FIB Secondary Etching Method for Fabrication of Fine CNT Forest Metamaterials
Corresponding Author: Adam Pander
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 44
Abstract
Anisotropic materials, like carbon nanotubes (CNTs), are the perfect substitutes to overcome the limitations of conventional metamaterials; however, the successful fabrication of CNT forest metamaterial structures is still very challenging. In this study, a new method utilizing a focused ion beam (FIB) with additional secondary etching is presented, which can obtain uniform and fine patterning of CNT forest nanostructures for metamaterials and ranging in sizes from hundreds of nanometers to several micrometers. The influence of the FIB processing parameters on the morphology of the catalyst surface and the growth of the CNT forest was investigated, including the removal of redeposited material, decreasing the average surface roughness (from 0.45 to 0.15 nm), and a decrease in the thickness of the Fe catalyst. The results showed that the combination of FIB patterning and secondary etching enabled the growth of highly aligned, high-density CNT forest metamaterials. The improvement in the quality of single-walled CNTs (SWNTs), defined by the very high G/D peak ratio intensity of 10.47, demonstrated successful fine patterning of CNT forest for the first time. With a FIB patterning depth of 10 nm and a secondary etching of 0.5 nm, a minimum size of 150 nm of CNT forest metamaterials was achieved. The development of the FIB secondary etching method enabled for the first time, the fabrication of SWNT forest metamaterials for the optical and infrared regime, for future applications, e.g., in superlenses, antennas, or thermal metamaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002). doi:10.1016/S0039-6028(01)01558-8
- D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, G. Chen, Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 329(3), 207–213 (2004). doi:10.1016/j.physleta.2004.05.070
- Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys. Rev. Lett. 94(8), 87402 (2005). doi:10.1103/PhysRevLett.94.087402
- H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, T. Oguchi, Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement. Appl. Phys. Express 3(10), 1–4 (2010). doi:10.1143/APEX.3.105101
- P. Zhang, Z. Hu, Y. Wang, Y. Qin, W. Li, J. Wang, A bi-layer composite film based on TiO2 hollow spheres, p25, and multi-walled carbon nanotubes for efficient photoanode of dye-sensitized solar cell. Nano-Micro Lett. 8(3), 232–239 (2016). doi:10.1007/s40820-015-0081-1
- H. Butt, Q. Dai, P. Farah, T. Butler, T.D. Wilkinson, J.J. Baumberg, G.A.J. Amaratunga, Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl. Phys. Lett. 97(16), 163102 (2010). doi:10.1063/1.3491840
- T.P. Butler, H. Butt, T.D. Wilkinson, G.A.J. Amaratunga, Visible diffraction from quasi-crystalline arrays of carbon nanotubes. Nanoscale 7(32), 13452–13457 (2015). doi:10.1039/C5NR03245H
- H. Butt, A.K. Yetisen, R. Ahmed, S.H. Yun, Q. Dai, Carbon nanotube biconvex microcavities. Appl. Phys. Lett. 106(12), 121108 (2015). doi:10.1063/1.4916236
- J.T. Hong, D.J. Park, J.H. Yim, J.K. Park, J.-Y. Park, S. Lee, Y.H. Ahn, Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices. J. Phys. Chem. Lett. 4(22), 3950–3957 (2013). doi:10.1021/jz4020053
- A.E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, N.I. Zheludev, THz bandwidth optical switching with carbon nanotube metamaterial. Opt. Express 20(6), 6068–6079 (2012). doi:10.1364/OE.20.006068
- A.E. Nikolaenko, F. De Angelis, S.A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, N.I. Zheludev, Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104(15), 153902 (2010). doi:10.1103/PhysRevLett.104.153902
- S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999). doi:10.1126/science.283.5401.512
- H.K. Kyeong, G.K. Tae, L. Seok, M.J. Young, H.K. Sun, T.B. Young, Simple assembling technique of single-walled carbon nanotubes using only photolithography. J. Korean Phys. Soc. 58(5), 1380–1383 (2011). doi:10.3938/jkps.58.1380
- J. Wu, A. Antaris, M. Gong, H. Dai, Top-down patterning and self-assembly for regular arrays of semiconducting single-walled carbon nanotubes. Adv. Mater. 26(35), 6151–6156 (2014). doi:10.1002/adma.201401108
- Y. Chen, H. Chen, J. Yu, J.S. Williams, V. Craig, Focused ion beam milling as a universal template technique for patterned growth of carbon nanotubes. Appl. Phys. Lett. 90(9), 93126 (2007). doi:10.1063/1.2710785
- A. Tselev, K. Hatton, M.S. Fuhrer, M. Paranjape, P. Barbara, A photolithographic process for fabrication of devices with isolated single-walled carbon nanotubes. Nanotechnology 15(11), 1475–1478 (2004). doi:10.1088/0957-4484/15/11/017
- J. Choi, K. Koh, J. Kim, Scalable and number-controlled synthesis of carbon nanotubes by nanostencil lithography. Nanoscale Res. Lett. 8(1), 281 (2013). doi:10.1186/1556-276X-8-281
- J.D. Beard, J. Stringer, O.R. Ghita, P.J. Smith, High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst. ACS Appl. Mater. Interfaces 5(19), 9785–9790 (2013). doi:10.1021/am402942q
- S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, C. Ducati, Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J. Appl. Phys. 98(3), 1–8 (2005). doi:10.1063/1.1989432
- J. Jiao, L. Dong, S. Foxley, C.L. Mosher, D.W. Tuggle, Selected-area growth of carbon nanotubes by the combination of focused ion beam and chemical vapor deposition techniques. Microsc. Microanal. 9(6), 516–521 (2003). doi:10.1017/S1431927603030460
- A. Emplit, E. Tooten, V. Xhurdebise, I. Huynen, Multifunctional material structures based on laser-etched carbon nanotube arrays. Micromachines 5(3), 756–765 (2014). doi:10.3390/mi5030756
- S. Huang, L. Dai, A.W.H. Mau, Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography. Adv. Mater. 14(16), 1140–1143 (2002). doi:10.1002/1521-4095(20020816)14:16<1140:AID-ADMA1140>3.0.CO;2-5
- G. Jeong, N. Olofsson, L.K.L. Falk, E.E.B. Campbell, Effect of catalyst pattern geometry on the growth of vertically aligned carbon nanotube arrays. Carbon 47(3), 696–704 (2008). doi:10.1016/j.carbon.2008.11.003
- S. Huang, A.W.H. Mau, Selective growth of aligned carbon nanotubes on a silver-patterned substrate by the silver mirror reaction. J. Phys. Chem. B 107(15), 3455–3458 (2003). doi:10.1021/jp034282b
- Y. Wang, X. Zhao, G. Duan, X. Zhang, Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film. Opt. Express 24(14), 15730–15741 (2016). doi:10.1364/OE.24.015730
- W.J. Yu, Y.S. Cho, G.S. Choi, D. Kim, Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template. Nanotechnology 16(5), S291–S295 (2005). doi:10.1088/0957-4484/16/5/029
- H. Butt, Q. Dai, R. Rajesekharan, T.D. Wilkinson, G.A.J. Amaratunga, Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 5(11), 9138–9143 (2011). doi:10.1021/nn203363x
- C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, S. Linden, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17(21), 2547–2549 (2005). doi:10.1002/adma.200500804
- A.A. Tseng, Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14(4), R15–R34 (2004). doi:10.1088/0960-1317/14/4/R01
- A. Pander, A. Hatta, H. Furuta, Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method. Appl. Surf. Sci. 371, 425–435 (2016). doi:10.1016/j.apsusc.2016.02.216
- M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005). doi:10.1016/j.physrep.2004.10.006
- F. Yongqi, N.K.A. Bryan, Investigation of 3D microfabrication characteristics by focused ion beam technology in silicon. J. Mater. Process. Technol. 104(1–2), 44–47 (2000). doi:10.1016/S0924-0136(00)00544-6
- H.-W. Li, D.-J. Kang, M.G. Blamire, W.T.S. Huck, Focused ion beam fabrication of silicon print masters. Nanotechnology 14(2), 220–223 (2003). doi:10.1088/0957-4484/14/2/323
References
H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002). doi:10.1016/S0039-6028(01)01558-8
D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, G. Chen, Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 329(3), 207–213 (2004). doi:10.1016/j.physleta.2004.05.070
Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Polarization dependence of the optical absorption of single-walled carbon nanotubes. Phys. Rev. Lett. 94(8), 87402 (2005). doi:10.1103/PhysRevLett.94.087402
H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, T. Oguchi, Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement. Appl. Phys. Express 3(10), 1–4 (2010). doi:10.1143/APEX.3.105101
P. Zhang, Z. Hu, Y. Wang, Y. Qin, W. Li, J. Wang, A bi-layer composite film based on TiO2 hollow spheres, p25, and multi-walled carbon nanotubes for efficient photoanode of dye-sensitized solar cell. Nano-Micro Lett. 8(3), 232–239 (2016). doi:10.1007/s40820-015-0081-1
H. Butt, Q. Dai, P. Farah, T. Butler, T.D. Wilkinson, J.J. Baumberg, G.A.J. Amaratunga, Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl. Phys. Lett. 97(16), 163102 (2010). doi:10.1063/1.3491840
T.P. Butler, H. Butt, T.D. Wilkinson, G.A.J. Amaratunga, Visible diffraction from quasi-crystalline arrays of carbon nanotubes. Nanoscale 7(32), 13452–13457 (2015). doi:10.1039/C5NR03245H
H. Butt, A.K. Yetisen, R. Ahmed, S.H. Yun, Q. Dai, Carbon nanotube biconvex microcavities. Appl. Phys. Lett. 106(12), 121108 (2015). doi:10.1063/1.4916236
J.T. Hong, D.J. Park, J.H. Yim, J.K. Park, J.-Y. Park, S. Lee, Y.H. Ahn, Dielectric constant engineering of single-walled carbon nanotube films for metamaterials and plasmonic devices. J. Phys. Chem. Lett. 4(22), 3950–3957 (2013). doi:10.1021/jz4020053
A.E. Nikolaenko, N. Papasimakis, A. Chipouline, F. De Angelis, E. Di Fabrizio, N.I. Zheludev, THz bandwidth optical switching with carbon nanotube metamaterial. Opt. Express 20(6), 6068–6079 (2012). doi:10.1364/OE.20.006068
A.E. Nikolaenko, F. De Angelis, S.A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, N.I. Zheludev, Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104(15), 153902 (2010). doi:10.1103/PhysRevLett.104.153902
S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401), 512–514 (1999). doi:10.1126/science.283.5401.512
H.K. Kyeong, G.K. Tae, L. Seok, M.J. Young, H.K. Sun, T.B. Young, Simple assembling technique of single-walled carbon nanotubes using only photolithography. J. Korean Phys. Soc. 58(5), 1380–1383 (2011). doi:10.3938/jkps.58.1380
J. Wu, A. Antaris, M. Gong, H. Dai, Top-down patterning and self-assembly for regular arrays of semiconducting single-walled carbon nanotubes. Adv. Mater. 26(35), 6151–6156 (2014). doi:10.1002/adma.201401108
Y. Chen, H. Chen, J. Yu, J.S. Williams, V. Craig, Focused ion beam milling as a universal template technique for patterned growth of carbon nanotubes. Appl. Phys. Lett. 90(9), 93126 (2007). doi:10.1063/1.2710785
A. Tselev, K. Hatton, M.S. Fuhrer, M. Paranjape, P. Barbara, A photolithographic process for fabrication of devices with isolated single-walled carbon nanotubes. Nanotechnology 15(11), 1475–1478 (2004). doi:10.1088/0957-4484/15/11/017
J. Choi, K. Koh, J. Kim, Scalable and number-controlled synthesis of carbon nanotubes by nanostencil lithography. Nanoscale Res. Lett. 8(1), 281 (2013). doi:10.1186/1556-276X-8-281
J.D. Beard, J. Stringer, O.R. Ghita, P.J. Smith, High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst. ACS Appl. Mater. Interfaces 5(19), 9785–9790 (2013). doi:10.1021/am402942q
S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, C. Ducati, Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J. Appl. Phys. 98(3), 1–8 (2005). doi:10.1063/1.1989432
J. Jiao, L. Dong, S. Foxley, C.L. Mosher, D.W. Tuggle, Selected-area growth of carbon nanotubes by the combination of focused ion beam and chemical vapor deposition techniques. Microsc. Microanal. 9(6), 516–521 (2003). doi:10.1017/S1431927603030460
A. Emplit, E. Tooten, V. Xhurdebise, I. Huynen, Multifunctional material structures based on laser-etched carbon nanotube arrays. Micromachines 5(3), 756–765 (2014). doi:10.3390/mi5030756
S. Huang, L. Dai, A.W.H. Mau, Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography. Adv. Mater. 14(16), 1140–1143 (2002). doi:10.1002/1521-4095(20020816)14:16<1140:AID-ADMA1140>3.0.CO;2-5
G. Jeong, N. Olofsson, L.K.L. Falk, E.E.B. Campbell, Effect of catalyst pattern geometry on the growth of vertically aligned carbon nanotube arrays. Carbon 47(3), 696–704 (2008). doi:10.1016/j.carbon.2008.11.003
S. Huang, A.W.H. Mau, Selective growth of aligned carbon nanotubes on a silver-patterned substrate by the silver mirror reaction. J. Phys. Chem. B 107(15), 3455–3458 (2003). doi:10.1021/jp034282b
Y. Wang, X. Zhao, G. Duan, X. Zhang, Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film. Opt. Express 24(14), 15730–15741 (2016). doi:10.1364/OE.24.015730
W.J. Yu, Y.S. Cho, G.S. Choi, D. Kim, Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template. Nanotechnology 16(5), S291–S295 (2005). doi:10.1088/0957-4484/16/5/029
H. Butt, Q. Dai, R. Rajesekharan, T.D. Wilkinson, G.A.J. Amaratunga, Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 5(11), 9138–9143 (2011). doi:10.1021/nn203363x
C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C.M. Soukoulis, M. Wegener, S. Linden, Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv. Mater. 17(21), 2547–2549 (2005). doi:10.1002/adma.200500804
A.A. Tseng, Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14(4), R15–R34 (2004). doi:10.1088/0960-1317/14/4/R01
A. Pander, A. Hatta, H. Furuta, Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method. Appl. Surf. Sci. 371, 425–435 (2016). doi:10.1016/j.apsusc.2016.02.216
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005). doi:10.1016/j.physrep.2004.10.006
F. Yongqi, N.K.A. Bryan, Investigation of 3D microfabrication characteristics by focused ion beam technology in silicon. J. Mater. Process. Technol. 104(1–2), 44–47 (2000). doi:10.1016/S0924-0136(00)00544-6
H.-W. Li, D.-J. Kang, M.G. Blamire, W.T.S. Huck, Focused ion beam fabrication of silicon print masters. Nanotechnology 14(2), 220–223 (2003). doi:10.1088/0957-4484/14/2/323