Engineering and Optimization of Silicon–Iron–Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery
Corresponding Author: Sung-Jin Cho
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 41
Abstract
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si–Fe–Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high (~2 mg cm−2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm−3) showed enhanced cycling stability with a high capacity retention of ~100% over 100 cycles.
Highlights:
1 Si–Fe–Mn alloy (Si/alloy) electrodes with high loading of 2 mg cm−2 were calendered at 3, 5, and 8 tons pressure and investigated on porosity, wettability, and electrochemical properties.
2 Electrode engineering and wettability optimization balance are necessary to realize the true electrochemical potentials of the battery materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Doughty, E.P. Roth, A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37–44 (2012)
- Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009). doi:10.1038/nmat2418
- A. Taniguchi, N. Fujioka, M. Ikoma, A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs. J. Power Sources 100(1), 117–124 (2001). doi:10.1016/S0378-7753(01)00889-8
- F. Putois, Market for nickel–cadmium batteries. J. Power Sources 57(1–2), 67–70 (1995). doi:10.1016/0378-7753(95)02243-0
- R. Moshtev, B. Johnson, State of the art of commercial Li ion batteries. J. Power Sources 91(2), 86–91 (2000). doi:10.1016/S0378-7753(00)00458-4
- M.R. Palacín, Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 38(9), 2565–2575 (2009). doi:10.1039/b820555h
- B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). doi:10.1016/S0013-4686(00)00333-9
- L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011). doi:10.1039/c0ee00699h
- S. Dalavi, P. Guduru, B.L. Lucht, Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J. Electrochem. Soc. 159(5), A642 (2012). doi:10.1149/2.076205jes
- Y. Zhu, G. Cheng, D. Strand, J. Yang, Development of novel noncarbonate electrolytes for silicon alloy anodes, in ESC Meeting Abstracts MA2016-01, 290 (2016)
- T.M. Higgins, S.-H. Park, P.J. King, C. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). doi:10.1021/acsnano.6b00218
- H.S. Yang, S.-H. Kim, A.G. Kannan, S.K. Kim, C. Park, D.-W. Kim, Performance enhancement of silicon alloy-based anodes using thermally treated poly(amide imide) as a polymer binder for high performance lithium-ion batteries. Langmuir 32(13), 3300 (2016). doi:10.1021/acs.langmuir.6b00205
- C. Erk, T. Brezesinski, H. Sommer, R. Schneider, J. Janek, Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl. Mater. Interfaces 5(15), 7299–7307 (2013). doi:10.1021/am401642c
- T.J. Patey, A. Hintennach, F. La Mantia, P. Novák, Electrode engineering of nanoparticles for lithium-ion batteries-Role of dispersion technique. J. Power Sources 189(189), 590–593 (2009). doi:10.1016/j.jpowsour.2008.09.091
- J. Wang, C. Wang, Y. Zhu, N. Wu, W. Tian, Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries. Ionics 21(2), 579–585 (2015). doi:10.1007/s11581-014-1331-9
- A. van Bommel, R. Divigalpitiya, Effect of calendering LiFePO4 electrodes. J. Electrochem. Soc. 159(11), A1791–A1795 (2012). doi:10.1149/2.029211jes
- Y. Sheng, C.R. Fell, Y.K. Son, B.M. Metz, J. Jiang, B.C. Church, Effect of calendering on electrode wettability in lithium-ion batteries. Front. Energy Res. 2, 56 (2014). doi:10.3389/fenrg.2014.00056
- W. Haselrieder, S. Ivanov, D.K. Christen, H. Bockholt, A. Kwade, Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans. 50(26), 59–70 (2013). doi:10.1149/05026.0059ecst
- J. Newman, Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J. Electrochem. Soc. 142, 97–101 (1995). doi:10.1149/1.2043956
- N. Xue, W. Du, A. Gupta, W. Shyy, A.M. Sastry, J.R. Martins, Optimization of a single lithium-ion battery cell with a gradient-based algorithm. J. Electrochem. Soc. 160(8), A1071–A1078 (2013). doi:10.1149/2.036308jes
- H. Usui, K. Nouno, Y. Takemoto, K. Nakada, A. Ishii, H. Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites. J. Power Sources 268(4), 848–852 (2014). doi:10.1016/j.jpowsour.2014.06.105
- H. Dong, X.P. Ai, H.X. Yang, Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun. 5(11), 952–957 (2003). doi:10.1016/j.elecom.2003.09.004
- M.D. Fleischauer, J.M. Topple, J.R. Dahn, Combinatorial investigations of SiM (M = Cr + Ni, Fe, Mn) thin film negative electrode materials. Electrochem. Solid-State Lett. 8(2), A30–A32 (2005). doi:10.1149/1.1850395
- H.-Y. Lee, S.-M. Lee, Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources 112(2), 649–654 (2002). doi:10.1016/S0378-7753(02)00461-5
- D. Ma, Z. Cao, A. Hu, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). doi:10.1007/s40820-014-0008-2
- K. Vediappan, C.W. Lee, Synthesis and electrochemical characterization of Si–Mn alloy anode materials for high energy lithium secondary batteries. J. Nanosci. Nanotechnol. 11(7), 5969–5974 (2011). doi:10.1166/jnn.2011.4453
- W. Crafts, P.F. Wieser, US Patent 3272623 A (1963)
- J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim, J.K. Lee, Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244(4), 521–526 (2013). doi:10.1016/j.jpowsour.2013.02.049
- Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties (Springer, Berlin, 2013), pp. 3–34
- X. Li, M. Gu, S. Hu, R. Kennard, P. Yan et al., Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5(5), 4105 (2014). doi:10.1038/ncomms5105
- J. Guo, X. Chen, C. Wang, Carbon scaffold structured silicon anodes for lithium-ion batteries. J. Mater. Chem. 20(24), 5035–5040 (2010). doi:10.1039/c0jm00215a
References
D. Doughty, E.P. Roth, A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37–44 (2012)
Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009). doi:10.1038/nmat2418
A. Taniguchi, N. Fujioka, M. Ikoma, A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs. J. Power Sources 100(1), 117–124 (2001). doi:10.1016/S0378-7753(01)00889-8
F. Putois, Market for nickel–cadmium batteries. J. Power Sources 57(1–2), 67–70 (1995). doi:10.1016/0378-7753(95)02243-0
R. Moshtev, B. Johnson, State of the art of commercial Li ion batteries. J. Power Sources 91(2), 86–91 (2000). doi:10.1016/S0378-7753(00)00458-4
M.R. Palacín, Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 38(9), 2565–2575 (2009). doi:10.1039/b820555h
B. Scrosati, Recent advances in lithium ion battery materials. Electrochim. Acta 45(15–16), 2461–2466 (2000). doi:10.1016/S0013-4686(00)00333-9
L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011). doi:10.1039/c0ee00699h
S. Dalavi, P. Guduru, B.L. Lucht, Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J. Electrochem. Soc. 159(5), A642 (2012). doi:10.1149/2.076205jes
Y. Zhu, G. Cheng, D. Strand, J. Yang, Development of novel noncarbonate electrolytes for silicon alloy anodes, in ESC Meeting Abstracts MA2016-01, 290 (2016)
T.M. Higgins, S.-H. Park, P.J. King, C. Zhang, N. McEvoy et al., A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3), 3702–3713 (2016). doi:10.1021/acsnano.6b00218
H.S. Yang, S.-H. Kim, A.G. Kannan, S.K. Kim, C. Park, D.-W. Kim, Performance enhancement of silicon alloy-based anodes using thermally treated poly(amide imide) as a polymer binder for high performance lithium-ion batteries. Langmuir 32(13), 3300 (2016). doi:10.1021/acs.langmuir.6b00205
C. Erk, T. Brezesinski, H. Sommer, R. Schneider, J. Janek, Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl. Mater. Interfaces 5(15), 7299–7307 (2013). doi:10.1021/am401642c
T.J. Patey, A. Hintennach, F. La Mantia, P. Novák, Electrode engineering of nanoparticles for lithium-ion batteries-Role of dispersion technique. J. Power Sources 189(189), 590–593 (2009). doi:10.1016/j.jpowsour.2008.09.091
J. Wang, C. Wang, Y. Zhu, N. Wu, W. Tian, Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries. Ionics 21(2), 579–585 (2015). doi:10.1007/s11581-014-1331-9
A. van Bommel, R. Divigalpitiya, Effect of calendering LiFePO4 electrodes. J. Electrochem. Soc. 159(11), A1791–A1795 (2012). doi:10.1149/2.029211jes
Y. Sheng, C.R. Fell, Y.K. Son, B.M. Metz, J. Jiang, B.C. Church, Effect of calendering on electrode wettability in lithium-ion batteries. Front. Energy Res. 2, 56 (2014). doi:10.3389/fenrg.2014.00056
W. Haselrieder, S. Ivanov, D.K. Christen, H. Bockholt, A. Kwade, Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans. 50(26), 59–70 (2013). doi:10.1149/05026.0059ecst
J. Newman, Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J. Electrochem. Soc. 142, 97–101 (1995). doi:10.1149/1.2043956
N. Xue, W. Du, A. Gupta, W. Shyy, A.M. Sastry, J.R. Martins, Optimization of a single lithium-ion battery cell with a gradient-based algorithm. J. Electrochem. Soc. 160(8), A1071–A1078 (2013). doi:10.1149/2.036308jes
H. Usui, K. Nouno, Y. Takemoto, K. Nakada, A. Ishii, H. Sakaguchi, Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites. J. Power Sources 268(4), 848–852 (2014). doi:10.1016/j.jpowsour.2014.06.105
H. Dong, X.P. Ai, H.X. Yang, Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun. 5(11), 952–957 (2003). doi:10.1016/j.elecom.2003.09.004
M.D. Fleischauer, J.M. Topple, J.R. Dahn, Combinatorial investigations of SiM (M = Cr + Ni, Fe, Mn) thin film negative electrode materials. Electrochem. Solid-State Lett. 8(2), A30–A32 (2005). doi:10.1149/1.1850395
H.-Y. Lee, S.-M. Lee, Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources 112(2), 649–654 (2002). doi:10.1016/S0378-7753(02)00461-5
D. Ma, Z. Cao, A. Hu, Si-based anode materials for li-ion batteries: a mini review. Nano-Micro Lett. 6(4), 347–358 (2014). doi:10.1007/s40820-014-0008-2
K. Vediappan, C.W. Lee, Synthesis and electrochemical characterization of Si–Mn alloy anode materials for high energy lithium secondary batteries. J. Nanosci. Nanotechnol. 11(7), 5969–5974 (2011). doi:10.1166/jnn.2011.4453
W. Crafts, P.F. Wieser, US Patent 3272623 A (1963)
J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim, J.K. Lee, Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244(4), 521–526 (2013). doi:10.1016/j.jpowsour.2013.02.049
Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties (Springer, Berlin, 2013), pp. 3–34
X. Li, M. Gu, S. Hu, R. Kennard, P. Yan et al., Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5(5), 4105 (2014). doi:10.1038/ncomms5105
J. Guo, X. Chen, C. Wang, Carbon scaffold structured silicon anodes for lithium-ion batteries. J. Mater. Chem. 20(24), 5035–5040 (2010). doi:10.1039/c0jm00215a