Plant Surfaces: Structures and Functions for Biomimetic Innovations
Corresponding Author: Wilhelm Barthlott
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 23
Abstract
An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350–450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology for this diversity is provided. Simplified, the functions of plant surface characteristics may be grouped into six categories: (1) mechanical properties, (2) influence on reflection and absorption of spectral radiation, (3) reduction of water loss or increase of water uptake, moisture harvesting, (4) adhesion and non-adhesion (lotus effect, insect trapping), (5) drag and turbulence increase, or (6) air retention under water for drag reduction or gas exchange (Salvinia effect). This list is far from complete. A short overview of the history of bionics and the impressive spectrum of existing and anticipated biomimetic applications are provided. The major challenge for engineers and materials scientists, the durability of the fragile nanocoatings, is also discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Barthlott, M. Mail, C. Neinhuis, Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc. A 374(2073), 20160191 (2016). doi:10.1098/rsta.2016.0191
- W. Barthlott, N. Ehler, Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Trop. Subtrop. Pflanzenwelt 19, 1–105 (1977)
- S. Blackmore, K. Ferguson (eds.), in Pollen and Sres: Form and Function, vol. 12. Linnean Society Symposium Series (Academic Press, London, 1986)
- S.N. Agashe, E. Caulton, Pollen and Spores: Application with Special Emphasis on Aerobiology and Allergy (Taylor Francis Inc., New York, 2009)
- K. Koch, B. Bhushan, W. Barthlott, Multifunctional plant surfaces and smart materials, in Springer Handbook of Nanotechnology, 3rd edn., ed. by B. Bhushan (Springer, Heidelberg, 2010), pp. 1399–1436
- B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)
- C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. Lond. 79, 667–677 (1997). doi:10.1006/anbo.1997.0400
- S. Porembski, B. Martens-Aly, W. Barthlott, Surface/volume-rations of plants with special consideration of succulents. Beitr. Biol. Pflanzen 66, 189–209 (1992)
- J.M. Suttie, S.G. Reynolds, C. Batello, Grasslands of the World (Food and Agricultural Organisations of the UN, Rome, 2005)
- K. Koch, I.C. Blecher, G. König, S. Kehraus, W. Barthlott, The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Funct. Plant Biol. 36, 339–350 (2009). doi:10.1071/FP08295
- W. Barthlott, D. Rafiqpoor, W. Erdelen, Bionics and Biodiversity- Bio-Inspired Technical Innovation for a Sustainable Future, in Biomimetic Research for Architecture and Building Construction-Biological Design and Integrative Structures, ed. by J. Knippers, K. Nickel, T. Speck (Springer, Berlin, 2016)
- R.L. Ripley, B. Bhushan, Bioarchitecture: bioinspired art and architecture—a perspective. Philos. Trans. R. Soc. A 374, 20160192 (2016). doi:10.1098/rsta.2016.0192
- R.H. Francé, Die Pflanze als Erfinder. Stuttgart, Germany: Franckh’sche Verlagshandlung (Engl. edition: Plants as inventors. London: Simpkin and Marshall, 1920)
- J.C. Robinette (ed.), Living Prototypes–the Key to New Technology, in Proceeding of the Symposium. (Wright Air Development Division, 13–15 September 1960)
- W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997). doi:10.1007/s004250050096
- H.C. von Baeyer, The Lotus effect. The Sciences 40(1), 12–15 (2000). doi:10.1002/j.2326-1951.2000.tb03461.x
- D.W. Bechert, A. Dinkelacker, W.-E. Reif, On the fluid dynamic of the shark skin. Bull. Am. Phys. Soc. (1983). doi:10.1002/cben.201400033
- D.W. Bechert, M. Bruse, W. Hage, R. Meyer, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87, 157–171 (2000). doi:10.1007/s001140050696
- B. Bhushan, Biomimetics-Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, 2nd edn. (Springer, Heidelberg, 2016)
- P. Forbes, The Gecko’s Foot (Fourth Estate, London, 2005)
- W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant Surfaces: Structures and Functions for Biomimetic Applications, in Springer Handbook of Nanotechnology, 4th edn., ed. by B. Bhushan (Springer, Heidelberg, 2017)
- W. Barthlott, C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, H. Wilhelmi, Classification and terminology of plant epicuticular waxes. Bot. J. Linnean Soc. 126, 237–260 (1998). doi:10.1111/j.1095-8339.1998.tb02529.x
- A. Dommisse, J. Wirtz, K. Koch, K. Wandelt, W. Barthlott, T. Kolter, Synthesis of Snonacosan-10-ol, the main component of plant surface tubular wax crystals. Eur. J. Org. Chem. 2007, 3508–3511 (2007). doi:10.1002/ejoc.200700262
- M. Riederer, C. Markstädter, Cuticular Waxes: A Critical Assessment of Current Knowledge, in Plant Cuticles an Integrated Functional Approach, ed. by G. Kerstiens (University Scientific, Oxford, 1996), pp. 189–200
- L. Kunst, A.L. Samuels, Biosynthesis and secretion of plant cuticular wax. Prog. Lip. Res. 42, 51–80 (2003). doi:10.1016/S0163-7827(02)00045-0
- C.E. Jeffree, The Fine Structure of the Plant Cuticle, in Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 11–125
- R. Jetter, S. Schäffer, Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Phys. 126, 1725–1737 (2001). doi:10.1104/pp.126.4.1725
- K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann, Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals. Planta 223, 258–270 (2005). doi:10.1007/s00425-005-0081-3
- R. Jetter, L. Kunst, A.L. Samuels, Composition of Plant Cuticular Waxes, in Biology of the Plant Cuticle, in Annual Plant Reviews, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 145–175
- E.A. Baker, Chemistry and Morphology of Plant Epicuticular Waxes, in The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic Press, London, 1982), pp. 139–165
- T. Shepherd, D.W. Griffiths, The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499 (2006). doi:10.1111/j.1469-8137.2006.01826.x
- K. Koch, K.D. Hartmann, L. Schreiber, W. Barthlott, C. Neinhuis, Influence of air humidity on epicuticular wax chemical composition, morphology and wettability of leaf surfaces. Environ. Exp. Bot. 56, 1–9 (2006). doi:10.1016/j.envexpbot.2004.09.013
- C. Markstädter, W. Federle, R. Jetter, M. Riederer, B. Hölldobler, Chemical composition of the slippery epicuticular wax blooms on Macaranga Thouars. (Euphorbiaceae) ant-plants. Chemoecology 10, 33–40 (2000). doi:10.1007/s000490050005
- M. Riedel, A. Eichner, R. Jetter, Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218, 87–97 (2003). doi:10.1007/s00425-003-1075-7
- M. Wen, C. Buschhaus, R. Jetter, Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry 67, 1808–1817 (2007). doi:10.1016/j.phytochem.2006.01.018
- H. Ensikat, C. Neinhuis, W. Barthlott, Direct access to plant epicuticular wax crystals by a new mechanical isolation method. Int. J. Plant Sci. 161, 143–148 (2000). doi:10.1086/314234
- D. Frölich, W. Barthlott, Die mikromorphologie der epicuticularen wachse und das system der monocotylen. Trop. Subtrop. Pflanzenwelt 63, 1–135 (1988)
- N.D. Hallam, B.E. Juniper, The Anatomy of the Leaf surface, in The Ecology of Leaf Surface Micro-organisms, ed. by T.F. Preece, C.H. Dickinson (Academic Press, London, 1971), pp. 3–37
- C.E. Jeffree, The Cuticle, Epicuticular Waxes and Trichomes of Plants, with Reference to Their Structure, Functions and Evolution, in Insects and the Plant Surface, ed. by B.E. Juniper, R. Southwood (Edward Arnold, London, 1986), pp. 23–63
- K. Koch, C. Neinhuis, H.J. Ensikat, W. Barthlott, Self-assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J. Exp. Bot. 55, 711–718 (2004). doi:10.1093/jxb/erh077
- K. Koch, H.J. Ensikat, The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39, 759–772 (2008). doi:10.1016/j.micron.2007.11.010
- H.J. Ensikat, B. Boese, W. Mader, W. Barthlott, K. Koch, Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chem. Phys. Lipids 144, 45–59 (2006). doi:10.1016/j.chemphyslip.2006.06.016
- K. Koch, A. Dommisse, C. Neinhuis, W. Barthlott, Self-assembly of Epicuticular Waxes on Living Plant Surfaces by Atomic Force Microscopy, in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, ed. by P.M. Koenraad, M. Kemerink (American Institute of Physics, Melville, 2003), pp. 457–460
- P.J. Holloway, C.E. Jeffree, E.A. Baker, Structural determination of secondary alcohols from plant epicuticular waxes. Phytochemisty 15, 1768–1770 (1976). doi:10.1016/S0031-9422(00)97477-6
- R. Jetter, M. Riederer, In vitro reconstitution of epicuticular wax crystals: formation of tubular aggregates by long chain secondary alkanediols. Bot. Acta 108, 111–120 (1995). doi:10.1111/j.1438-8677.1995.tb00840.x
- I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott, Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules. Plant Biol. 2, 462–470 (2000). doi:10.1055/s-2000-5961
- W. Barthlott, I. Theisen, T. Borsch, C. Neinhuis, Epicuticular Waxes and Vascular Plant Systematics: Integrating Micromorphological and Chemical Data, in Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, ed. by T.F. Stuessy, V. Mayer, E. Hörandl (Reg. Veg. Gantner Verlag, Ruggell, 2003), pp. 457–460
- I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott, Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Can. J. Bot. 77, 706–720 (1999). doi:10.1139/cjb-77-5-706
- International Union of Crystallography, Report of the Executive Committee for 1991. Acta Crystalogr. A 48, 922–946 (1992). doi:10.1107/S0108767392008328
- C.E. Jeffree, E.A. Baker, P.J. Holloway, Ultrastructure and recrystallization of plant epicuticular waxes. New Physiol. 75, 539–549 (1975). doi:10.1111/j.1469-8137.1975.tb01417.x
- R. Jetter, M. Riederer, Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystal habits. Planta 195, 257–270 (1994). doi:10.1007/BF00199686
- K. Koch, A. Dommisse, W. Barthlott, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates. Crys. Growth Des. 6, 2571–2578 (2006). doi:10.1021/cg060035w
- G.M. Whitesides, M. Boncheva, Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Nat. Acad. Sci. USA 99(8), 4769–4774 (2002). doi:10.1073/pnas.082065899
- J. Zhang, W. Zhong-Lin, J. Liu, C. Shaowei, G. Liu, Self-assembled Nanostructures (Kluwer Academic Publishers, New York, 2003)
- N. Boden, P.J.B. Edwards, K.W. Jolley, C. Neinhuis, Self-assembly and Self-organization in Micellar Liquid Crystals, in Structure and Dynamics of Strongly Interacting Colloids and Supermolecular Aggregates in Solutions, ed. by S.H. Chen, J.S. Huang, P. Tartaglia (Kluwer Academic Publishers, Dordrecht, 1992)
- C. Neinhuis, K. Koch, W. Barthlott, Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213, 427–434 (2001). doi:10.1007/s004250100530
- D. Dorset, Development of lamellar structures in natural waxes-an electron diffraction investigation. J. Phys. D 32, 1276–1280 (1999). doi:10.1088/0022-3727/32/11/315
- B. Bhushan, K. Koch, Y.C. Jung, Biomimetic hierarchical structure for self-cleaning. Appl. Phys. Lett. 93, 093101 (2008). doi:10.1063/1.2976635
- B. Bhushan, K. Koch, Y.C. Jung, Nanostructures for superhydrophobicity and low adhesion. Soft Matter 4, 1799–1804 (2008). doi:10.1039/b808146h
- S. De Feyter, F.C. De Schryver, Self-assembly at the liquid/solid interface: STM reveals. J. Phys. Chem. B 109, 4290–4302 (2005). doi:10.1021/jp045298k
- F.C. Meldrum, S. Ludwigs, Template-directed control of crystal morphologies. Macromol. Biosci. 7, 152–162 (2007). doi:10.1002/mabi.200600191
- K. Koch, A. Dommisse, A. Niemietz, W. Barthlott, K. Wandelt, Nanostructure of epicuticular plant waxes: self-assembly of wax tubules. Surf. Sci. 603, 1961–1968 (2009). doi:10.1016/j.susc.2009.03.019
- A. Fahn, Structure and function of secretory cells. Adv. Bot. Res. 31, 37–75 (2000). doi:10.1016/S0065-2296(00)31006-0
- G.J. Wagner, E. Wang, R.W. Shephers, New approaches for studying and exploiting an old protuberance, the Plant Trichome. Ann. Bot. 93, 3–11 (2004). doi:10.1093/aob/mch011
- E. Wollenweber, The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns. Am. Fern J. 68, 13–28 (1978). doi:10.2307/1546411
- W. Barthlott, E. Wollenweber, Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. Tropische und subtropische Pflanzenwelt 32, 7–67 (1981)
- W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede et al., The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22, 2325–2328 (2010). doi:10.1002/adma.200904411
- P.J. Holloway, Plant Cuticles: Physicochemical Characteristics and Biosynthesis, in Air Pollution and the Leaf Cuticle, ed. by K.E. Percy, J.N. Cape, R. Jagels, C.J. Simpson (Springer, Berlin, 1994), pp. 1–13
- P.E. Kolattukudy, Plant cuticle and suberin. eLS (2001). doi:10.1038/npg.els.0001920
- J.T. Martin, B.E. Juniper, The Cuticles of Plants (Edward Arnold, London, 1970)
- D.F. Cutler, K.L. Alvin, C.E. Price, The Plant Cuticle (Academic Press, London, 1982)
- G. Kerstiens, Plant Cuticles: An Integrated Functional Approach (Bios Scient Pub, Oxford, 1996)
- M. Riederer, C. Müller, Biology of the Plant Cuticle (Blackwell, Oxford Pub, Oxford, 2006)
- H. Bargel, C. Neinhuis, Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot. 56, 1049–1060 (2005). doi:10.1093/jxb/eri098
- H. Bargel, K. Koch, Z. Cerman, C. Neinhuis, Structure-function relationships of the plant cuticle and cuticular waxes-a smart material? Funct. Plant Biol. 33, 893–910 (2006). doi:10.1071/FP06139
- W. Barthlott, Scanning Electron Microscopy of the Epidermal Surface in Plants, in Application of the Scanning EM in Taxonomy and Functional Morphology, Systematics associations’ special volume, ed. by D. Claugher (Clarendon Press, Oxford, 1990), pp. 69–94
- W. Barthlott, Morphogenese und mikromorphologie komplexer cuticular-faltungsmuster an blüten-trichomen von antirrhinum L. (Scrophulariaceae). Ber. Dt. Bot. Ges. 93, 379–390 (1980)
- L.H.P. Jones, K.A. Handreck, Silica in soils, plants, and animals. Adv. Agron. 19, 107–149 (1967). doi:10.1016/S0065-2113(08)60734-8
- A.G. Sangster, M.J. Hudson, H.J. Tubb, Silicon Deposition in Higher Plants, in Silicon in Agriculture, ed. by L.E. Datnoff, G.H. Snyder, G.H. Korndörfer (Elsevier, Amsterdam, 2001), pp. 85–114
- H.-J. Ensikat, T. Geisler-Wierwille, M. Weigend, A first report of hydroxylated apatite as structural biomineral in Loasaceae-plants´ teeth against herbivores. Sci. Rep. 6, 26073 (2016). doi:10.1038/srep26073
- R.K. Saeedur, Calcium Oxalate in Biological Systems (CRC Press, Boca Raton, 1995)
- K. Koch, B. Bhushan, W. Barthlott, Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4, 1943–1963 (2008). doi:10.1039/b804854a
- K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater Sci. 54, 137–178 (2009). doi:10.1016/j.pmatsci2008.07.003
- C. Martin, B.J. Glover, Functional aspects of cell patterning in aerial epidermis. Curr. Opin. Plant Biol. 10, 70–82 (2007). doi:10.1016/j.pbi.2006.11.004
- C.A. Brewer, W.K. Smith, T.C. Vogelmann, Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell Environ. 14, 955–962 (1991). doi:10.1111/j.1365-3040.1991.tb00965.x
- E. Rodriguez, P.L. Healey, I. Mehta, Biology and Chemistry of Plant Trichomes (Plenum Press, New York, 1984)
- H.D. Behnke, Plant Trichomes-structure and Ultrastructure: General Terminology, Taxonomic Applications, and Aspects of Trichome Bacterial Interaction in Leaf Tips of Dioscorea, in Biology and Chemistry of Plant Trichomes, ed. by E. Rodriguez, P.L. Healey, I. Mehta (Plenum Press, New York, 1984), pp. 1–21
- W. Barthlott, D. Hunt, Seed-Diversity in Cactaceae Subfam. Cactoideae, in Succulent Plant Research, vol. 5, ed. by D. Hundt (Milborne Port, Sherborne, 2000)
- W. Barthlott, B. Große-Veldmann, N. Korotkova, Orchid seed diversity: a scanning electron microscopy survey. Englera 32, 1–244 (2014)
- W. Barthlott, S. Wiersch, Z. Colic, K. Koch, Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes. Botany-Botanique 87, 830–836 (2009). doi:10.1139/B09-048
- J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1992)
- B. Bhushan, Introduction to Tribology, 2nd edn. (Wiley, New York, 2013)
- P.G. De Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)
- B. Bhushan, Y.C. Jung, Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J. Phys.: Condens. Matter 20, 225010 (2008). doi:10.1088/0953-8984/20/22/225010
- M. Nosonovsky, B. Bhushan, Green Tribology, Biomimetics, Energy Conservation and Sustainability (Springer, Berlin, 2012)
- E.Y. Bormashenko, Wetting of Real Surfaces, in De Gruyter Studies in Mathematical Physics, vol. 19 (Verlag Walter de Gruyter, 2013), pp. 187
- H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)
- F. Schellenberger, N. Encinas, D. Vollmer, H.-J. Butt, How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116, 096101 (2016). doi:10.1103/PhysRevLett.116.096101
- B. Bhushan, Nanotribology and Nanomechanics-an Introduction, 3rd edn. (Springer, Heidelberg, 2011)
- C.W. Extrand, Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002). doi:10.1021/la025769z
- Y.C. Jung, B. Bhushan, Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127–140 (2008). doi:10.1111/j.1365-2818.2007.01875.x
- MathSciNet
- B. Bhushan, Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007). doi:10.1016/j.ultramic.2007.05.002
- P. Roach, N.J. Shirtcliffe, M.I. Newton, Progress in superhydrophobic surface development. Soft Matter 4, 224–240 (2008). doi:10.1039/B712575P
- X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 62–633 (2008). doi:10.1039/B711226B
- C.W. Extrand, Origins of wetting. Langmuir 32(31), 7697–7706 (2016). doi:10.1021/acs.langmuir.6b01935
- A.V. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1990)
- M. Nosonovsky, B. Bhushan, Lotus Versus Rose: Biomimetic Surface Effects, in Green Tribology, Biomimetics, Energy Conservation and Sustainability, ed. by M. Nosonovsky, B. Bhushan (Springer, Berlin, 2012), pp. 25–40
- R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936). doi:10.1021/ie50320a024
- A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). doi:10.1039/tf9444000546
- A. Marmur, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003). doi:10.1021/la0344682
- E.Y. Bormashenko, Wetting transitions on biomimetic surfaces. Philos. Trans. R. Soc. A 368, 4695–4711 (2010). doi:10.1098/rsta.2010.0121
- L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008). doi:10.1021/la703821h
- A.-L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing. Ann. Rev. Fluid Mech. 38, 159–192 (2006). doi:10.1146/annurev.fluid.38.050304.092144
- MathSciNet
- MATH
- C. Josserand, S.T. Thoroddsen, Drop impact on a solid surface. Ann. Rev. Fluid Mech. 48, 365–391 (2015). doi:10.1146/annurev-fluid-122414-034401
- MATH
- J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C.M. Megaridis, Z. Zhao, Wetting effects on the spreading of a liquid droplet surface: experiment and modeling colliding with a flat. Phys. Fluids 7, 236–247 (1995). doi:10.1063/1.868622
- C. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 21, 151–173 (1995). doi:10.1016/0301-9322(94)00069-V
- MATH
- T. Mao, D. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43, 2169–2179 (1997). doi:10.1002/aic.690430903
- L. Xu, L. Barcos, S.R. Nagel, Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311 (2007). doi:10.1103/PhysRevE.76.066311
- R. Rioboo, C. Tropea, M. Marengo, Outcomes from a drop impact on solid surfaces. At. Sprays 11, 155–165 (2001). doi:10.1615/AtomizSpr.v11.i2.40
- C. Motzkus, F. Gensdarmes, E. Géhin, Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J. Colloid Interface Sci. 362, 540–552 (2011). doi:10.1016/j.jcis.2011.06.031
- T. Gilet, L. Bourouiba, Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54(6), 974–984 (2014). doi:10.1093/icb/icu116
- K. Koch, R. Grichnik, Influence of surface structure and chemistry on water droplet splashing. Philos. Trans. R. Soc. A 374, 20160183 (2016). doi:10.1098/rsta.2016.0183
- Y. Liu, L. Moevius, X. Xu, T. Qian, J.M. Yeomans, Z. Wang, Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10(7), 515–519 (2014). doi:10.1038/nphys2980
- K. Koch, M. Bennemann, H.F. Bohn, D.C. Albach, W. Barthlott, Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting. Bioinspir. Biomim. 8, 036005 (2013). doi:10.1088/1748-3182/8/3/036005
- A. Otten, S. Herminghaus, How plants keep dry: a physicist’s point of view. Langmuir 20, 2405–2408 (2004). doi:10.1021/la034961d
- H.-J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott, Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2, 152–161 (2011). doi:10.3762/bjnano.2.19
- W. Barthlott, K. Riede, M. Wolter, Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicateae: Salviniaceae). Amazoniana 13, 47–58 (1994)
- H. Bargel, W. Barthlott, K. Koch, L. Schreiber, C. Neinhuis, Plant Cuticles: Multifunctional Interfaces Between Plant and Environment, in The Evolution of Plant Physiology, ed. by A.R. Hemsley, I. Poole (Academic Press, London, 2003), pp. 171–194
- L. Schreiber, J. Schonherr, Water and Solute Permeability of Plant Cuticles (Springer, Heidelberg, 2009)
- K. Koch, W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos. Trans. R. Soc. A 367, 1487–1509 (2009). doi:10.1098/rsta.2009.002
- W. Barthlott, Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic J. Bot. 1, 345–355 (1981). doi:10.1111/j.1756-1051.1981.tb00704.x
- P.G. Kevan, M.A. Lanet, Flower petal microtexture is a tactile cue for bees. Proc. Nat. Acad. Sci. USA 82, 4750–4752 (1985). doi:10.1073/pnas.82.14.4750
- S.N. Gorb, Functional surfaces in biology: adhesion related phenomena, vol. 1 (Springer Science & Business Media, Berlin, 2009)
- F. Exner, S. Exner, Die physikalischen Grundlagen der Blütenfärbungen. Sitzungsber. Kais. Akad. Wiss. Wien, Math.-nat. Kl 119, 191–245 (1910)
- Y. Toda, Physiological studies on Schistostega osmundacea (Dicks.) Mohr. J. Coll. Sci. Imp. Univ. Tokyo 40(5), 1–30 (1918)
- Q. Kay, H. Daoud, C. Stirton, Pigment distribution, light reflection and cell structure in petals. Bot. J. Linnean Soc. 83, 57–84 (1981)
- H.M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. Glover, Floral iridescence, produced by diffractive optics, acts as cue for animal pollinators. Science 323, 130–133 (2009). doi:10.1126/science.1166256
- D.G. Lloyd, S.C.H. Barret, Floral Biology-Studies on Floral Evolution in Animal-pollinated Plants (Springer, Berlin, 1995)
- B. Burr, D. Rosen, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. III. Dilleniidae und Asteridae S. I. Trop. Subtrop. Pflanzenwelt 93 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1995), 186 pp
- B. Burr, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop. subtrop. Pflanzenwelt 87 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1993), 193 pp
- N. Biedinger, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. I. Monocotyledoneae. Trop. Subtrop. Pflanzenwelt 86 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1993), 122 pp
- H. Whitney, M. Kolle, R. Alvarez-Fernandez, U. Steiner, B. Glover, Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2(3), 230–232 (2009)
- S. Robinson, C.E. Lovelock, C.B. Osmond, Wax as a mechanism for protection against photoinhibition: a study of Cotyledon orbiculata. Bot. Acta 106, 307–312 (1993). doi:10.1111/j.1438-8677.1993.tb00753.x
- C. Müller, M. Riederer, Plant surface properties in chemical ecology. Chem. Ecol. 3, 2621–2651 (2005). doi:10.1007/s10886-005-7617-7
- J.R. Ehleringer, O. Björkman, Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa. Oecologia 36, 151–162 (1978). doi:10.1007/BF00349805
- M.G. Holmes, D.R. Keiller, Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25, 85–93 (2002). doi:10.1046/j.1365-3040.2002.00779.x
- D.M. Gates, Energy Exchange and Transpiration, in Water and Plant Life, ed. by O.L. Lange, L. Kappen, E.D. Schulze (Springer, New York, 1976), pp. 137–147
- P.H. Schuepp, Model experiments on free convection heat and mass transfer of leaves and plant elements. Boundary-Layer Meteorol. 3, 454–457 (1973). doi:10.1007/BF01034988
- P.H. Schuepp, Leaf boundary layers. New Phytol. 125, 477–507 (1993). doi:10.1111/j.1469-8137.1993.tb03898.x
- H.G. Jones, E. Rotenberg, Radiation and Temperature Regulation in Plants, in Encyclopedia of Life Science, ed. by A.M. Hetherington (Wiley, New York, 2001), pp. 1–8
- W. Barthlott, W. Schultze-Motel, Zur feinstruktur der blattoberflächen und systematischen stellung der laubmoosgattung rhacocarpus und anderer hedwigiaceae. Willdenowia 11, 3–11 (1981)
- H.G. Edelmann, C. Neinhuis, M. Jarvis, B. Evans, E. Fischer, W. Barthlott, Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): a puzzling architecture among plants. Planta 206, 315–321 (1998). doi:10.1007/s004250050406
- F.T. Malik, R.M. Clement, D.T. Gethin, W. Krawszik, A.R. Parker, Nature’s moisture harvesters: a comparative review. Bioinspir. Biomim. 9, 031002 (2014). doi:10.1088/1748-3182/9/3/031002
- M.A.K. Azad, D. Ellerbrok, W. Barthlott, K. Koch, Fog collecting biomimetic surfaces: influence of microstructure and wettability. Bioinspir. Biomim. 10, 016004 (2015). doi:10.1088/1748-3190/10/1/016004
- M.A.K. Azad, W. Barthlott, K. Koch, Hierarchical surface architecture of plants as an inspiration for biomimetic fog collectors. Langmuir 31(48), 13172–13179 (2015). doi:10.1021/acs.langmuir.5b02430
- P.T. Martone, L. Kost, M. Boller, Drag reduction in wave-swept macroalgae: alternative stratgies and new predictions. Am. J. Bot. 99(5), 806–815 (2012). doi:10.3732/ajb.1100541
- W. Barthlott, Die Selbstreinigungsfähigkeit Pflanzlicher Oberflächen Durch Epicuticularwachse, in Klima- und Umweltforschung an der Universität Bonn, ed. by H. Koch (Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992), pp. 117–120
- C.W. Extrand, S.I. Moon, Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. Langmuir 30, 8791–8797 (2014). doi:10.1021/la5019482
- A. Balmert, H.F. Bohn, P. Ditsche-Kuru, W. Barthlott, Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces. J. Morphol. 272, 442–451 (2011). doi:10.1002/jmor.10921
- R.S. Seymour, P.G.D. Matthews, Physical gills in diving insects and spiders: theory and experiment. J. Exp. Biol. 216, 164–170 (2013). doi:10.1242/jeb.070276
- K. Koch, H.F. Bohn, W. Barthlott, Hierarchical sculpturing of plant surfaces and superhydrophobicity. Part of the ‘Langmuir 25th year: wetting and superhydrophobicity’ special issue’. Langmuir 25, 14116–14120 (2009). doi:10.1021/la9017322
- M. Amabili, A. Giacomello, S. Meloni, C.M. Casciola, Unraveling the Salvinia paradox: design principles for submerged superhydrophobicity. Adv. Mater. Interfaces 2, 1500248 (2015). doi:10.1002/admi.201500248
- P. Ditsche, E. Gorb, M. Mayser, S. Gorb, T. Schimmel, W. Barthlott, Elasticity of the hair cover in air-retaining Salvinia surfaces. Appl. Phys. A 121, 505–511 (2015). doi:10.1007/s00339-015-9439-y
- D. Gandyra, S. Walheim, S. Gorb, W. Barthlott, T. Schimmel, The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness. Beilstein J. Nanotchnol. 6, 11–18 (2015). doi:10.3762/bjnano.6.2
- W. Konrad, C. Apeltauer, J. Frauendiener, W. Barthlott, A. Roth-Nebelsick, Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water. J. Bion. Eng. 6, 350–356 (2009). doi:10.1016/S1672-6529(08)60133-X
- M.J. Mayser, W. Barthlott, Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure. Integr. Comp. Biol. 54, 1001–1007 (2014). doi:10.1093/icb/icu072
- M.J. Mayser, H.F. Bohn, M. Reker, W. Barthlott, Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J. Nanotechnol. 5, 812–821 (2014). doi:10.3762/bjnano.5.93
- A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2, 126–134 (2007). doi:10.1088/1748-3182/2/4/S02
- S.D. Eigenbrode, Plant Surface Waxes and insect Behaviour, in Plant Cuticles: An Integrated Functional Approach, ed. by G. Kerstiens (BIOS Scientific Publishers, Oxford, 1996), pp. 201–222
- R.G. Beutel, S.N. Gorb, Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool Syst. 39(4), 177–207 (2001). doi:10.1046/j.1439-0469.2001.00155.x
- S. Gorb, Attachment Devices of Insect Cuticle (Springer Science & Business Media, Berlin, 2001)
- H.F. Bohn, W. Federle, Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Nat. Acad. Sci. USA 101(39), 14138–14143 (2004). doi:10.1073/pnas.0405885101
- U. Bauer, H.F. Bohn, W. Federle, Harmless nectar source or deadly trap: nepenthes pitchers are activated by rain, condensation and nectar. Proc. R. Soc. B 275, 259–265 (2008). doi:10.1098/rspb.2007.1402
- J. Gould, Learning from naturés best. Nature 519, S2–S3 (2015). doi:10.1038/519S2a
- A.J. Schulte, D.M. Droste, K. Koch, W. Barthlott, Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor)-new design principles for biomimetic materials. Beilstein J. Nanotechnol. 2, 228–236 (2011). doi:10.3762/bjnano.2.27
- M. Hopkin, Butterflies boast ultrablack wings: insects use optical trick to get the blackest black out of dark pigments. Nat. News (2004). doi:10.1038/news040126-4
- M. Spinner, S.N. Gorb, A. Balmert, H. Bleckmann, G. Westhoff, Non-contaminating camouflage: multifunctional skin microornamentation in the West African Gaboon viper (Bitis rhinoceros). PLoS ONE 9, e91087 (2014). doi:10.1371/journal.pone.0091087
- M.A.K. Azad, Fog Collection on Plant Surfaces and Biomimetic Applications, (Dissertation, University of Bonn, 2016)
- M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys.: Condens. Matter 20, 395005 (2008). doi:10.1088/0953-8984/20/39/395005
- G. Zouridakis, J.E. Moore, J. Maitland, Biomedical Technology and Devices, 2nd edn. (CRC Press, Boca Raton, 2013)
- C.J. Weng, C.H. Chang, C.W. Peng, S.W. Chen, J.M. Yeh, C.L. Hsu, Y. Wei, Advanced anticorrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chem. Mater. 23(8), 2075–2083 (2011). doi:10.1021/cm1030377
- S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264–6269 (2011). doi:10.1016/j.apsusc.2011.02.057
- L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009). doi:10.1021/la902882b
- Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011). doi:10.1016/j.cis.2011.08.005
- R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005). doi:10.1021/la0401011
- K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5(7), 1386–1393 (2009). doi:10.1039/b818940d
- M. Schwab, G. Noga, W. Barthlott, Bedeutung der epicuticularwachse für die pathogenabwehr am beispiel von botrytis cinerea-infektionen bei kohlrabi und erbse. Gartenbauwissenschaft 60, 102–109 (1995)
- G.J. Noga, M. Knoche, M. Wolter, W. Barthlott, Changes in leaf micro-morphology induced by surfactant application. Angew. Bot. 61, 521–528 (1987)
- M. Wolter, W. Barthlott, M. Knoche, G.J. Noga, Concentration effects and regeneration of epicuticular waxes after treatment with Triton-X-100 surfactant. Angew. Bot. 62(1–2), 53–62 (1988)
- G. Noga, M. Wolter, W. Barthlott, W. Petry, Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment. Angew. Botanik 65, 239–252 (1991)
- G. Noga, M. Knoche, M. Wolter, The impact of Triton X-100 surfactant on leaf micromorphology. HortScience 23(3), 808 (1988)
- C. Neinhuis, M. Wolter, W. Barthlott, Epicuticular wax of Brassica oleracea: changes in microstructure and ability to be contaminated of leaf surfaces after application of Triton X-100. J. Plant Dis. Prot. 99, 542–549 (1992)
- C. Zeiger, I.C.R. da Silva, M. Mail, M.N. Kavalenka, W. Barthlott, H. Hölscher, Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials. Bioinspir. Biomim. 11(5), 056003 (2016). doi:10.1088/1748-3190/11/5/056003
- M.A. Salem, W. Al-Zayadneh, H.F. Schulze, A.J. Cheruth, Effect of nanohydrophobic sand layer on Bermudagrass (Cynodon spp.) in urban landscaping. Urban Water J. 11, 167–173 (2013). doi:10.1080/1573062X.2013.768684
- J.-E. Melskotte, M. Brede, A. Ott, M. Mayser, W. Barthlott, A. Leder, Künstliche Luft Haltende Oberflächen zur Reibungsreduktion am Schiff/artificial Air Retaining Surfaces for Drag reduction on Shiphulls, in Lasermethoden in der Strömungsmesstechnik, vol. 39, ed. by M. Brede, B. Ruck, D. Dopheide (Deutsche Gesellschaft für Laser-Anemometrie GALA e.V, Karlsruhe, 2012), pp. 1–6
- O. Tricinci, T. Terencio, B. Mazzolai, N.M. Pugno, F. Greco, V. Mattoli, 3D micropatterned surfaces inspired by Salvinia molesta via direct laser lithography. ACS Appl. Mater. Interfaces 7(46), 25560–25567 (2015). doi:10.1021/acsami.5b07722
- J.-E. Melskotte, M. Brede, A. Wolter, W. Barthlott, A. Leder, Schleppversuche an Künstlichen, Luft Haltenden Oberflächen zur Reibungsreduktion am Schiff, in Lasermethoden in der Strömungsmesstechnik, 21. Fachtagung, 3–5. September 2013, ed. by C.J. Kähler et al. (München, Germany, 2013) 53, 1–7
- P. Ditsche-Kuru, E.S. Schneider, J.-E. Melskotte, M. Brede, A. Leder, W. Barthlott, Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention. Beilstein J. Nanotechnol. 2, 137–144 (2011). doi:10.3762/bjnano.2.17
- W. Federle, U. Maschwitz, B. Fiala, M. Riederer, B. Hölldobler, Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oeco 112, 217–224 (1997). doi:10.1007/s004420050303
- P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13(4), 1793–1799 (2013). doi:10.1021/nl4003969
- T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). doi:10.1038/nature10447
- C.A.E. Hamlett, N.J. Shirtcliffe, F.B. Pyatt, M.I. Newton, G. McHale, K. Koch, Passive water control at the surface of a superhydrophobic lichen. Planta 234(6), 1267–1274 (2011). doi:10.1007/s00425-011-1475-z
- W. Barthlott, W. Erdelen, M.D. Rafiqpoor, Biodiversity and Technical Innovations: Bionics, in Concept and Value in Biodiversity. Routledge Studies in Biodiversity Politics and Management, ed. by D. Lanzerath, M. Friele, D. Dopheide (Routledge, New York, 2014), pp. 300–315
References
W. Barthlott, M. Mail, C. Neinhuis, Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc. A 374(2073), 20160191 (2016). doi:10.1098/rsta.2016.0191
W. Barthlott, N. Ehler, Raster-Elektronenmikroskopie der Epidermis-Oberflächen von Spermatophyten. Trop. Subtrop. Pflanzenwelt 19, 1–105 (1977)
S. Blackmore, K. Ferguson (eds.), in Pollen and Sres: Form and Function, vol. 12. Linnean Society Symposium Series (Academic Press, London, 1986)
S.N. Agashe, E. Caulton, Pollen and Spores: Application with Special Emphasis on Aerobiology and Allergy (Taylor Francis Inc., New York, 2009)
K. Koch, B. Bhushan, W. Barthlott, Multifunctional plant surfaces and smart materials, in Springer Handbook of Nanotechnology, 3rd edn., ed. by B. Bhushan (Springer, Heidelberg, 2010), pp. 1399–1436
B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)
C. Neinhuis, W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. Lond. 79, 667–677 (1997). doi:10.1006/anbo.1997.0400
S. Porembski, B. Martens-Aly, W. Barthlott, Surface/volume-rations of plants with special consideration of succulents. Beitr. Biol. Pflanzen 66, 189–209 (1992)
J.M. Suttie, S.G. Reynolds, C. Batello, Grasslands of the World (Food and Agricultural Organisations of the UN, Rome, 2005)
K. Koch, I.C. Blecher, G. König, S. Kehraus, W. Barthlott, The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Funct. Plant Biol. 36, 339–350 (2009). doi:10.1071/FP08295
W. Barthlott, D. Rafiqpoor, W. Erdelen, Bionics and Biodiversity- Bio-Inspired Technical Innovation for a Sustainable Future, in Biomimetic Research for Architecture and Building Construction-Biological Design and Integrative Structures, ed. by J. Knippers, K. Nickel, T. Speck (Springer, Berlin, 2016)
R.L. Ripley, B. Bhushan, Bioarchitecture: bioinspired art and architecture—a perspective. Philos. Trans. R. Soc. A 374, 20160192 (2016). doi:10.1098/rsta.2016.0192
R.H. Francé, Die Pflanze als Erfinder. Stuttgart, Germany: Franckh’sche Verlagshandlung (Engl. edition: Plants as inventors. London: Simpkin and Marshall, 1920)
J.C. Robinette (ed.), Living Prototypes–the Key to New Technology, in Proceeding of the Symposium. (Wright Air Development Division, 13–15 September 1960)
W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997). doi:10.1007/s004250050096
H.C. von Baeyer, The Lotus effect. The Sciences 40(1), 12–15 (2000). doi:10.1002/j.2326-1951.2000.tb03461.x
D.W. Bechert, A. Dinkelacker, W.-E. Reif, On the fluid dynamic of the shark skin. Bull. Am. Phys. Soc. (1983). doi:10.1002/cben.201400033
D.W. Bechert, M. Bruse, W. Hage, R. Meyer, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87, 157–171 (2000). doi:10.1007/s001140050696
B. Bhushan, Biomimetics-Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, 2nd edn. (Springer, Heidelberg, 2016)
P. Forbes, The Gecko’s Foot (Fourth Estate, London, 2005)
W. Barthlott, M. Mail, B. Bhushan, K. Koch, Plant Surfaces: Structures and Functions for Biomimetic Applications, in Springer Handbook of Nanotechnology, 4th edn., ed. by B. Bhushan (Springer, Heidelberg, 2017)
W. Barthlott, C. Neinhuis, D. Cutler, F. Ditsch, I. Meusel, I. Theisen, H. Wilhelmi, Classification and terminology of plant epicuticular waxes. Bot. J. Linnean Soc. 126, 237–260 (1998). doi:10.1111/j.1095-8339.1998.tb02529.x
A. Dommisse, J. Wirtz, K. Koch, K. Wandelt, W. Barthlott, T. Kolter, Synthesis of Snonacosan-10-ol, the main component of plant surface tubular wax crystals. Eur. J. Org. Chem. 2007, 3508–3511 (2007). doi:10.1002/ejoc.200700262
M. Riederer, C. Markstädter, Cuticular Waxes: A Critical Assessment of Current Knowledge, in Plant Cuticles an Integrated Functional Approach, ed. by G. Kerstiens (University Scientific, Oxford, 1996), pp. 189–200
L. Kunst, A.L. Samuels, Biosynthesis and secretion of plant cuticular wax. Prog. Lip. Res. 42, 51–80 (2003). doi:10.1016/S0163-7827(02)00045-0
C.E. Jeffree, The Fine Structure of the Plant Cuticle, in Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 11–125
R. Jetter, S. Schäffer, Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Phys. 126, 1725–1737 (2001). doi:10.1104/pp.126.4.1725
K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann, Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals. Planta 223, 258–270 (2005). doi:10.1007/s00425-005-0081-3
R. Jetter, L. Kunst, A.L. Samuels, Composition of Plant Cuticular Waxes, in Biology of the Plant Cuticle, in Annual Plant Reviews, ed. by M. Riederer, C. Müller (Blackwell, Oxford, 2006), pp. 145–175
E.A. Baker, Chemistry and Morphology of Plant Epicuticular Waxes, in The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic Press, London, 1982), pp. 139–165
T. Shepherd, D.W. Griffiths, The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499 (2006). doi:10.1111/j.1469-8137.2006.01826.x
K. Koch, K.D. Hartmann, L. Schreiber, W. Barthlott, C. Neinhuis, Influence of air humidity on epicuticular wax chemical composition, morphology and wettability of leaf surfaces. Environ. Exp. Bot. 56, 1–9 (2006). doi:10.1016/j.envexpbot.2004.09.013
C. Markstädter, W. Federle, R. Jetter, M. Riederer, B. Hölldobler, Chemical composition of the slippery epicuticular wax blooms on Macaranga Thouars. (Euphorbiaceae) ant-plants. Chemoecology 10, 33–40 (2000). doi:10.1007/s000490050005
M. Riedel, A. Eichner, R. Jetter, Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218, 87–97 (2003). doi:10.1007/s00425-003-1075-7
M. Wen, C. Buschhaus, R. Jetter, Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry 67, 1808–1817 (2007). doi:10.1016/j.phytochem.2006.01.018
H. Ensikat, C. Neinhuis, W. Barthlott, Direct access to plant epicuticular wax crystals by a new mechanical isolation method. Int. J. Plant Sci. 161, 143–148 (2000). doi:10.1086/314234
D. Frölich, W. Barthlott, Die mikromorphologie der epicuticularen wachse und das system der monocotylen. Trop. Subtrop. Pflanzenwelt 63, 1–135 (1988)
N.D. Hallam, B.E. Juniper, The Anatomy of the Leaf surface, in The Ecology of Leaf Surface Micro-organisms, ed. by T.F. Preece, C.H. Dickinson (Academic Press, London, 1971), pp. 3–37
C.E. Jeffree, The Cuticle, Epicuticular Waxes and Trichomes of Plants, with Reference to Their Structure, Functions and Evolution, in Insects and the Plant Surface, ed. by B.E. Juniper, R. Southwood (Edward Arnold, London, 1986), pp. 23–63
K. Koch, C. Neinhuis, H.J. Ensikat, W. Barthlott, Self-assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). J. Exp. Bot. 55, 711–718 (2004). doi:10.1093/jxb/erh077
K. Koch, H.J. Ensikat, The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39, 759–772 (2008). doi:10.1016/j.micron.2007.11.010
H.J. Ensikat, B. Boese, W. Mader, W. Barthlott, K. Koch, Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chem. Phys. Lipids 144, 45–59 (2006). doi:10.1016/j.chemphyslip.2006.06.016
K. Koch, A. Dommisse, C. Neinhuis, W. Barthlott, Self-assembly of Epicuticular Waxes on Living Plant Surfaces by Atomic Force Microscopy, in Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, ed. by P.M. Koenraad, M. Kemerink (American Institute of Physics, Melville, 2003), pp. 457–460
P.J. Holloway, C.E. Jeffree, E.A. Baker, Structural determination of secondary alcohols from plant epicuticular waxes. Phytochemisty 15, 1768–1770 (1976). doi:10.1016/S0031-9422(00)97477-6
R. Jetter, M. Riederer, In vitro reconstitution of epicuticular wax crystals: formation of tubular aggregates by long chain secondary alkanediols. Bot. Acta 108, 111–120 (1995). doi:10.1111/j.1438-8677.1995.tb00840.x
I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott, Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules. Plant Biol. 2, 462–470 (2000). doi:10.1055/s-2000-5961
W. Barthlott, I. Theisen, T. Borsch, C. Neinhuis, Epicuticular Waxes and Vascular Plant Systematics: Integrating Micromorphological and Chemical Data, in Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, ed. by T.F. Stuessy, V. Mayer, E. Hörandl (Reg. Veg. Gantner Verlag, Ruggell, 2003), pp. 457–460
I. Meusel, C. Neinhuis, C. Markstadter, W. Barthlott, Ultrastructure, chemical composition, and recrystallization of epicuticular waxes: transversely ridged rodlets. Can. J. Bot. 77, 706–720 (1999). doi:10.1139/cjb-77-5-706
International Union of Crystallography, Report of the Executive Committee for 1991. Acta Crystalogr. A 48, 922–946 (1992). doi:10.1107/S0108767392008328
C.E. Jeffree, E.A. Baker, P.J. Holloway, Ultrastructure and recrystallization of plant epicuticular waxes. New Physiol. 75, 539–549 (1975). doi:10.1111/j.1469-8137.1975.tb01417.x
R. Jetter, M. Riederer, Epicuticular crystals of nonacosan-10-ol: in vitro reconstitution and factors influencing crystal habits. Planta 195, 257–270 (1994). doi:10.1007/BF00199686
K. Koch, A. Dommisse, W. Barthlott, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates. Crys. Growth Des. 6, 2571–2578 (2006). doi:10.1021/cg060035w
G.M. Whitesides, M. Boncheva, Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Nat. Acad. Sci. USA 99(8), 4769–4774 (2002). doi:10.1073/pnas.082065899
J. Zhang, W. Zhong-Lin, J. Liu, C. Shaowei, G. Liu, Self-assembled Nanostructures (Kluwer Academic Publishers, New York, 2003)
N. Boden, P.J.B. Edwards, K.W. Jolley, C. Neinhuis, Self-assembly and Self-organization in Micellar Liquid Crystals, in Structure and Dynamics of Strongly Interacting Colloids and Supermolecular Aggregates in Solutions, ed. by S.H. Chen, J.S. Huang, P. Tartaglia (Kluwer Academic Publishers, Dordrecht, 1992)
C. Neinhuis, K. Koch, W. Barthlott, Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213, 427–434 (2001). doi:10.1007/s004250100530
D. Dorset, Development of lamellar structures in natural waxes-an electron diffraction investigation. J. Phys. D 32, 1276–1280 (1999). doi:10.1088/0022-3727/32/11/315
B. Bhushan, K. Koch, Y.C. Jung, Biomimetic hierarchical structure for self-cleaning. Appl. Phys. Lett. 93, 093101 (2008). doi:10.1063/1.2976635
B. Bhushan, K. Koch, Y.C. Jung, Nanostructures for superhydrophobicity and low adhesion. Soft Matter 4, 1799–1804 (2008). doi:10.1039/b808146h
S. De Feyter, F.C. De Schryver, Self-assembly at the liquid/solid interface: STM reveals. J. Phys. Chem. B 109, 4290–4302 (2005). doi:10.1021/jp045298k
F.C. Meldrum, S. Ludwigs, Template-directed control of crystal morphologies. Macromol. Biosci. 7, 152–162 (2007). doi:10.1002/mabi.200600191
K. Koch, A. Dommisse, A. Niemietz, W. Barthlott, K. Wandelt, Nanostructure of epicuticular plant waxes: self-assembly of wax tubules. Surf. Sci. 603, 1961–1968 (2009). doi:10.1016/j.susc.2009.03.019
A. Fahn, Structure and function of secretory cells. Adv. Bot. Res. 31, 37–75 (2000). doi:10.1016/S0065-2296(00)31006-0
G.J. Wagner, E. Wang, R.W. Shephers, New approaches for studying and exploiting an old protuberance, the Plant Trichome. Ann. Bot. 93, 3–11 (2004). doi:10.1093/aob/mch011
E. Wollenweber, The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns. Am. Fern J. 68, 13–28 (1978). doi:10.2307/1546411
W. Barthlott, E. Wollenweber, Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. Tropische und subtropische Pflanzenwelt 32, 7–67 (1981)
W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede et al., The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 22, 2325–2328 (2010). doi:10.1002/adma.200904411
P.J. Holloway, Plant Cuticles: Physicochemical Characteristics and Biosynthesis, in Air Pollution and the Leaf Cuticle, ed. by K.E. Percy, J.N. Cape, R. Jagels, C.J. Simpson (Springer, Berlin, 1994), pp. 1–13
P.E. Kolattukudy, Plant cuticle and suberin. eLS (2001). doi:10.1038/npg.els.0001920
J.T. Martin, B.E. Juniper, The Cuticles of Plants (Edward Arnold, London, 1970)
D.F. Cutler, K.L. Alvin, C.E. Price, The Plant Cuticle (Academic Press, London, 1982)
G. Kerstiens, Plant Cuticles: An Integrated Functional Approach (Bios Scient Pub, Oxford, 1996)
M. Riederer, C. Müller, Biology of the Plant Cuticle (Blackwell, Oxford Pub, Oxford, 2006)
H. Bargel, C. Neinhuis, Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. J. Exp. Bot. 56, 1049–1060 (2005). doi:10.1093/jxb/eri098
H. Bargel, K. Koch, Z. Cerman, C. Neinhuis, Structure-function relationships of the plant cuticle and cuticular waxes-a smart material? Funct. Plant Biol. 33, 893–910 (2006). doi:10.1071/FP06139
W. Barthlott, Scanning Electron Microscopy of the Epidermal Surface in Plants, in Application of the Scanning EM in Taxonomy and Functional Morphology, Systematics associations’ special volume, ed. by D. Claugher (Clarendon Press, Oxford, 1990), pp. 69–94
W. Barthlott, Morphogenese und mikromorphologie komplexer cuticular-faltungsmuster an blüten-trichomen von antirrhinum L. (Scrophulariaceae). Ber. Dt. Bot. Ges. 93, 379–390 (1980)
L.H.P. Jones, K.A. Handreck, Silica in soils, plants, and animals. Adv. Agron. 19, 107–149 (1967). doi:10.1016/S0065-2113(08)60734-8
A.G. Sangster, M.J. Hudson, H.J. Tubb, Silicon Deposition in Higher Plants, in Silicon in Agriculture, ed. by L.E. Datnoff, G.H. Snyder, G.H. Korndörfer (Elsevier, Amsterdam, 2001), pp. 85–114
H.-J. Ensikat, T. Geisler-Wierwille, M. Weigend, A first report of hydroxylated apatite as structural biomineral in Loasaceae-plants´ teeth against herbivores. Sci. Rep. 6, 26073 (2016). doi:10.1038/srep26073
R.K. Saeedur, Calcium Oxalate in Biological Systems (CRC Press, Boca Raton, 1995)
K. Koch, B. Bhushan, W. Barthlott, Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4, 1943–1963 (2008). doi:10.1039/b804854a
K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: an inspiration for biomimetics. Prog. Mater Sci. 54, 137–178 (2009). doi:10.1016/j.pmatsci2008.07.003
C. Martin, B.J. Glover, Functional aspects of cell patterning in aerial epidermis. Curr. Opin. Plant Biol. 10, 70–82 (2007). doi:10.1016/j.pbi.2006.11.004
C.A. Brewer, W.K. Smith, T.C. Vogelmann, Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell Environ. 14, 955–962 (1991). doi:10.1111/j.1365-3040.1991.tb00965.x
E. Rodriguez, P.L. Healey, I. Mehta, Biology and Chemistry of Plant Trichomes (Plenum Press, New York, 1984)
H.D. Behnke, Plant Trichomes-structure and Ultrastructure: General Terminology, Taxonomic Applications, and Aspects of Trichome Bacterial Interaction in Leaf Tips of Dioscorea, in Biology and Chemistry of Plant Trichomes, ed. by E. Rodriguez, P.L. Healey, I. Mehta (Plenum Press, New York, 1984), pp. 1–21
W. Barthlott, D. Hunt, Seed-Diversity in Cactaceae Subfam. Cactoideae, in Succulent Plant Research, vol. 5, ed. by D. Hundt (Milborne Port, Sherborne, 2000)
W. Barthlott, B. Große-Veldmann, N. Korotkova, Orchid seed diversity: a scanning electron microscopy survey. Englera 32, 1–244 (2014)
W. Barthlott, S. Wiersch, Z. Colic, K. Koch, Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes. Botany-Botanique 87, 830–836 (2009). doi:10.1139/B09-048
J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1992)
B. Bhushan, Introduction to Tribology, 2nd edn. (Wiley, New York, 2013)
P.G. De Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)
B. Bhushan, Y.C. Jung, Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces. J. Phys.: Condens. Matter 20, 225010 (2008). doi:10.1088/0953-8984/20/22/225010
M. Nosonovsky, B. Bhushan, Green Tribology, Biomimetics, Energy Conservation and Sustainability (Springer, Berlin, 2012)
E.Y. Bormashenko, Wetting of Real Surfaces, in De Gruyter Studies in Mathematical Physics, vol. 19 (Verlag Walter de Gruyter, 2013), pp. 187
H.J. Butt, K. Graf, M. Kappl, Physics and Chemistry of interfaces, 3rd edn. (Wiley-VCH, Weinheim, 2013)
F. Schellenberger, N. Encinas, D. Vollmer, H.-J. Butt, How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116, 096101 (2016). doi:10.1103/PhysRevLett.116.096101
B. Bhushan, Nanotribology and Nanomechanics-an Introduction, 3rd edn. (Springer, Heidelberg, 2011)
C.W. Extrand, Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002). doi:10.1021/la025769z
Y.C. Jung, B. Bhushan, Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127–140 (2008). doi:10.1111/j.1365-2818.2007.01875.x
MathSciNet
B. Bhushan, Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007). doi:10.1016/j.ultramic.2007.05.002
P. Roach, N.J. Shirtcliffe, M.I. Newton, Progress in superhydrophobic surface development. Soft Matter 4, 224–240 (2008). doi:10.1039/B712575P
X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 62–633 (2008). doi:10.1039/B711226B
C.W. Extrand, Origins of wetting. Langmuir 32(31), 7697–7706 (2016). doi:10.1021/acs.langmuir.6b01935
A.V. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1990)
M. Nosonovsky, B. Bhushan, Lotus Versus Rose: Biomimetic Surface Effects, in Green Tribology, Biomimetics, Energy Conservation and Sustainability, ed. by M. Nosonovsky, B. Bhushan (Springer, Berlin, 2012), pp. 25–40
R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936). doi:10.1021/ie50320a024
A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). doi:10.1039/tf9444000546
A. Marmur, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003). doi:10.1021/la0344682
E.Y. Bormashenko, Wetting transitions on biomimetic surfaces. Philos. Trans. R. Soc. A 368, 4695–4711 (2010). doi:10.1098/rsta.2010.0121
L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008). doi:10.1021/la703821h
A.-L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing. Ann. Rev. Fluid Mech. 38, 159–192 (2006). doi:10.1146/annurev.fluid.38.050304.092144
MathSciNet
MATH
C. Josserand, S.T. Thoroddsen, Drop impact on a solid surface. Ann. Rev. Fluid Mech. 48, 365–391 (2015). doi:10.1146/annurev-fluid-122414-034401
MATH
J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C.M. Megaridis, Z. Zhao, Wetting effects on the spreading of a liquid droplet surface: experiment and modeling colliding with a flat. Phys. Fluids 7, 236–247 (1995). doi:10.1063/1.868622
C. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiph. Flow 21, 151–173 (1995). doi:10.1016/0301-9322(94)00069-V
MATH
T. Mao, D. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43, 2169–2179 (1997). doi:10.1002/aic.690430903
L. Xu, L. Barcos, S.R. Nagel, Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311 (2007). doi:10.1103/PhysRevE.76.066311
R. Rioboo, C. Tropea, M. Marengo, Outcomes from a drop impact on solid surfaces. At. Sprays 11, 155–165 (2001). doi:10.1615/AtomizSpr.v11.i2.40
C. Motzkus, F. Gensdarmes, E. Géhin, Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J. Colloid Interface Sci. 362, 540–552 (2011). doi:10.1016/j.jcis.2011.06.031
T. Gilet, L. Bourouiba, Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54(6), 974–984 (2014). doi:10.1093/icb/icu116
K. Koch, R. Grichnik, Influence of surface structure and chemistry on water droplet splashing. Philos. Trans. R. Soc. A 374, 20160183 (2016). doi:10.1098/rsta.2016.0183
Y. Liu, L. Moevius, X. Xu, T. Qian, J.M. Yeomans, Z. Wang, Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10(7), 515–519 (2014). doi:10.1038/nphys2980
K. Koch, M. Bennemann, H.F. Bohn, D.C. Albach, W. Barthlott, Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting. Bioinspir. Biomim. 8, 036005 (2013). doi:10.1088/1748-3182/8/3/036005
A. Otten, S. Herminghaus, How plants keep dry: a physicist’s point of view. Langmuir 20, 2405–2408 (2004). doi:10.1021/la034961d
H.-J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, W. Barthlott, Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2, 152–161 (2011). doi:10.3762/bjnano.2.19
W. Barthlott, K. Riede, M. Wolter, Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicateae: Salviniaceae). Amazoniana 13, 47–58 (1994)
H. Bargel, W. Barthlott, K. Koch, L. Schreiber, C. Neinhuis, Plant Cuticles: Multifunctional Interfaces Between Plant and Environment, in The Evolution of Plant Physiology, ed. by A.R. Hemsley, I. Poole (Academic Press, London, 2003), pp. 171–194
L. Schreiber, J. Schonherr, Water and Solute Permeability of Plant Cuticles (Springer, Heidelberg, 2009)
K. Koch, W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos. Trans. R. Soc. A 367, 1487–1509 (2009). doi:10.1098/rsta.2009.002
W. Barthlott, Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nordic J. Bot. 1, 345–355 (1981). doi:10.1111/j.1756-1051.1981.tb00704.x
P.G. Kevan, M.A. Lanet, Flower petal microtexture is a tactile cue for bees. Proc. Nat. Acad. Sci. USA 82, 4750–4752 (1985). doi:10.1073/pnas.82.14.4750
S.N. Gorb, Functional surfaces in biology: adhesion related phenomena, vol. 1 (Springer Science & Business Media, Berlin, 2009)
F. Exner, S. Exner, Die physikalischen Grundlagen der Blütenfärbungen. Sitzungsber. Kais. Akad. Wiss. Wien, Math.-nat. Kl 119, 191–245 (1910)
Y. Toda, Physiological studies on Schistostega osmundacea (Dicks.) Mohr. J. Coll. Sci. Imp. Univ. Tokyo 40(5), 1–30 (1918)
Q. Kay, H. Daoud, C. Stirton, Pigment distribution, light reflection and cell structure in petals. Bot. J. Linnean Soc. 83, 57–84 (1981)
H.M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. Glover, Floral iridescence, produced by diffractive optics, acts as cue for animal pollinators. Science 323, 130–133 (2009). doi:10.1126/science.1166256
D.G. Lloyd, S.C.H. Barret, Floral Biology-Studies on Floral Evolution in Animal-pollinated Plants (Springer, Berlin, 1995)
B. Burr, D. Rosen, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. III. Dilleniidae und Asteridae S. I. Trop. Subtrop. Pflanzenwelt 93 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1995), 186 pp
B. Burr, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. II. Magnoliidae, Ranunculidae, Hamamelididae, Caryophyllidae, Rosidae. Trop. subtrop. Pflanzenwelt 87 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1993), 193 pp
N. Biedinger, W. Barthlott, Untersuchungen zur Ultraviolettreflexion von Angiospermenblüten. I. Monocotyledoneae. Trop. Subtrop. Pflanzenwelt 86 (Akad. Wiss. Lit. Mainz, F. Steiner Verlag, Stuttgart, 1993), 122 pp
H. Whitney, M. Kolle, R. Alvarez-Fernandez, U. Steiner, B. Glover, Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2(3), 230–232 (2009)
S. Robinson, C.E. Lovelock, C.B. Osmond, Wax as a mechanism for protection against photoinhibition: a study of Cotyledon orbiculata. Bot. Acta 106, 307–312 (1993). doi:10.1111/j.1438-8677.1993.tb00753.x
C. Müller, M. Riederer, Plant surface properties in chemical ecology. Chem. Ecol. 3, 2621–2651 (2005). doi:10.1007/s10886-005-7617-7
J.R. Ehleringer, O. Björkman, Pubescence and leaf spectral characteristics in a desert shrub Encelia farinosa. Oecologia 36, 151–162 (1978). doi:10.1007/BF00349805
M.G. Holmes, D.R. Keiller, Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25, 85–93 (2002). doi:10.1046/j.1365-3040.2002.00779.x
D.M. Gates, Energy Exchange and Transpiration, in Water and Plant Life, ed. by O.L. Lange, L. Kappen, E.D. Schulze (Springer, New York, 1976), pp. 137–147
P.H. Schuepp, Model experiments on free convection heat and mass transfer of leaves and plant elements. Boundary-Layer Meteorol. 3, 454–457 (1973). doi:10.1007/BF01034988
P.H. Schuepp, Leaf boundary layers. New Phytol. 125, 477–507 (1993). doi:10.1111/j.1469-8137.1993.tb03898.x
H.G. Jones, E. Rotenberg, Radiation and Temperature Regulation in Plants, in Encyclopedia of Life Science, ed. by A.M. Hetherington (Wiley, New York, 2001), pp. 1–8
W. Barthlott, W. Schultze-Motel, Zur feinstruktur der blattoberflächen und systematischen stellung der laubmoosgattung rhacocarpus und anderer hedwigiaceae. Willdenowia 11, 3–11 (1981)
H.G. Edelmann, C. Neinhuis, M. Jarvis, B. Evans, E. Fischer, W. Barthlott, Ultrastructure and chemistry of the cell wall of the moss Rhacocarpus purpurascens (Rhacocarpaceae): a puzzling architecture among plants. Planta 206, 315–321 (1998). doi:10.1007/s004250050406
F.T. Malik, R.M. Clement, D.T. Gethin, W. Krawszik, A.R. Parker, Nature’s moisture harvesters: a comparative review. Bioinspir. Biomim. 9, 031002 (2014). doi:10.1088/1748-3182/9/3/031002
M.A.K. Azad, D. Ellerbrok, W. Barthlott, K. Koch, Fog collecting biomimetic surfaces: influence of microstructure and wettability. Bioinspir. Biomim. 10, 016004 (2015). doi:10.1088/1748-3190/10/1/016004
M.A.K. Azad, W. Barthlott, K. Koch, Hierarchical surface architecture of plants as an inspiration for biomimetic fog collectors. Langmuir 31(48), 13172–13179 (2015). doi:10.1021/acs.langmuir.5b02430
P.T. Martone, L. Kost, M. Boller, Drag reduction in wave-swept macroalgae: alternative stratgies and new predictions. Am. J. Bot. 99(5), 806–815 (2012). doi:10.3732/ajb.1100541
W. Barthlott, Die Selbstreinigungsfähigkeit Pflanzlicher Oberflächen Durch Epicuticularwachse, in Klima- und Umweltforschung an der Universität Bonn, ed. by H. Koch (Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992), pp. 117–120
C.W. Extrand, S.I. Moon, Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. Langmuir 30, 8791–8797 (2014). doi:10.1021/la5019482
A. Balmert, H.F. Bohn, P. Ditsche-Kuru, W. Barthlott, Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces. J. Morphol. 272, 442–451 (2011). doi:10.1002/jmor.10921
R.S. Seymour, P.G.D. Matthews, Physical gills in diving insects and spiders: theory and experiment. J. Exp. Biol. 216, 164–170 (2013). doi:10.1242/jeb.070276
K. Koch, H.F. Bohn, W. Barthlott, Hierarchical sculpturing of plant surfaces and superhydrophobicity. Part of the ‘Langmuir 25th year: wetting and superhydrophobicity’ special issue’. Langmuir 25, 14116–14120 (2009). doi:10.1021/la9017322
M. Amabili, A. Giacomello, S. Meloni, C.M. Casciola, Unraveling the Salvinia paradox: design principles for submerged superhydrophobicity. Adv. Mater. Interfaces 2, 1500248 (2015). doi:10.1002/admi.201500248
P. Ditsche, E. Gorb, M. Mayser, S. Gorb, T. Schimmel, W. Barthlott, Elasticity of the hair cover in air-retaining Salvinia surfaces. Appl. Phys. A 121, 505–511 (2015). doi:10.1007/s00339-015-9439-y
D. Gandyra, S. Walheim, S. Gorb, W. Barthlott, T. Schimmel, The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness. Beilstein J. Nanotchnol. 6, 11–18 (2015). doi:10.3762/bjnano.6.2
W. Konrad, C. Apeltauer, J. Frauendiener, W. Barthlott, A. Roth-Nebelsick, Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water. J. Bion. Eng. 6, 350–356 (2009). doi:10.1016/S1672-6529(08)60133-X
M.J. Mayser, W. Barthlott, Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure. Integr. Comp. Biol. 54, 1001–1007 (2014). doi:10.1093/icb/icu072
M.J. Mayser, H.F. Bohn, M. Reker, W. Barthlott, Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J. Nanotechnol. 5, 812–821 (2014). doi:10.3762/bjnano.5.93
A. Solga, Z. Cerman, B.F. Striffler, M. Spaeth, W. Barthlott, The dream of staying clean: lotus and biomimetic surfaces. Bioinspir. Biomim. 2, 126–134 (2007). doi:10.1088/1748-3182/2/4/S02
S.D. Eigenbrode, Plant Surface Waxes and insect Behaviour, in Plant Cuticles: An Integrated Functional Approach, ed. by G. Kerstiens (BIOS Scientific Publishers, Oxford, 1996), pp. 201–222
R.G. Beutel, S.N. Gorb, Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool Syst. 39(4), 177–207 (2001). doi:10.1046/j.1439-0469.2001.00155.x
S. Gorb, Attachment Devices of Insect Cuticle (Springer Science & Business Media, Berlin, 2001)
H.F. Bohn, W. Federle, Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Nat. Acad. Sci. USA 101(39), 14138–14143 (2004). doi:10.1073/pnas.0405885101
U. Bauer, H.F. Bohn, W. Federle, Harmless nectar source or deadly trap: nepenthes pitchers are activated by rain, condensation and nectar. Proc. R. Soc. B 275, 259–265 (2008). doi:10.1098/rspb.2007.1402
J. Gould, Learning from naturés best. Nature 519, S2–S3 (2015). doi:10.1038/519S2a
A.J. Schulte, D.M. Droste, K. Koch, W. Barthlott, Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor)-new design principles for biomimetic materials. Beilstein J. Nanotechnol. 2, 228–236 (2011). doi:10.3762/bjnano.2.27
M. Hopkin, Butterflies boast ultrablack wings: insects use optical trick to get the blackest black out of dark pigments. Nat. News (2004). doi:10.1038/news040126-4
M. Spinner, S.N. Gorb, A. Balmert, H. Bleckmann, G. Westhoff, Non-contaminating camouflage: multifunctional skin microornamentation in the West African Gaboon viper (Bitis rhinoceros). PLoS ONE 9, e91087 (2014). doi:10.1371/journal.pone.0091087
M.A.K. Azad, Fog Collection on Plant Surfaces and Biomimetic Applications, (Dissertation, University of Bonn, 2016)
M. Nosonovsky, B. Bhushan, Energy transitions in superhydrophobicity: low adhesion, easy flow and bouncing. J. Phys.: Condens. Matter 20, 395005 (2008). doi:10.1088/0953-8984/20/39/395005
G. Zouridakis, J.E. Moore, J. Maitland, Biomedical Technology and Devices, 2nd edn. (CRC Press, Boca Raton, 2013)
C.J. Weng, C.H. Chang, C.W. Peng, S.W. Chen, J.M. Yeh, C.L. Hsu, Y. Wei, Advanced anticorrosive coatings prepared from the mimicked Xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability. Chem. Mater. 23(8), 2075–2083 (2011). doi:10.1021/cm1030377
S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264–6269 (2011). doi:10.1016/j.apsusc.2011.02.057
L. Cao, A.K. Jones, V.K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009). doi:10.1021/la902882b
Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011). doi:10.1016/j.cis.2011.08.005
R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005). doi:10.1021/la0401011
K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott, Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5(7), 1386–1393 (2009). doi:10.1039/b818940d
M. Schwab, G. Noga, W. Barthlott, Bedeutung der epicuticularwachse für die pathogenabwehr am beispiel von botrytis cinerea-infektionen bei kohlrabi und erbse. Gartenbauwissenschaft 60, 102–109 (1995)
G.J. Noga, M. Knoche, M. Wolter, W. Barthlott, Changes in leaf micro-morphology induced by surfactant application. Angew. Bot. 61, 521–528 (1987)
M. Wolter, W. Barthlott, M. Knoche, G.J. Noga, Concentration effects and regeneration of epicuticular waxes after treatment with Triton-X-100 surfactant. Angew. Bot. 62(1–2), 53–62 (1988)
G. Noga, M. Wolter, W. Barthlott, W. Petry, Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment. Angew. Botanik 65, 239–252 (1991)
G. Noga, M. Knoche, M. Wolter, The impact of Triton X-100 surfactant on leaf micromorphology. HortScience 23(3), 808 (1988)
C. Neinhuis, M. Wolter, W. Barthlott, Epicuticular wax of Brassica oleracea: changes in microstructure and ability to be contaminated of leaf surfaces after application of Triton X-100. J. Plant Dis. Prot. 99, 542–549 (1992)
C. Zeiger, I.C.R. da Silva, M. Mail, M.N. Kavalenka, W. Barthlott, H. Hölscher, Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials. Bioinspir. Biomim. 11(5), 056003 (2016). doi:10.1088/1748-3190/11/5/056003
M.A. Salem, W. Al-Zayadneh, H.F. Schulze, A.J. Cheruth, Effect of nanohydrophobic sand layer on Bermudagrass (Cynodon spp.) in urban landscaping. Urban Water J. 11, 167–173 (2013). doi:10.1080/1573062X.2013.768684
J.-E. Melskotte, M. Brede, A. Ott, M. Mayser, W. Barthlott, A. Leder, Künstliche Luft Haltende Oberflächen zur Reibungsreduktion am Schiff/artificial Air Retaining Surfaces for Drag reduction on Shiphulls, in Lasermethoden in der Strömungsmesstechnik, vol. 39, ed. by M. Brede, B. Ruck, D. Dopheide (Deutsche Gesellschaft für Laser-Anemometrie GALA e.V, Karlsruhe, 2012), pp. 1–6
O. Tricinci, T. Terencio, B. Mazzolai, N.M. Pugno, F. Greco, V. Mattoli, 3D micropatterned surfaces inspired by Salvinia molesta via direct laser lithography. ACS Appl. Mater. Interfaces 7(46), 25560–25567 (2015). doi:10.1021/acsami.5b07722
J.-E. Melskotte, M. Brede, A. Wolter, W. Barthlott, A. Leder, Schleppversuche an Künstlichen, Luft Haltenden Oberflächen zur Reibungsreduktion am Schiff, in Lasermethoden in der Strömungsmesstechnik, 21. Fachtagung, 3–5. September 2013, ed. by C.J. Kähler et al. (München, Germany, 2013) 53, 1–7
P. Ditsche-Kuru, E.S. Schneider, J.-E. Melskotte, M. Brede, A. Leder, W. Barthlott, Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention. Beilstein J. Nanotechnol. 2, 137–144 (2011). doi:10.3762/bjnano.2.17
W. Federle, U. Maschwitz, B. Fiala, M. Riederer, B. Hölldobler, Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oeco 112, 217–224 (1997). doi:10.1007/s004420050303
P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13(4), 1793–1799 (2013). doi:10.1021/nl4003969
T.S. Wong, S.H. Kang, S.K. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). doi:10.1038/nature10447
C.A.E. Hamlett, N.J. Shirtcliffe, F.B. Pyatt, M.I. Newton, G. McHale, K. Koch, Passive water control at the surface of a superhydrophobic lichen. Planta 234(6), 1267–1274 (2011). doi:10.1007/s00425-011-1475-z
W. Barthlott, W. Erdelen, M.D. Rafiqpoor, Biodiversity and Technical Innovations: Bionics, in Concept and Value in Biodiversity. Routledge Studies in Biodiversity Politics and Management, ed. by D. Lanzerath, M. Friele, D. Dopheide (Routledge, New York, 2014), pp. 300–315