744K
- M. Rong, L. Lin, X. Song, Y. Wang, Y. Zhong, J. Yan, Y. Feng, X. Zeng, X. Chen, Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent switch. Biosens. Bioelectron. 68, 210–217 (2015). doi:10.1016/j.bios.2014.12.024
- H. Huang, R. Chen, J. Ma, L. Yan, Y. Zhao, Y. Wang, W. Zhang, J. Fan, X. Chen, Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem. Commun. 50(97), 15415–15418 (2014). doi:10.1039/c4cc06659f
- J. Tian, Q. Liu, A.M. Asiri, X. Sun, Y. He, Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sens. Actuators B 216, 453–460 (2015). doi:10.1016/j.snb.2015.04.075
- G. Shiravand, A. Badiei, G.M. Ziarani, Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B 242, 244–252 (2017). doi:10.1016/j.snb.2016.11.038
- S. Barman, M. Sadhukhan, Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 22(41), 21832–21837 (2012). doi:10.1039/C2JM35501A
- X.L. Zhang, C. Zheng, S.S. Guo, J. Li, H.H. Yang, G. Chen, Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C(3)N(4) nanosheet-MnO(2) sandwich nanocomposite. Anal. Chem. 86(7), 3426–3434 (2014). doi:10.1021/ac500336f
- Y. Xu, X. Niu, H. Zhang, L. Xu, S. Zhao, H. Chen, X. Chen, Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)–Hg2+ chemosensor. J. Agric. Food Chem. 63(6), 1747–1755 (2015). doi:10.1021/jf505759z
- J. Han, H.Y. Zou, M.X. Gao, C.Z. Huang, A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 148, 279–284 (2016). doi:10.1016/j.talanta.2015.10.038
- Q.-M. Feng, Y.-Z. Shen, M.-X. Li, Z.-L. Zhang, W. Zhao, J.-J. Xu, H.-Y. Chen, Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru (bpy) 32+ for microRNA detection. Anal. Chem. 88(1), 937–944 (2015). doi:10.1021/acs.analchem.5b03670
- Y. Tang, H. Song, Y. Su, Y. Lv, Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 85(24), 11876–11884 (2013). doi:10.1021/ac403517u
- D. Das, S.L. Shinde, K.K. Nanda, Temperature-dependent photoluminescence of g-C3N4: implication for temperature sensing. ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016). doi:10.1021/acsami.5b10770
- L. Feng, F. He, G. Yang, S. Gai, Y. Dai, C. Li, P. Yang, NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J. Mater. Chem. B 4(48), 8000–8008 (2016). doi:10.1039/c6tb02232d
- L. Feng, F. He, B. Liu, G. Yang, S. Gai, P. Yang, C. Li, Y. Dai, R. Lv, J. Lin, g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem. Mater. 28(21), 7935–7946 (2016). doi:10.1021/acs.chemmater.6b03598
- A. Wang, C. Lee, H. Bian, Z. Li, Y. Zhan, J. He, Y. Wang, J. Lu, Y.Y. Li, Synthesis of g-C3N4/silica gels for white-light-emitting devices. Part. Part. Syst. Charact. 34(1), 1600258 (2017). doi:10.1002/ppsc.201600258
- S. Bayan, N. Gogurla, A. Midya, S.K. Ray, White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon 108, 335–342 (2016). doi:10.1016/j.carbon.2016.07.032
- J. Tian, Q. Liu, A.M. Asiri, K.A. Alamry, X. Sun, Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7(8), 2125–2130 (2014). doi:10.1002/cssc.201402118
- J. Tian, R. Ning, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Three-dimensional porous supramolecular architecture from ultrathin g-C(3)N(4) nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 6(2), 1011–1017 (2014). doi:10.1021/am404536w
- J. Tian, Q. Liu, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5(23), 11604–11609 (2013). doi:10.1039/c3nr03693f
- J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbonnitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5(19), 8921–8924 (2013). doi:10.1039/C3NR02031B
- L. Shi, L. Liang, F.X. Wang, J. Ma, J.M. Sun, Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 4(9), 3235–3243 (2014). doi:10.1039/C4CY00411F
- B.H. Long, J.L. Lin, X.C. Wang, Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2(9), 2942–2951 (2014). doi:10.1039/c3ta14339b
- S. Yuan, Q. Zhang, B. Xu, S. Liu, J. Wang, J. Xie, M. Zhang, T. Ohno, A new precursor to synthesize g-C3N4 with superior visible light absorption for photocatalytic application. Catal. Sci. Technol. 7(9), 1826–1830 (2017). doi:10.1039/c7cy00213k
- J.S. Zhang, F.S. Guo, X.C. Wang, An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater. 23(23), 3008–3014 (2013). doi:10.1002/adfm.201203287
- L. Shi, L. Liang, F.X. Wang, M.S. Liu, K.L. Chen, K.N. Sun, N.Q. Zhang, J.M. Sun, Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity. ACS Sustain. Chem. Eng. 3(12), 3412–3419 (2015). doi:10.1021/acssuschemeng.5b01139
- J.H. Sun, J.S. Zhang, M.W. Zhang, M. Antonietti, X.Z. Fu, X.C. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 3, 1139 (2012). doi:10.1038/Ncomms2152
- H. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48(28), 3430–3432 (2012). doi:10.1039/c2cc00001f
- Q.J. Fan, J.J. Liu, Y.C. Yu, S.L. Zuo, A template induced method to synthesize nanoporous graphitic carbon nitride with enhanced photocatalytic activity under visible light. RSC Adv. 4(106), 61877–61883 (2014). doi:10.1039/C4RA12033G
- L. Shi, L. Liang, F. Wang, M. Liu, T. Liang, K. Chen, J. Sun, In situ bubble template promoted facile preparation of porous g-C3N4 with excellent visible-light photocatalytic performance. RSC Adv. 5(78), 63264–63270 (2015). doi:10.1039/C5RA09645F
- F. He, G. Chen, Y. Yu, Y. Zhou, Y. Zheng, S. Hao, The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance. Chem. Commun. 51(2), 425–427 (2015). doi:10.1039/C4CC07106A
- J. Xu, Y. Wang, Y. Zhu, Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir 29(33), 10566–10572 (2013). doi:10.1021/la402268u
- M. Zhang, J. Xu, R. Zong, Y. Zhu, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Appl. Catal. B 147, 229–235 (2014). doi:10.1016/j.apcatb.2013.09.002
- H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B 129, 182–193 (2013). doi:10.1016/j.apcatb.2012.08.015
- Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing, S. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 7(2), 758–764 (2015). doi:10.1039/c4nr06565d
- S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, g-C3N4/ZnWO4 films: preparation and its enhanced photocatalytic decomposition of phenol in UV. Appl. Surf. Sci. 358, 328–335 (2015). doi:10.1016/j.apsusc.2015.07.180
- L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catal. Sci. Technol. 4(3), 758–765 (2014). doi:10.1039/c3cy00871a
- M.J. Muñoz-Batista, O. Fontelles-Carceller, M. Ferrer, M. Fernández-García, A. Kubacka, Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Appl. Catal. B 183, 86–95 (2016). doi:10.1016/j.apcatb.2015.10.024
- L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/gC3N4 composite photocatalysts under visible light. Dalton Trans. 43(19), 7236–7244 (2014). doi:10.1039/C4DT00087K
- P. Gibot, F. Schnell, D. Spitzer, Enhancement of the graphitic carbon nitride surface properties from calcium salts as templates. Micropor. Mesopor. Mater. 219, 42–47 (2016). doi:10.1016/j.micromeso.2015.07.026
- X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, T. Chen, Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Adv. 5(94), 76963–76972 (2015). doi:10.1039/C5RA13438B
- J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). doi:10.1016/j.apsusc.2016.07.030
- K. Vignesh, S. Kang, B.S. Kwak, M. Kang, Meso-porous ZnO nano-triangles@ graphitic-C3N4 nano-foils: fabrication and Recyclable photocatalytic activity. Sep. Purif. Technol. 147, 257–265 (2015). doi:10.1016/j.seppur.2015.04.043
References
J. Von, Liebig, Uber einige stickstoff-verbindungen. Eur. J. Organic Chem. 10(1), 1–47 (1834). doi:10.1002/jlac.18340100102
A.Y. Liu, M.L. Cohen, Prediction of new low compressibility solids. Science 245(4920), 841–842 (1989). doi:10.1126/science.245.4920.841
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. Chem. Commun. 43, 4530–4532 (2006). doi:10.1039/B608532F
D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides. Science 271(5245), 53–55 (1996). doi:10.1126/science.271.5245.53
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). doi:10.1038/NMAT2317
Y.S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 21(42), 4270–4274 (2009). doi:10.1002/adma.200803500
E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26(5), 508–512 (2002). doi:10.1039/b111062b
A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). doi:10.1038/238037a0
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012). doi:10.1002/adma.201102752
Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, F. Peng, Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev. 8(2), 59–63 (2015). doi:10.1080/17518253.2015.1075069
C. Wang, A.W. Wang, J. Feng, Z. Li, B. Chen, Q.-H. Wu, J. Jiang, J. Lu, Y.Y. Li, Hydrothermal preparation of hierarchical MoS2-reduced graphene oxide nanocomposites towards remarkable enhanced visible-light photocatalytic activity. Ceram. Int. 43(2), 2384–2388 (2017). doi:10.1016/j.matlet.2014.12.021
L. Fu, W. Cai, A. Wang, Y. Zheng, Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mater. Lett. 142, 201–203 (2015). doi:10.1016/j.matlet.2014.12.021
Y. Hou, Z. Wen, S. Cui, X. Feng, J. Chen, Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 16(4), 2268–2277 (2016). doi:10.1021/acs.nanolett.5b04496
Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, Thylakoid-inspired multi-shell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1), 1103–1112 (2017). doi:10.1021/acsnano.6b08251
G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator. Nat. Commun. 6, 7258 (2015). doi:10.1038/ncomms8258
C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P-Co-N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 27(4), 1604328 (2016). doi:10.1002/adfm.201604328
X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). doi:10.1038/natrevmats.2016.64
Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). doi:10.1038/ncomms4783
Q. Guo, Y. Zhang, J. Qiu, G. Dong, Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. J. Mater. Chem. C 4(28), 6839–6847 (2016). doi:10.1039/c6tc01831a
F. He, G. Chen, Y. Yu, Y. Zhou, Y. Zheng, S. Hao, The synthesis of condensed C-PDA-C3N4 composites with superior photocatalytic performance. Chem. Commun. 51(31), 6824–6827 (2015). doi:10.1039/c5cc01013f
Y. Li, S. Ouyang, H. Xu, X. Wang, Y. Bi, Y. Zhang, J. Ye, Constructing solid–gas-interfacial fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J. Am. Chem. Soc. 138(40), 13289–13297 (2016). doi:10.1021/jacs.6b07272
S. Kumar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. 117(49), 26135–26143 (2013). doi:10.1021/jp409651g
J. Zhang, M. Zhang, L. Lin, X. Wang, Sol processing of conjugated carbon nitride powders for thin-film fabrication. Angew. Chem. Int. Ed. 54(21), 6297–6301 (2015). doi:10.1002/anie.201501001
J. Bian, Q. Li, C. Huang, J. Li, Y. Guo, M. Zaw, R.-Q. Zhang, Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications. Nano Energy 15, 353–361 (2015). doi:10.1016/j.nanoen.2015.04.012
Y. Feng, J. Shen, Q. Cai, H. Yang, Q. Shen, The preparation and properties of a gC3N4/AgBr nanocomposite photocatalyst based on protonation pretreatment. New J. Chem. 39(2), 1132–1138 (2015). doi:10.1039/C4NJ01433B
M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, M. Antonietti, Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 126(14), 3728–3732 (2014). doi:10.1002/ange.201309415
P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014). doi:10.1039/c4ta04100c
K. Srinivasu, B. Modak, S.K. Ghosh, Porous graphitic carbon nitride: a possible metal-free photocatalyst for water splitting. J. Phys. Chem. C 118(46), 26479–26484 (2014). doi:10.1021/jp506538d
J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9(1), 931–940 (2015). doi:10.1021/nn506701x
M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood et al., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6(2), 1258–1265 (2013). doi:10.1021/am405076b
Y. Guo, F. Kong, C. Wang, S. Chu, J. Yang, Y. Wang, Z. Zou, Molecule-induced gradient electronic potential distribution on a polymeric photocatalyst surface and improved photocatalytic performance. J. Mater. Chem. A 1(16), 5142–5147 (2013). doi:10.1039/c3ta10528h
J. Liu, H. Wang, Z.P. Chen, H. Moehwald, S. Fiechter, R. van de Krol, L. Wen, L. Jiang, M. Antonietti, Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 27(4), 712–718 (2015). doi:10.1002/adma.201404543
Y.-P. Zhu, T.-Z. Ren, Z.-Y. Yuan, Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces 7(30), 16850–16856 (2015). doi:10.1021/acsami.5b04947
Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv. Mater. 27(31), 4572–4577 (2015). doi:10.1002/adma.201501939
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). doi:10.1021/cs401208c
Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces 6(16), 14405–14414 (2014). doi:10.1021/am503674e
F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, An advanced semimetal–organic bi spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 49(20), 12432–12440 (2015). doi:10.1021/acs.est.5b03758
J. Wang, Z. Guan, J. Huang, Q. Li, J. Yang, Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite. J. Mater. Chem. A 2(21), 7960–7966 (2014). doi:10.1039/c4ta00275j
A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893–4908 (2008). doi:10.1039/b800274f
W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). doi:10.1021/acs.chemrev.6b00075
Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1), 15–37 (2015). doi:10.1039/C4NR03008G
J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6(19), 16449–16465 (2014). doi:10.1021/am502925j
L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6(19), 7002–7023 (2016). doi:10.1039/C6CY01195K
Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54(44), 12868–12884 (2015). doi:10.1002/anie.201501788
X.H. Li, M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 42(16), 6593–6604 (2013). doi:10.1039/c3cs60067j
J. Liu, W. Li, L. Duan, X. Li, L. Ji et al., A Graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15(8), 5137–5142 (2015). doi:10.1021/acs.nanolett.5b01919
G.S. Li, Z.C. Lian, W.C. Wang, D.Q. Zhang, H.X. Li, Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 19, 446–454 (2016). doi:10.1016/j.nanoen.2015.10.011
L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25(33), 5360–5367 (2015). doi:10.1002/adfm.201502253
J.W. Fang, H.Q. Fan, M.M. Li, C.B. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 3(26), 13819–13826 (2015). doi:10.1039/c5ta02257f
G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). doi:10.1002/adma.201303611
Q.H. Liang, Z. Li, Z.H. Huang, F.Y. Kang, Q.H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25(44), 6885–6892 (2015). doi:10.1002/adfm.201503221
T.Y. Ma, Y. Tang, S. Dai, S.Z. Qiao, Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10(12), 2382–2389 (2014). doi:10.1002/smll.201303827
G. Liu, T. Wang, H. Zhang, X. Meng, D. Hao, K. Chang, P. Li, T. Kako, J. Ye, Nature-inspired environmental phosphorylation boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem. Int. Ed. 127(46), 13765–13769 (2015). doi:10.1002/ange.201505802
X.D. Sun, Y.Y. Li, J. Zhou, C. Hai Ma, Y. Wang, J.H. Zhu, Facile synthesis of high photocatalytic active porous g-C3N4 with ZnCl2 template. J. Colloid Interface Sci. 451, 108–116 (2015). doi:10.1016/j.jcis.2015.03.059
J. Zhu, Y. Wei, W. Chen, Z. Zhao, A. Thomas, Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 46(37), 6965–6967 (2010). doi:10.1039/c0cc01432j
Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5(5), 3058–3066 (2015). doi:10.1021/acscatal.5b00408
J. Xiao, Y. Xie, F. Nawaz, Y. Wang, P. Du, H. Cao, Dramatic coupling of visible light with ozone on honeycomb-like porous g-C3N4 towards superior oxidation of water pollutants. Appl. Catal. B 183, 417–425 (2016). doi:10.1016/j.apcatb.2015.11.010
K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B 176, 44–52 (2015). doi:10.1016/j.apcatb.2015.03.045
J. Xu, H.T. Wu, X. Wang, B. Xue, Y.X. Li, Y. Cao, A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 15(13), 4510–4517 (2013). doi:10.1039/c3cp44402c
Y.J. Chung, B.I. Lee, J.W. Ko, C.B. Park, Photoactive g-C3N4 nanosheets for light-induced suppression of alzheimer’s beta-amyloid aggregation and toxicity. Adv. Healthc. Mater. 5(13), 1560–1565 (2016). doi:10.1002/adhm.201500964
W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 188, 1–12 (2016). doi:10.1016/j.apcatb.2016.01.058
M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7(4), 1250–1280 (2014). doi:10.1039/c3ee43525c
C.Y. Liu, Y.H. Zhang, F. Dong, X. Du, H.W. Huang, Easily and synchronously ameliorating charge separation and band energy level in porous g-C3N4 for boosting photooxidation and photoreduction ability. J. Phys. Chem. C 120(19), 10381–10389 (2016). doi:10.1021/acs.jpcc.6b01705
S. Pandiaraj, H.B. Aiyappa, R. Banerjee, S. Kurungot, Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 50(25), 3363–3366 (2014). doi:10.1039/c3cc47620k
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). doi:10.1021/ja308249k
K. Chen, Z. Chai, C. Li, L. Shi, M. Liu, Q. Xie, Y. Zhang, D. Xu, A. Manivannan, Z. Liu, Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C(3)N(4) composite for hydrocarbon oxidation. ACS Nano 10(3), 3665–3673 (2016). doi:10.1021/acsnano.6b00113
X. Yuan, C. Zhou, Y. Jin, Q. Jing, Y. Yang, X. Shen, Q. Tang, Y. Mu, A.K. Du, Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. J. Colloid Interface Sci. 468, 211–219 (2016). doi:10.1016/j.jcis.2016.01.048
J.S. Zhang, Y. Chen, X.C. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8(11), 3092–3108 (2015). doi:10.1039/c5ee01895a
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
C. Wang, Y. Zhou, L. He, T.W. Ng, G. Hong, Q.H. Wu, F. Gao, C.S. Lee, W. Zhang, In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale 5(2), 600–605 (2013). doi:10.1039/c2nr32897f
C.D. Wang, Y.S. Chui, R.G. Ma, T.L. Wong, J.G. Ren, Q.H. Wu, X.F. Chen, W.J. Zhang, A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J. Mater. Chem. A 1(35), 10092–10098 (2013). doi:10.1039/c3ta11740e
C.D. Wang, J.L. Xu, M.F. Yuen, J. Zhang, Y.Y. Li, X.F. Chen, W.J. Zhang, Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 24(40), 6372–6380 (2014). doi:10.1002/adfm.201401216
Q. Han, F. Zhao, C. Hu, L. Lv, Z. Zhang, N. Chen, L. Qu, Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 8(5), 1718–1728 (2015). doi:10.1007/s12274-014-0675-9
N. Cheng, P. Jiang, Q. Liu, J. Tian, A.M. Asiri, X. Sun, Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection. Analyst 139(20), 5065–5068 (2014). doi:10.1039/c4an00914b
P. Niu, L.L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). doi:10.1002/adfm.201200922
K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker, B.V. Lotsch, Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136(5), 1730–1733 (2014). doi:10.1021/ja411321s
J.S. Zhang, J.H. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X.Z. Fu, X.C. Wang, Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4(3), 675–678 (2011). doi:10.1039/c0ee00418a
S. Yang, X. Feng, X. Wang, K. Mullen, Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem. Int. Ed. 50(23), 5339–5343 (2011). doi:10.1002/anie.201100170
S. Wang, C. Li, T. Wang, P. Zhang, A. Li, J. Gong, Controllable synthesis of nanotube-type graphitic C3N4 and their visible-light photocatalytic and fluorescent properties. J. Mater. Chem. A 2(9), 2885–2890 (2014). doi:10.1039/c3ta14576j
Y. Zheng, L. Lin, X. Ye, F. Guo, X. Wang, Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. 53(44), 11926–11930 (2014). doi:10.1002/anie.201407319
J. Liu, J. Huang, H. Zhou, M. Antonietti, Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 6(11), 8434–8440 (2014). doi:10.1021/am501319v
X.-H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3(6), 2170–2174 (2012). doi:10.1039/c2sc20289a
F. He, G. Chen, J. Miao, Z. Wang, D. Su et al., Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution. ACS Energy Lett. 1(5), 969–975 (2016). doi:10.1021/acsenergylett.6b00398
S. Panneri, M. Thomas, P. Ganguly, B.N. Nair, A.M. Peer, K.G.K. Warrier, H.U.N. Saraswathy, C3N4 anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catal. Sci. Technol. 7, 2118–2128 (2017). doi:10.1039/C7CY00348J
Z. Tong, D. Yang, Y. Sun, Y. Nan, Z. Jiang, Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer. Small 12(30), 4093–4101 (2016). doi:10.1002/smll.201601660
W. Wang, C.Y. Jimmy, Z. Shen, D.K. Chan, T. Gu, g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem. Commun. 50(70), 10148–10150 (2014). doi:10.1039/c4cc02543a
X.D. Zhang, H.X. Wang, H. Wang, Q. Zhang, J.F. Xie, Y.P. Tian, J. Wang, Y. Xie, Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 26(26), 4438–4443 (2014). doi:10.1002/adma.201400111
J. Wu, S. Yang, J. Li, Y. Yang, G. Wang et al., Electron injection of phosphorus doped g-C3N4 quantum dots: controllable photoluminescence emission wavelength in the whole visible light range with high quantum yield. Adv. Opt. Mater. 4(12), 2095–2101 (2016). doi:10.1002/adom.201600570
X. Cao, J. Ma, Y. Lin, B. Yao, F. Li, W. Weng, X. Lin, A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta A 151, 875–880 (2015). doi:10.1016/j.saa.2015.07.034
Y.-C. Lu, J. Chen, A.-J. Wang, N. Bao, J.-J. Feng, W. Wang, L. Shao, Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury (II) detection and bioimaging. J. Mater. Chem. C 3(1), 73–78 (2015). doi:10.1039/c4tc02111h
P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 26(47), 8046–8052 (2014). doi:10.1002/adma.201404057
J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B 165, 661–667 (2015). doi:10.1016/j.apcatb.2014.10.072
A. Kumar, P. Kumar, C. Joshi, S. Ponnada, A.K. Pathak, A. Ali, B. Sreedhar, S.L. Jain, A [Fe(bpy)(3)](2 +) grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chem. 18(8), 2514–2521 (2016). doi:10.1039/c5gc02090e
P. Sharma, Y. Sasson, A photoactive catalyst Ru–g-C3N4 for hydrogen transfer reaction of aldehydes and ketones. Green Chem. 19, 844–852 (2017). doi:10.1039/c6gc02949c
H. Wang, S. Jiang, S. Chen, D. Li, X. Zhang et al., Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv. Mater. 28(32), 6940–6945 (2016). doi:10.1002/adma.201601413
M. Zhang, X. Wang, Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 7(6), 1902–1906 (2014). doi:10.1039/C3EE44189J
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang et al., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015). doi:10.1126/science.aaa3145
K. Dai, L. Lu, Q. Liu, G. Zhu, X. Wei, J. Bai, L. Xuan, H. Wang, Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans. 43(17), 6295–6299 (2014). doi:10.1039/c3dt53106f
Z. Ma, R. Sa, Q. Li, K. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: insights into high efficiency for photocatalytic solar water splitting. Phys. Chem. Chem. Phys. 18(2), 1050–1058 (2016). doi:10.1039/c5cp05847c
L. Gu, J. Wang, Z. Zou, X. Han, Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV-and visible-light photocatalytic activity. J. Hazard. Mater. 268, 216–223 (2014). doi:10.1016/j.jhazmat.2014.01.021
Z. Li, B. Li, S. Peng, D. Li, S. Yang, Y. Fang, Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange. RSC Adv. 4(66), 35144–35148 (2014). doi:10.1039/c4ra05749j
S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). doi:10.1002/anie.201300519
J. Tian, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+). Anal. Chem. 85(11), 5595–5599 (2013). doi:10.1021/ac400924j
A. Wang, L. Fu, T. Rao, W. Cai, M.-F. Yuen, J. Zhong, Effect of metal ions on the quenching of photoluminescent CdTe QDs and their recovery. Opt. Mater. 42, 548–552 (2015). doi:10.1016/j.optmat.2015.01.010
S. Zhang, J. Li, M. Zeng, J. Xu, X. Wang, W. Hu, Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 6(8), 4157–4162 (2014). doi:10.1039/C3NR06744K
M. Rong, L. Lin, X. Song, Y. Wang, Y. Zhong, J. Yan, Y. Feng, X. Zeng, X. Chen, Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent switch. Biosens. Bioelectron. 68, 210–217 (2015). doi:10.1016/j.bios.2014.12.024
H. Huang, R. Chen, J. Ma, L. Yan, Y. Zhao, Y. Wang, W. Zhang, J. Fan, X. Chen, Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum. Chem. Commun. 50(97), 15415–15418 (2014). doi:10.1039/c4cc06659f
J. Tian, Q. Liu, A.M. Asiri, X. Sun, Y. He, Ultrathin graphitic C3N4 nanofibers: hydrolysis-driven top-down rapid synthesis and application as a novel fluorosensor for rapid, sensitive, and selective detection of Fe3+. Sens. Actuators B 216, 453–460 (2015). doi:10.1016/j.snb.2015.04.075
G. Shiravand, A. Badiei, G.M. Ziarani, Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B 242, 244–252 (2017). doi:10.1016/j.snb.2016.11.038
S. Barman, M. Sadhukhan, Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 22(41), 21832–21837 (2012). doi:10.1039/C2JM35501A
X.L. Zhang, C. Zheng, S.S. Guo, J. Li, H.H. Yang, G. Chen, Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C(3)N(4) nanosheet-MnO(2) sandwich nanocomposite. Anal. Chem. 86(7), 3426–3434 (2014). doi:10.1021/ac500336f
Y. Xu, X. Niu, H. Zhang, L. Xu, S. Zhao, H. Chen, X. Chen, Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)–Hg2+ chemosensor. J. Agric. Food Chem. 63(6), 1747–1755 (2015). doi:10.1021/jf505759z
J. Han, H.Y. Zou, M.X. Gao, C.Z. Huang, A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 148, 279–284 (2016). doi:10.1016/j.talanta.2015.10.038
Q.-M. Feng, Y.-Z. Shen, M.-X. Li, Z.-L. Zhang, W. Zhao, J.-J. Xu, H.-Y. Chen, Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru (bpy) 32+ for microRNA detection. Anal. Chem. 88(1), 937–944 (2015). doi:10.1021/acs.analchem.5b03670
Y. Tang, H. Song, Y. Su, Y. Lv, Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 85(24), 11876–11884 (2013). doi:10.1021/ac403517u
D. Das, S.L. Shinde, K.K. Nanda, Temperature-dependent photoluminescence of g-C3N4: implication for temperature sensing. ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016). doi:10.1021/acsami.5b10770
L. Feng, F. He, G. Yang, S. Gai, Y. Dai, C. Li, P. Yang, NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J. Mater. Chem. B 4(48), 8000–8008 (2016). doi:10.1039/c6tb02232d
L. Feng, F. He, B. Liu, G. Yang, S. Gai, P. Yang, C. Li, Y. Dai, R. Lv, J. Lin, g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem. Mater. 28(21), 7935–7946 (2016). doi:10.1021/acs.chemmater.6b03598
A. Wang, C. Lee, H. Bian, Z. Li, Y. Zhan, J. He, Y. Wang, J. Lu, Y.Y. Li, Synthesis of g-C3N4/silica gels for white-light-emitting devices. Part. Part. Syst. Charact. 34(1), 1600258 (2017). doi:10.1002/ppsc.201600258
S. Bayan, N. Gogurla, A. Midya, S.K. Ray, White light emission characteristics of two dimensional graphitic carbon nitride and ZnO nanorod hybrid heterojunctions. Carbon 108, 335–342 (2016). doi:10.1016/j.carbon.2016.07.032
J. Tian, Q. Liu, A.M. Asiri, K.A. Alamry, X. Sun, Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7(8), 2125–2130 (2014). doi:10.1002/cssc.201402118
J. Tian, R. Ning, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Three-dimensional porous supramolecular architecture from ultrathin g-C(3)N(4) nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 6(2), 1011–1017 (2014). doi:10.1021/am404536w
J. Tian, Q. Liu, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5(23), 11604–11609 (2013). doi:10.1039/c3nr03693f
J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ultrathin graphitic carbonnitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5(19), 8921–8924 (2013). doi:10.1039/C3NR02031B
L. Shi, L. Liang, F.X. Wang, J. Ma, J.M. Sun, Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 4(9), 3235–3243 (2014). doi:10.1039/C4CY00411F
B.H. Long, J.L. Lin, X.C. Wang, Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2(9), 2942–2951 (2014). doi:10.1039/c3ta14339b
S. Yuan, Q. Zhang, B. Xu, S. Liu, J. Wang, J. Xie, M. Zhang, T. Ohno, A new precursor to synthesize g-C3N4 with superior visible light absorption for photocatalytic application. Catal. Sci. Technol. 7(9), 1826–1830 (2017). doi:10.1039/c7cy00213k
J.S. Zhang, F.S. Guo, X.C. Wang, An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater. 23(23), 3008–3014 (2013). doi:10.1002/adfm.201203287
L. Shi, L. Liang, F.X. Wang, M.S. Liu, K.L. Chen, K.N. Sun, N.Q. Zhang, J.M. Sun, Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity. ACS Sustain. Chem. Eng. 3(12), 3412–3419 (2015). doi:10.1021/acssuschemeng.5b01139
J.H. Sun, J.S. Zhang, M.W. Zhang, M. Antonietti, X.Z. Fu, X.C. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 3, 1139 (2012). doi:10.1038/Ncomms2152
H. Yan, Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 48(28), 3430–3432 (2012). doi:10.1039/c2cc00001f
Q.J. Fan, J.J. Liu, Y.C. Yu, S.L. Zuo, A template induced method to synthesize nanoporous graphitic carbon nitride with enhanced photocatalytic activity under visible light. RSC Adv. 4(106), 61877–61883 (2014). doi:10.1039/C4RA12033G
L. Shi, L. Liang, F. Wang, M. Liu, T. Liang, K. Chen, J. Sun, In situ bubble template promoted facile preparation of porous g-C3N4 with excellent visible-light photocatalytic performance. RSC Adv. 5(78), 63264–63270 (2015). doi:10.1039/C5RA09645F
F. He, G. Chen, Y. Yu, Y. Zhou, Y. Zheng, S. Hao, The sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance. Chem. Commun. 51(2), 425–427 (2015). doi:10.1039/C4CC07106A
J. Xu, Y. Wang, Y. Zhu, Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir 29(33), 10566–10572 (2013). doi:10.1021/la402268u
M. Zhang, J. Xu, R. Zong, Y. Zhu, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Appl. Catal. B 147, 229–235 (2014). doi:10.1016/j.apcatb.2013.09.002
H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B 129, 182–193 (2013). doi:10.1016/j.apcatb.2012.08.015
Y. Li, L. Fang, R. Jin, Y. Yang, X. Fang, Y. Xing, S. Song, Preparation and enhanced visible light photocatalytic activity of novel g-C3N4 nanosheets loaded with Ag2CO3 nanoparticles. Nanoscale 7(2), 758–764 (2015). doi:10.1039/c4nr06565d
S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, g-C3N4/ZnWO4 films: preparation and its enhanced photocatalytic decomposition of phenol in UV. Appl. Surf. Sci. 358, 328–335 (2015). doi:10.1016/j.apsusc.2015.07.180
L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catal. Sci. Technol. 4(3), 758–765 (2014). doi:10.1039/c3cy00871a
M.J. Muñoz-Batista, O. Fontelles-Carceller, M. Ferrer, M. Fernández-García, A. Kubacka, Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Appl. Catal. B 183, 86–95 (2016). doi:10.1016/j.apcatb.2015.10.024
L. Shi, L. Liang, J. Ma, F. Wang, J. Sun, Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/gC3N4 composite photocatalysts under visible light. Dalton Trans. 43(19), 7236–7244 (2014). doi:10.1039/C4DT00087K
P. Gibot, F. Schnell, D. Spitzer, Enhancement of the graphitic carbon nitride surface properties from calcium salts as templates. Micropor. Mesopor. Mater. 219, 42–47 (2016). doi:10.1016/j.micromeso.2015.07.026
X. Gao, X. Jiao, L. Zhang, W. Zhu, X. Xu, H. Ma, T. Chen, Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Adv. 5(94), 76963–76972 (2015). doi:10.1039/C5RA13438B
J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). doi:10.1016/j.apsusc.2016.07.030
K. Vignesh, S. Kang, B.S. Kwak, M. Kang, Meso-porous ZnO nano-triangles@ graphitic-C3N4 nano-foils: fabrication and Recyclable photocatalytic activity. Sep. Purif. Technol. 147, 257–265 (2015). doi:10.1016/j.seppur.2015.04.043