Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst
Corresponding Author: Niranjan Karak
Nano-Micro Letters,
Vol. 9 No. 4 (2017), Article Number: 40
Abstract
Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.
Highlights:
1 Polyurethane-supported carbon dots were developed as heterogeneous catalyst, and the developed catalyst was biodegradable.
2 Solar-driven H2O2 production from water, ethanol, and oxygen was achieved.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants et al., Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7(16), 8363–8376 (2015). doi:10.1021/acsami.5b00448
- J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazee-ruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). doi:10.1126/science.1258307
- T.S. Teets, D.G. Nocera, Photocatalytic hydrogen production. Chem. Commun. 47(33), 9268–9274 (2011). doi:10.1039/c1cc12390d
- Y.W. Su, W.H. Lin, Y.J. Hsu, K.H. Wei, Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis. Small 10(22), 4427–4442 (2014). doi:10.1002/smll.201401508
- A.E. Sanli, A. Aytac, Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrogen Energy 36(1), 869–875 (2011). doi:10.1016/j.ijhydene.2010.09.038
- Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 53(49), 13454–13459 (2014). doi:10.1002/ange.201407938
- F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Kinetics of the recovery of active anthraquinones. Ind. Eng. Chem. Res. 45(3), 986–992 (2006). doi:10.1021/ie050593s
- D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Preparation and study of Pd catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2. Top. Catal. 56(9), 527–539 (2013). doi:10.1007/s11244-013-0014-5
- S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, Direct synthesis of hydrogen peroxide on zirconia-supported catalysts under mild conditions. J. Catal. 239(2), 422–430 (2006). doi:10.1016/j.jcat.2006.02.014
- J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2 supported Au–Pd catalysts. J. Catal. 236(1), 69–79 (2005). doi:10.1016/j.jcat.2005.09.015
- J.C. Pritchard, Q. He, E.N. Ntainjua, M. Piccinini, J.K. Edwards, A.A. Herzing, The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem. 12(5), 915–921 (2010). doi:10.1039/b924472g
- Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamadaa, S. Fukuzumi, Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. J. Mater. Chem. A 3(23), 12404–12412 (2015). doi:10.1039/C5TA02446C
- S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 6(12), 3756–3764 (2013). doi:10.1039/c3ee42815j
- C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 22(7), 798–806 (1988). doi:10.1021/es00172a009
- R. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 219(1), 214–218 (2003). doi:10.1016/S0021-9517(03)00197-0
- H. Goto, Y. Hanada, T. Ohno, M. Matsumura, Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 Particles. J. Catal. 225(1), 223–229 (2004). doi:10.1016/j.jcat.2004.04.001
- V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2–fluoride systems. Chem. Commun. 36(33), 2627–2629 (2005). doi:10.1039/b418789j
- T. Hirakawa, Y. Nosaka, Selective production of superoxide ions and hydrogen peroxide over nitrogen-and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J. Phys. Chem. C 112(40), 15818–15823 (2008). doi:10.1021/jp8055015
- M. Teranishi, S. Naya, H. Tada, In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J. Am. Chem. Soc. 132(23), 7850–7851 (2010). doi:10.1021/ja102651g
- D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2(2), 599–603 (2012). doi:10.1021/cs300407e
- Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). doi:10.1021/cs401208c
- V.D. Dao, P. Kim, S. Baek, L.L. Larina, K. Yong, R. Ryoo, Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon 96, 139–144 (2016). doi:10.1016/j.carbon.2015.09.023
- Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). doi:10.5101/nml.v5i4.p247-259
- W. Kwon, S. Do, J. Lee, S. Hwang, J.K. Kim, S.W. Rhee, Freestanding luminescent films of nitrogen-rich carbon nanodots toward large scale phosphor based white light emitting devices. Chem. Mater. 25(9), 1893–1899 (2013). doi:10.1021/cm400517g
- Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104, 169–178 (2016). doi:10.1016/j.carbon.2016.04.003
- S. Sahu, Y. Liu, P. Wang, C.E. Bunker, K.A.S. Fernando et al., Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots. Langmuir 30(28), 8631–8636 (2014). doi:10.1021/la5010209
- B. De, B. Voit, N. Karak, Carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Adv. 4(102), 58453–58459 (2014). doi:10.1039/C4RA11120F
- D. Mosconi, D. Mazzier, S. Silvestrini, A. Privitera, C. Marega, L. Franco, Synthesis and photochemical applications of processable polymers enclosing photoluminescent carbon quantum dots. ACS Nano 9(4), 4156–4164 (2015). doi:10.1021/acsnano.5b00319
- S. Barua, G. Dutta, N. Karak, Glycerol based tough hyperbranched epoxy: synthesis, statistical optimization and property evaluation. Chem. Eng. Sci. 95(3), 138–147 (2013). doi:10.1016/j.ces.2013.03.026
- S. Gogoi, N. Karak, Bio-based high-performance waterborne hyperbranched polyurethane thermoset. Polym. Adv. Technol. 26(6), 589–596 (2015). doi:10.1002/pat.3490
- S. Gogoi, M. Kumar, B.B. Mandal, N. Karak, High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos. Sci. Technol. 118, 39–46 (2015). doi:10.1016/j.compscitech.2015.08.010
- C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–3247 (2010). doi:10.1021/nn1002387
- B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3(22), 8286–8290 (2013). doi:10.1039/c3ra00088e
- S. Pramanik, R. Konwarh, K. Sagar, B.K. Konwar, N. Karak, Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material. Prog. Org. Coat. 76(4), 689–697 (2013). doi:10.1016/j.porgcoat.2012.12.011
- L. Zhu, Y. Yin, C.F. Wang, S. Chen, Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C 1(32), 4925–4932 (2013). doi:10.1039/c3tc30701h
- S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). doi:10.1039/c2cc33796g
- L. Cao, S. Sahu, P. Anilkumar, C.E. Bunker, J. Xu, K.A.S. Fernando et al., Carbon nanoparticles as visible light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133(13), 4754–4757 (2011). doi:10.1021/ja200804h
- J. Wang, S. Sahu, S.K. Sonkar, K.N. Tackett, K.W. Sun et al., Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 3(36), 15604–15607 (2013). doi:10.1039/c3ra42302f
- Y. Yang, W. Kong, H. Li, J. Liu, M. Yang et al., Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer. ACS Appl. Mater. Interfaces 7(49), 27324–27330 (2015). doi:10.1021/acsami.5b08782
References
K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants et al., Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7(16), 8363–8376 (2015). doi:10.1021/acsami.5b00448
J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazee-ruddin et al., Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345(6204), 1593–1596 (2014). doi:10.1126/science.1258307
T.S. Teets, D.G. Nocera, Photocatalytic hydrogen production. Chem. Commun. 47(33), 9268–9274 (2011). doi:10.1039/c1cc12390d
Y.W. Su, W.H. Lin, Y.J. Hsu, K.H. Wei, Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis. Small 10(22), 4427–4442 (2014). doi:10.1002/smll.201401508
A.E. Sanli, A. Aytac, Response to disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel cell. Int. J. Hydrogen Energy 36(1), 869–875 (2011). doi:10.1016/j.ijhydene.2010.09.038
Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 53(49), 13454–13459 (2014). doi:10.1002/ange.201407938
F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Kinetics of the recovery of active anthraquinones. Ind. Eng. Chem. Res. 45(3), 986–992 (2006). doi:10.1021/ie050593s
D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Preparation and study of Pd catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2. Top. Catal. 56(9), 527–539 (2013). doi:10.1007/s11244-013-0014-5
S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, Direct synthesis of hydrogen peroxide on zirconia-supported catalysts under mild conditions. J. Catal. 239(2), 422–430 (2006). doi:10.1016/j.jcat.2006.02.014
J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2 supported Au–Pd catalysts. J. Catal. 236(1), 69–79 (2005). doi:10.1016/j.jcat.2005.09.015
J.C. Pritchard, Q. He, E.N. Ntainjua, M. Piccinini, J.K. Edwards, A.A. Herzing, The effect of catalyst preparation method on the performance of supported Au–Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chem. 12(5), 915–921 (2010). doi:10.1039/b924472g
Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamadaa, S. Fukuzumi, Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. J. Mater. Chem. A 3(23), 12404–12412 (2015). doi:10.1039/C5TA02446C
S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 6(12), 3756–3764 (2013). doi:10.1039/c3ee42815j
C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 22(7), 798–806 (1988). doi:10.1021/es00172a009
R. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 219(1), 214–218 (2003). doi:10.1016/S0021-9517(03)00197-0
H. Goto, Y. Hanada, T. Ohno, M. Matsumura, Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 Particles. J. Catal. 225(1), 223–229 (2004). doi:10.1016/j.jcat.2004.04.001
V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2–fluoride systems. Chem. Commun. 36(33), 2627–2629 (2005). doi:10.1039/b418789j
T. Hirakawa, Y. Nosaka, Selective production of superoxide ions and hydrogen peroxide over nitrogen-and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J. Phys. Chem. C 112(40), 15818–15823 (2008). doi:10.1021/jp8055015
M. Teranishi, S. Naya, H. Tada, In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J. Am. Chem. Soc. 132(23), 7850–7851 (2010). doi:10.1021/ja102651g
D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal. 2(2), 599–603 (2012). doi:10.1021/cs300407e
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). doi:10.1021/cs401208c
V.D. Dao, P. Kim, S. Baek, L.L. Larina, K. Yong, R. Ryoo, Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon 96, 139–144 (2016). doi:10.1016/j.carbon.2015.09.023
Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang et al., Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes. Nano-Micro Lett. 5(4), 247–259 (2013). doi:10.5101/nml.v5i4.p247-259
W. Kwon, S. Do, J. Lee, S. Hwang, J.K. Kim, S.W. Rhee, Freestanding luminescent films of nitrogen-rich carbon nanodots toward large scale phosphor based white light emitting devices. Chem. Mater. 25(9), 1893–1899 (2013). doi:10.1021/cm400517g
Z. Song, F. Quan, Y. Xu, M. Liu, L. Cui, J. Liu, Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104, 169–178 (2016). doi:10.1016/j.carbon.2016.04.003
S. Sahu, Y. Liu, P. Wang, C.E. Bunker, K.A.S. Fernando et al., Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots. Langmuir 30(28), 8631–8636 (2014). doi:10.1021/la5010209
B. De, B. Voit, N. Karak, Carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Adv. 4(102), 58453–58459 (2014). doi:10.1039/C4RA11120F
D. Mosconi, D. Mazzier, S. Silvestrini, A. Privitera, C. Marega, L. Franco, Synthesis and photochemical applications of processable polymers enclosing photoluminescent carbon quantum dots. ACS Nano 9(4), 4156–4164 (2015). doi:10.1021/acsnano.5b00319
S. Barua, G. Dutta, N. Karak, Glycerol based tough hyperbranched epoxy: synthesis, statistical optimization and property evaluation. Chem. Eng. Sci. 95(3), 138–147 (2013). doi:10.1016/j.ces.2013.03.026
S. Gogoi, N. Karak, Bio-based high-performance waterborne hyperbranched polyurethane thermoset. Polym. Adv. Technol. 26(6), 589–596 (2015). doi:10.1002/pat.3490
S. Gogoi, M. Kumar, B.B. Mandal, N. Karak, High performance luminescent thermosetting waterborne hyperbranched polyurethane/carbon quantum dot nanocomposite with in vitro cytocompatibility. Compos. Sci. Technol. 118, 39–46 (2015). doi:10.1016/j.compscitech.2015.08.010
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–3247 (2010). doi:10.1021/nn1002387
B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3(22), 8286–8290 (2013). doi:10.1039/c3ra00088e
S. Pramanik, R. Konwarh, K. Sagar, B.K. Konwar, N. Karak, Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material. Prog. Org. Coat. 76(4), 689–697 (2013). doi:10.1016/j.porgcoat.2012.12.011
L. Zhu, Y. Yin, C.F. Wang, S. Chen, Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C 1(32), 4925–4932 (2013). doi:10.1039/c3tc30701h
S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). doi:10.1039/c2cc33796g
L. Cao, S. Sahu, P. Anilkumar, C.E. Bunker, J. Xu, K.A.S. Fernando et al., Carbon nanoparticles as visible light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133(13), 4754–4757 (2011). doi:10.1021/ja200804h
J. Wang, S. Sahu, S.K. Sonkar, K.N. Tackett, K.W. Sun et al., Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 3(36), 15604–15607 (2013). doi:10.1039/c3ra42302f
Y. Yang, W. Kong, H. Li, J. Liu, M. Yang et al., Fluorescent N-doped carbon dots as in vitro and in vivo nanothermometer. ACS Appl. Mater. Interfaces 7(49), 27324–27330 (2015). doi:10.1021/acsami.5b08782